Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 微生物學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10585
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor葉秀慧
dc.contributor.authorYa-Yun Laien
dc.contributor.author賴亞筠zh_TW
dc.date.accessioned2021-05-20T21:41:25Z-
dc.date.available2012-09-09
dc.date.available2021-05-20T21:41:25Z-
dc.date.copyright2010-09-09
dc.date.issued2010
dc.date.submitted2010-08-12
dc.identifier.citation[1] D. M. Parkin, et al., 'Estimating the world cancer burden: Globocan 2000,' Int J Cancer, vol. 94, pp. 153-6, Oct 15 2001.
[2] C. J. Chen, et al., 'Epidemiological characteristics and risk factors of hepatocellular carcinoma,' J Gastroenterol Hepatol, vol. 12, pp. S294-308, Oct 1997.
[3] T. Sato, et al., 'FAP-1: a protein tyrosine phosphatase that associates with Fas,' Science, vol. 268, pp. 411-5, Apr 21 1995.
[4] K. S. Erdmann, 'The protein tyrosine phosphatase PTP-Basophil/Basophil-like. Interacting proteins and molecular functions,' Eur J Biochem, vol. 270, pp. 4789-98, Dec 2003.
[5] O. D. Abaan and J. A. Toretsky, 'PTPL1: a large phosphatase with a split personality,' Cancer Metastasis Rev, vol. 27, pp. 205-14, Jun 2008.
[6] V. N. Ivanov, et al., 'FAP-1 association with Fas (Apo-1) inhibits Fas expression on the cell surface,' Mol Cell Biol, vol. 23, pp. 3623-35, May 2003.
[7] V. N. Ivanov, et al., 'Opposite roles of FAP-1 and dynamin in the regulation of Fas (CD95) translocation to the cell surface and susceptibility to Fas ligand-mediated apoptosis,' J Biol Chem, vol. 281, pp. 1840-52, Jan 20 2006.
[8] G. Bompard, et al., 'Protein-tyrosine phosphatase PTPL1/FAP-1 triggers apoptosis in human breast cancer cells,' J Biol Chem, vol. 277, pp. 47861-9, Dec 6 2002.
[9] M. Dromard, et al., 'The putative tumor suppressor gene PTPN13/PTPL1 induces apoptosis through insulin receptor substrate-1 dephosphorylation,' Cancer Res, vol. 67, pp. 6806-13, Jul 15 2007.
[10] A. Palmer, et al., 'EphrinB phosphorylation and reverse signaling: regulation by Src kinases and PTP-BL phosphatase,' Mol Cell, vol. 9, pp. 725-37, Apr 2002.
[11] M. Glondu-Lassis, et al., 'PTPL1/PTPN13 regulates breast cancer cell aggressiveness through direct inactivation of Src kinase,' Cancer Res, vol. 70, pp. 5116-26, Jun 15 2010.
[12] S. H. Yeh, et al., 'Genetic characterization of fas-associated phosphatase-1 as a putative tumor suppressor gene on chromosome 4q21.3 in hepatocellular carcinoma,' Clin Cancer Res, vol. 12, pp. 1097-108, Feb 15 2006.
[13] P. Strnad, et al., 'Intermediate filament cytoskeleton of the liver in health and disease,' Histochem Cell Biol, vol. 129, pp. 735-49, Jun 2008.
[14] M. B. Omary, et al., 'Keratins: guardians of the liver,' Hepatology, vol. 35, pp. 251-7, Feb 2002.
[15] P. A. Coulombe and M. B. Omary, ''Hard' and 'soft' principles defining the structure, function and regulation of keratin intermediate filaments,' Curr Opin Cell Biol, vol. 14, pp. 110-22, Feb 2002.
[16] N. O. Ku, et al., 'Keratin 8 mutations in patients with cryptogenic liver disease,' N Engl J Med, vol. 344, pp. 1580-7, May 24 2001.
[17] N. O. Ku, et al., 'Keratin 8 and 18 mutations are risk factors for developing liver disease of multiple etiologies,' Proc Natl Acad Sci U S A, vol. 100, pp. 6063-8, May 13 2003.
[18] D. M. Toivola, et al., 'Keratin 8 and 18 hyperphosphorylation is a marker of progression of human liver disease,' Hepatology, vol. 40, pp. 459-66, Aug 2004.
[19] N. O. Ku, et al., 'Keratins let liver live: Mutations predispose to liver disease and crosslinking generates Mallory-Denk bodies,' Hepatology, vol. 46, pp. 1639-49, Nov 2007.
[20] H. Denk, et al., 'Hepatocellar hyalin (Mallory bodies) in long term griseofulvin-treated mice: a new experimental model for the study of hyalin formation,' Lab Invest, vol. 32, pp. 773-6, Jun 1975.
