請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10622
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 鍾添東(Tien-Tung Chung) | |
dc.contributor.author | Meng-Hung Shih | en |
dc.contributor.author | 施孟宏 | zh_TW |
dc.date.accessioned | 2021-05-20T21:44:32Z | - |
dc.date.available | 2011-08-22 | |
dc.date.available | 2021-05-20T21:44:32Z | - |
dc.date.copyright | 2011-08-22 | |
dc.date.issued | 2011 | |
dc.date.submitted | 2011-08-19 | |
dc.identifier.citation | [1] W. Zhou, and X. Su, “A direct mapping algorithm for phase-measuring profilometry,” Journal of Modern Optics, vol.41, no.1, pp.89-94, 1994.
[2] P. S. Huang, Q. Hu, F. Lin, and F. P. Chiang, “Color-encoded digital fringe projection technique for high-speed three-dimensional surface,” Optical Engineering, vol.38, no.6, pp.1065-1071, 1999. [3] P. S. Huang, Q. Y. Hu, and F. P. Chiang, “Double three-step phase-shifting algorithm,” Applied Optics, vol. 41, no.22, pp.4503-4509 ,2002. [4] S. Zhang, “High-resolution 3D profilometry with binary phase-shifting methods,” Applied Optics, vol.50, no. 12, pp.1753-1757, 2011. [5] P. Jia, J. Kofman, and C. English, “Triangular phase-shifting algorithms for surface measurement,” Proceedings of SPIE, vol.6375, pp.63750C, 2006. [6] P. Jia, J. Kofman, and C. English, “Two-step triangular-pattern phase-shifting method for three-dimensional object-shape measurement,” Optical Engineering, vol.46, no.8, August 2007. [7] H. Guo, H. He, Y. Yu, and M. Chen, “Least-squares calibration method for fringe projection profilometry,” Optical Engineering, vol. 44, no.3, 033603, 2005. [8] X. Su, W. Song, Y. Cao, and L. Xiang, “Phase-height mapping and coordinate calibration simultaneously in phase-measuring profilometry,” Optical Engineering, vol. 43, no.3, pp.708-712, 2004. [9] P. J. Tavares, M. A. Vaz, “Linear calibration procedure for the phase-to-height relationship in phase measurement profilometry,” Optics Communications, vol.274, pp.307-314, 2007. [10] S. Zhang and P. S. Huang, “Phase error compensation for a 3D shape measurement system based on the phase-shifting method,” Optical Engineering, vol. 46, 063601, 2007. [11] S. Zhang and S. T. Yau, “Generic nonsinusoidal phase error correction for three-dimensional shape measurement using a digital video projector,” APPLIED OPTICS, vol. 46, no. 1, pp. 36-43, 2007. [12] S. Gai, and F. Da, “A novel fringe adaptation method for digital projector,” Optics and Lasers in Engineering, vol. 49, pp. 547-552, 2011. [13] C. Waddington, and J. Kofman, “Analysis of measurement sensitivity to illuminance and fringe-pattern gray levels for fringe-pattern projection adaptive to ambient lighting,” Optics and Lasers in Engineering, vol. 48, pp. 251-256, 2010. [14] T.T. Chung and T.W. Liu, “Design of Color Fringe Projection Sequence for 3D Shape Measurement,” 2010 Symposium on Photonics and Optoelectronic (SOPO 2010), 5504210, 2010. [15] K. J. Gasvik, Optical Metrology, John Wiley & Sons, 1995. [16] Malacara, “Optical shop testing,” John Wiley & Sons, 1992. [17] S. Zhang, “High-speed 3D shape measurement based on digital fringe projection technique,” Mechanical Engineering of State University of New York, M.S. dissertation, 2003. [18] V. Srinivasan, H. C. Liu, and M. Halioua, “Automated phase-measuring profilometry of 3D diffuse objects,” Applied Optics 23(18), 1984. [19] G. Fornaro, G. Franceschetti, R. Lanari, E. Sansosti and M. Tesauro, “Global and local phase-unwrapping techniques: a comparison,” Optical Society of America, vol.14, no.10, pp.2702-2708, 1997. [20] Y. Lu, X. Wang and G. He, “Phase unwrapping based on branch cut placing and reliability ordering,” Optical Engineering, vol.44, no.5, pp.055601, 2005. [21] M. A. Herraez, D. R. Burton, M. J. Lalor and M. A. Gdeisat, “Fast two-dimensional phase-unwrapping algorithm based on sorting by reliability following a noncontinuous path,” Applied Optics, vol.41, no.35, pp.7437-7444, 