[21] H. Yokoo, et al., 'Experimental production of Mallory bodies in mice by diet containing 3,5-diethoxycarbonyl-1,4-dihydrocollidine,' Gastroenterology, vol. 83, pp. 109-13, Jul 1982.
[22] K. Zatloukal, et al., 'Cytokeratin 8 protects from hepatotoxicity, and its ratio to cytokeratin 18 determines the ability of hepatocytes to form Mallory bodies,' Am J Pathol, vol. 156, pp. 1263-74, Apr 2000.
[23] T. M. Magin, et al., 'Lessons from keratin 18 knockout mice: formation of novel keratin filaments, secondary loss of keratin 7 and accumulation of liver-specific keratin 8-positive aggregates,' J Cell Biol, vol. 140, pp. 1441-51, Mar 23 1998.
[24] I. Nakamichi, et al., 'Keratin 8 overexpression promotes mouse Mallory body formation,' J Cell Biol, vol. 171, pp. 931-7, Dec 19 2005.
[25] M. Komatsu, et al., 'Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice,' J Cell Biol, vol. 169, pp. 425-34, May 9 2005.
[26] M. Harada, et al., 'Proteasome inhibition induces inclusion bodies associated with intermediate filaments and fragmentation of the Golgi apparatus,' Exp Cell Res, vol. 288, pp. 60-9, Aug 1 2003.
[27] M. Harada, et al., 'Autophagy modulates keratin-containing inclusion formation and apoptosis in cell culture in a context-dependent fashion,' Exp Cell Res, vol. 314, pp. 1753-64, May 1 2008.
[28] M. Harada, et al., 'Autophagy activation by rapamycin eliminates mouse Mallory-Denk bodies and blocks their proteasome inhibitor-mediated formation,' Hepatology, vol. 47, pp. 2026-35, Jun 2008.
[29] S. Elsasser and D. Finley, 'Delivery of ubiquitinated substrates to protein-unfolding machines,' Nat Cell Biol, vol. 7, pp. 742-9, Aug 2005.
[30] Z. Xie and D. J. Klionsky, 'Autophagosome formation: core machinery and adaptations,' Nat Cell Biol, vol. 9, pp. 1102-9, Oct 2007.
[31] A. C. Massey, et al., 'Chaperone-mediated autophagy in aging and disease,' Curr Top Dev Biol, vol. 73, pp. 205-35, 2006.
[32] N. Mizushima, et al., 'Autophagy fights disease through cellular self-digestion,' Nature, vol. 451, pp. 1069-75, Feb 28 2008.
[33] A. Simonsen and S. A. Tooze, 'Coordination of membrane events during autophagy by multiple class III PI3-kinase complexes,' J Cell Biol, vol. 186, pp. 773-82, Sep 21 2009.
[34] T. Hanada, et al., 'The Atg12-Atg5 conjugate has a novel E3-like activity for protein lipidation in autophagy,' J Biol Chem, vol. 282, pp. 37298-302, Dec 28 2007.
[35] N. Fujita, et al., 'The Atg16L complex specifies the site of LC3 lipidation for membrane biogenesis in autophagy,' Mol Biol Cell, vol. 19, pp. 2092-100, May 2008.
[36] H. Nakatogawa, et al., 'Atg8, a ubiquitin-like protein required for autophagosome formation, mediates membrane tethering and hemifusion,' Cell, vol. 130, pp. 165-78, Jul 13 2007.
[37] S. Kimura, et al., 'Dynein-dependent movement of autophagosomes mediates efficient encounters with lysosomes,' Cell Struct Funct, vol. 33, pp. 109-22, 2008.
[38] E. Fass, et al., 'Microtubules support production of starvation-induced autophagosomes but not their targeting and fusion with lysosomes,' J Biol Chem, vol. 281, pp. 36303-16, Nov 24 2006.
[39] C. Liang, et al., 'Beclin1-binding UVRAG targets the class C Vps complex to coordinate autophagosome maturation and endocytic trafficking,' Nat Cell Biol, vol. 10, pp. 776-87, Jul 2008.
[40] M. G. Gutierrez, et al., 'Rab7 is required for the normal progression of the autophagic pathway in mammalian cells,' J Cell Sci, vol. 117, pp. 2687-97, Jun 1 2004.
[41] A. Puls, et al., 'Interaction of protein kinase C zeta with ZIP, a novel protein kinase C-binding protein,' Proc Natl Acad Sci U S A, vol. 94, pp. 6191-6, Jun 10 1997.
[42] P. Sanchez, et al., 'Localization of atypical protein kinase C isoforms into lysosome-targeted endosomes through interaction with p62,' Mol Cell Biol, vol. 18, pp. 3069-80, May 1998.
[43] S. Pankiv, et al., 'p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy,' J Biol Chem, vol. 282, pp. 24131-45, Aug 17 2007.
[44] G. Bjorkoy, et al., 'p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death,' J Cell Biol, vol. 171, pp. 603-14, Nov 21 2005.
[45] I. P. Nezis, et al., 'Ref(2)P, the Drosophila melanogaster homologue of mammalian p62, is required for the formation of protein aggregates in adult brain,' J Cell Biol, vol. 180, pp. 1065-71, Mar 24 2008.
[46] M. Komatsu, et al., 'Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice,' Cell, vol. 131, pp. 1149-63, Dec 14 2007.
[47] I. G. Campbell, et al., 'A novel gene encoding a B-box protein within the BRCA1 region at 17q21.1,' Hum Mol Genet, vol. 3, pp. 589-94, Apr 1994.
[48] V. Kirkin, et al., 'A role for NBR1 in autophagosomal degradation of ubiquitinated substrates,' Mol Cell, vol. 33, pp. 505-16, Feb 27 2009.
[49] T. Lamark, et al., 'NBR1 and p62 as cargo receptors for selective autophagy of ubiquitinated targets,' Cell Cycle, vol. 8, pp. 1986-90, Jul 1 2009.
[50] L. Qiao and J. Zhang, 'Inhibition of lysosomal functions reduces proteasomal activity,' Neurosci Lett, vol. 456, pp. 15-9, May 29 2009.
[51] V. I. Korolchuk, et al., 'Autophagy inhibition compromises degradation of ubiquitin-proteasome pathway substrates,' Mol Cell, vol. 33, pp. 517-27, Feb 27 2009.
[52] V. I. Korolchuk, et al., 'A novel link between autophagy and the ubiquitin-proteasome system,' Autophagy, vol. 5, pp. 862-3, Aug 2009.
[53] Y. S. Gao, et al., 'Histone deacetylase 6 regulates growth factor-induced actin remodeling and endocytosis,' Mol Cell Biol, vol. 27, pp. 8637-47, Dec 2007.
[54] X. Zhang, et al., 'HDAC6 modulates cell motility by altering the acetylation level of cortactin,' Mol Cell, vol. 27, pp. 197-213, Jul 20 2007.
[55] A. Iwata, et al., 'HDAC6 and microtubules are required for autophagic degradation of aggregated huntingtin,' J Biol Chem, vol. 280, pp. 40282-92, Dec 2 2005.
[56] Y. Kawaguchi, et al., 'The deacetylase HDAC6 regulates aggresome formation and cell viability in response to misfolded protein stress,' Cell, vol. 115, pp. 727-38, Dec 12 2003.
[57] J. Y. Lee, et al., 'HDAC6 controls autophagosome maturation essential for ubiquitin-selective quality-control autophagy,' EMBO J, vol. 29, pp. 969-80, Mar 3 2010.
[58] L. Herrmann, et al., 'The protein tyrosine phosphatase PTP-BL associates with the midbody and is involved in the regulation of cytokinesis,' Mol Biol Cell, vol. 14, pp. 230-40, Jan 2003.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10585-
dc.description.abstractFas-associated phosphatase-1 (FAP-1)屬於非受器型酪胺酸去磷酸酶(non-receptor protein tyrosine phosphastase)的一員,本實驗室先前利用positional cloning的方法發現FAP-1可能是一個位於chromosome 4q21-23上,參與肝癌形成的putative candidate tumor suppressor gene (TSG),但目前仍不清楚FAP-1在肝癌形成過程中的功能性影響為何。因為FAP-1是一個具有多個蛋白質交互作用功能域 (protein-protein interaction domain)的巨大骨架蛋白(scaffold protein),因此有可能藉由和肝細胞中特定分子的交互作用進一步發揮其功能性影響。先前實驗室利用yeast-two hybrid的方式發現一個與FAP-1有交互作用的新蛋白質-角蛋白18 (Keratin 18);並發現FAP-1會與細胞凋亡時不正常堆疊的角蛋白18或8有交互作用。因此本論文研究目的為釐清FAP-1是否參與不正常堆疊的角蛋白18或8後續進行降解過程之調控及分子機制。
我們採取的實驗策略是在高度表現FAP-1的HEK293T細胞株建立一個artificial system,藉由降低FAP-1的表現,並單獨外送角蛋白18或8製造出不正常堆疊的角蛋白,以利我們探討FAP-1如何調控不正常堆疊的角蛋白18或8進行蛋白質降解。本研究一開始採取lentivirus- based RNAi 降低FAP-1的表現量後,發現角蛋白18和8的表現量都有增加的現象。進一步利用cyclohexamide抑制蛋白新生後發現FAP-1會透過降低角蛋白18或8的蛋白質穩定度,影響角蛋白18或8的表現量。接著分別利用MG132或3MA這兩種蛋白質降解抑制劑的處理,發現不正常堆疊的角蛋白18和8會經由proteasome或autophagy進行降解。之後利用siRNA降低FAP-1的表現量再處理兩種蛋白質降解抑制劑,初步結果顯示FAP-1可能參與角蛋白8或18走向proteasome或autophagy的蛋白質降解路徑。