2002. [22] M. F. Salfity, P. D. Ruiz, J. M. Huntley, M. J. Graves, R. Cusack, and D. A. Beauregard, “Branch cut surface placement for unwrapping of undersampled three-dimensional phase data: application to magnetic resonance imaging arterial flow mapping,” Applied Optics, vol. 45, no. 12, pp. 2711-2722, 2006. [23] R. Cusack, J. M. Huntley and H. T. Goldrein, “Improved noise-immune phase-unwrapping algorithm,” Applied Optics 34(5), pp. 781-789, 1995. [24] R. M. Goldstein, H. A. Zebker and C. L. Werner, “Satellite radar interferometry: two-dimensional phase unwrapping,” Radio Science, vol.23, pp.713-720, 1988. [25] J. M. Huntley, “Noise-immune phase unwrapping algorithm,” Applied Optics, vol.28, no.15, pp.3268-3270, 1989. [26] J. M. Huntley, “Three-dimensional noise-immune phase unwrapping algorithm,” Applied Optics, vol.40, no.23, pp.3901-3908, 2001. [27] H. A. Zebker and Y. Lu, “Phase unwrapping algorithms for radar interferometry: residue-cut, least-squares, and synthesis algorithms,” Optical Society of America, vol.15, no.3, pp.586-598, 1998. [28] D. J. Bone, “Fourier fringe analysis: the two-dimensional phase unwrapping problem,” Applied Optics, vol.30, no.25, pp.3627-3632, 1991. [29] J. A. Quiroga, A. Gonza′lez-Cano and E. Bernabeu, “Phase-unwrapping algorithm based on an adaptive criterion,” Applied Optics, vol.34, no.14, pp.2560-2563, 1995. [30] W. Xu and I. Cumming, “A region-growing algorithm for InSAR phase unwrapping,” IEEE Transactions on Geoscience and Remote Sensing, vol.37, no.1, pp.124-134, 1999. [31] S. Zhang, X. Li, and S. T. Yau, “Multilevel quality-guided phase unwrapping algorithm for real-time three-dimensional shape reconstruction,” Applied Optics, vol. 46, no. 1, 2007. [32] T. J. Flynn, “Consistent 2-D phase unwrapping guided by a quality map,” IEEE Transactions on Geoscience and Remote Sensing, pp.2057-2059, 1996. [33] W. Z. Huang, “Correction of Nonlinear Digital Fringe Error for 3D Shape Measurement,” master thesis, National Taiwan University, Taiwan, 2006. [34] C. L. Chang, “360 Degrees Rapid Measuring System of 3-D Profilometry and Application in Wideband Network Collaboration,” master thesis, National Taiwan University, Taiwan, 2001. [35] M. A. Sid-Ahmed, M. T. Boraie, “Dual camera calibration for 3-D machine vision metrology”, IEEE Transactions on instrumentation and measurement, vol. 39, no. 3, pp. 512-516, 1990. [36] J. Heikkila and O. Silven, “A four-step camera calibration procedure with implicit image correction,” Proceedings of the 1997 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp.1106-1112, 1997. [37] Savitzky, Golay, “Smoothing and Differentiation of Data by Simplified Least Squares Procedures,” Analytical Chemistry 36 (8), pp. 1627–1639, 1964. [38] D. C. Ghiglia and M. Pritt, “Two-Dimensional Phase Unwrapping:Theory, Algorithms, and Software,” Wiley, New York , 1998. [39] W. S. Syu, “N-step color phase-shifting method for 3D shape measurement,” master thesis, National Taiwan University, Taiwan, 2006. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10622 | - |
dc.description.abstract | 近二十年來,使用結構光法之三維外形量測的研究持續發展。在使用商業用投影機與數位相機之三維外形量測中,投影機的非線性伽馬值與相機的非線性響應都會造成拍攝的強度誤差與相位誤差,這將造成很大的外形量測誤差。本文提出一種簡單的相位移法強度誤差校正步驟。首先,投射正弦條紋圖形於白色平板上,並從拍攝影像中取得強度資料。使用理想正弦曲線配適強度資料。利用拍攝資料曲線與配適曲線之間的差別建立一個強度查詢表。接著使用查詢表校正用於建立三維物體外形影像之強度。研究結果顯示三維外形量測之量測品質有明顯的改善。本文亦提出一個綜合誤差校正法。在強度誤差校正步驟後使用相位誤差查詢表法。與強度誤差查詢表類似,使用一白色平板透過簡單的程序來建立一個相位誤差查詢表。最後,以Visual C++發展出一套整合分析程式,所有的步驟都可以在程式中簡單快速的執行。實驗結果顯示,在大部份的結果中,綜合誤差校正法可以更有效的改善量測品質。 | zh_TW |
dc.description.abstract | 3D shape measurement based on structured light system is a field of ongoing research for the past two decades. For 3D shape measurement using commercial projector and digital camera, the nonlinear gamma of the projector and the nonlinear response of the camera cause the captured fringes having both intensity and phase errors, and result in large measurement shape error. This thesis presents a simple intensity error correction process for the phase-shifting method. First, a white flat board is projected with sinusoidal fringe patterns, and the intensity data is extracted from the captured image. The intensity data is fitted to an ideal sine curve. The difference between the captured curve and the fitted sine curve are used to establish an intensity look-up table (LUT). The LUT is then used to calibrate the intensities of measured object images for establishing 3D object shapes. Research results show that the measurement quality of the 3D shapes is significantly improved. A combined error correction method is also presented. The phase error LUT method is applied after the intensity error correction procedure. It’s similar to the intensity error LUT that a phase error LUT is created by using a white flat board with simple process. Finally, an integrated program is developed in Visual C++. Calibration of intensities and phases can be applied fast and easily in this program. Experimental result shows that this combined error correction method improves the measurement quality more effectively in most cases. | en |
dc.description.provenance | Made available in DSpace on 2021-05-20T21:44:32Z (GMT). No. of bitstreams: 1 ntu-100-R94522633-1.pdf: 3533251 bytes, checksum: 32416bf7951b5acd0b120b71d430c354 (MD5) Previous issue date: 2011 | en |
dc.description.tableofcontents | 致謝 i
摘要 iii Abstract v Table of contents vii List of Figures xi List of Tables xv Chapter 1 Introduction 1 1.1 Background 1 1.2 Paper Review 3 1.3 Motivations and Objectives 13 1.4 Thesis Structures 14 Chapter 2 Principles 15 2.1 Principles of Phase-Shifting Method 16 2.2 Phase-Unwrapping Methods 18 2.2.1 Principles of Phase-Unwrapping 20 2.2.2 Determine the Distribution of Discontinuity 22 2.2.3 Branch-Cut Algorithm 24 2.2.4 Quality-Guided Phase Unwrapping Algorithm 27 2.3 Phase-Height Transformation 29 2.3.1 Triangulation Method 30 2.4 Coordinate Transformation Relating Image System to World System 32 Chapter 3 Intensity Error Correction 39 3.1 Intensity Error Correction 40 3.1.1 Generation of Intensity Error Look-Up Table 41 3.1.2 Results of Intensity Correction 47 3.2 Combination with Phase Error Correction 48 3.2.1 Generation of Phase Error Look-Up Table 49 Chapter 4 Experimental Results 51 4.1 The Measurement Equipment 51 4.2 Program and Procedures 53 4.3 3D Shape Measurement Results 55 Chapter 5 Conclusions and Suggestions 67 5.1 Conclusions 67 5.2 Suggestions 68 References 69 Appendix A User Manual of 3D Shape Reconstruction System 73 A.1. Installation and Setting Manual of 3DSRS 73 A.1.1. System Requirements 73 A.1.2. Execution of 3DSRS 73 A.2. User Interface Manual of 3DSRS 73 A.2.1. Toolbar Region 74 A.2.2. Image Region 75 A.2.3. Analysis Setting Region 76 A.2.4. Correction Method Region 77 A.2.5. System Information Region 78 A.2.6. Main Functions Region 78 A.3. 3DSRS Code Files Manual 80 A.3.1. Kernel Code Files 80 A.3.2. System Setting Files 80 Appendix B 資料點對位與整合操作說明 82 B.1. 程式安裝說明 82 B.1.1. 軟體需求 82 B.1.2. 軟體安裝設定 82 B.1.3. 執行方式 83 B.2. 程式操作說明 83 B.2.1. 程式介面功能介紹 84 B.2.2. 程式操作流程 86 Vitae (個人簡歷) 89 | |
dc.language.iso | en | |
dc.title | 相位移法三維外形量測之強度誤差校正 | zh_TW |
dc.title | Intensity Error Correction for 3D Shape Measurement Based on Phase-Shifting Method | en |
dc.type | Thesis | |
dc.date.schoolyear | 99-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 劉正良(Cheng-Liang Liu),史建中(Chien-Jong Shih) | |
dc.subject.keyword | 三維外形量測,條紋投影,相位移法,強度誤差校正,相位誤差校正, | zh_TW |
dc.subject.keyword | 3D shape measurement,fringe projection,phase-shifting method,intensity error correction,phase error correction, | en |
dc.relation.page | 89 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2011-08-19 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
顯示於系所單位: | 機械工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-100-1.pdf | 3.45 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。