有鑑於長時間lentivirus- based RNAi和蛋白質降解抑制劑處理,可能會使兩條蛋白質降解路徑發生cross-talk,讓我們觀察到的是兩條蛋白質降解路徑互相影響後的secondary effect。因此接下來我們縮短實驗流程,分析轉染24小時內角蛋白18和8走proteasome和autophagy降解的情形,實驗結果發現蛋白18和8進行蛋白質降解的模式不盡相同,蛋白18主要走autophagy的降解途徑,角蛋白18則是兩條蛋白質降解途徑都會走。降低FAP-1的表現量後,發現FAP-1似乎主要參與調控不正常堆積的角蛋白18走向autophagy降解,對不正常堆積的角蛋白8的降解之影響則相當有限。此結果暗示角蛋白18可能藉由與FAP-1的專一性交互作用,使其能被帶往autophagy降解,走一條與角蛋白8不同的autophagy降解路徑,這將是我們未來繼續研究的重點。此外目前所有的實驗結果都是來自在HEK293T建立的artificial system,因此未來必須再利用另一個具有高度表現的FAP-1以及內生性角蛋白18和8的assay system來驗證此論文之發現,並進一步探討FAP-1調控角蛋白進行autophagy降解的生理意義。
zh_TW
dc.description.abstractFas-associated phosphatase-1 (FAP-1) is a member of nonreceptor protein tyrosine phosphastase. We previously identified FAP-1 as a putative tumor suppressor gene at chromosome 4q21-23 in hepatocellular carcinoma by positional cloning. However, the functional effect of FAP-1 in hepatocarcinogenesis still remains unknown. FAP-1 is a large scaffold protein with multiple protein- protein interaction domains, we thus hypothesized that FAP-1 could through its association with specific factors to exert its function in hepatocytes. In our previous yeast-two- hybrid analysis, keratin18 was found as a novel interacting protein of FAP-1. Moreover, we found FAP-1 mainly associated with abnormally aggregated keratin18/ 8 during apoptosis. The specific aim of this study is to study if FAP-1 is involved in the degradation of abnormally aggregated keratin18/ 8 and the underlying molecular mechanisms.
We approached this by establishing an artificial system using HEK293T cell line, which expresses high level of FAP-1 without endogenous K8 /K18 protein expression. We tried to generate the abnormally aggregated K8 or K18 proteins by transfection of K8 or K18 expression construct alone. In this artificial system, knockdown of FAP-1 by lentivirus- based RNAi increased the protein level of both K8 and K18. Aided by cycloheximide treatment, si-FAP-1 could increase the protein stability of K8 and K18, suggesting the involvement of FAP-1 in the degradation of K8 or K18 proteins. The treatment of specific degradation inhibitors of MG132 and 3MA demonstrated that K8 and K18 degraded through both proteasome and autophagy pathways in this assay system. The results of si-FAP1 suggested that FAP-1 might regulate the degradation of K8 and K18 through both degradation pathways.
According to that long-term lenti-virus infection and degradation inhibitor treatment might result in secondary effects caused by a crosstalk between both degradation pathways, we decided to determine degradation kinetics of both keratins through both pathways. The preliminary data showed that K8 might degrade through both proteasome and autophagy pathways while K18 seems to be degraded mainly through autophagy pathway in this artificial system. The results from si-FAP-1 revealed that it might preferentially regulate the degradation of K18 though autophagy but has little effect on the degradation of K8.
All of the current findings are derived from the artificial system in HEK293T cell line, which warrants further confirmation in some other r cell lines expressing high level of FAP-1 and also the endogenous K8 and K18 proteins. Moreover, the biological significance of FAP-1 in regulating Keratin degradation through autophagy would be the next issue worthy to be extensively investigated.
en
dc.description.provenanceMade available in DSpace on 2021-05-20T21:41:25Z (GMT). No. of bitstreams: 1
ntu-99-R97445130-1.pdf: 2698072 bytes, checksum: 569ce5e2dc4d8672637caa532ca2a4a6 (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents口試委員會審定書………………………………………………………ii
中文摘要………………………………………………………………iii
英文摘要…………………………………………………………………v
目錄……………………………………………………………………vii
序論………………………………………………………………………1
研究目的…………………………………………………………………10
材料及方法………………………………………………………………12
結果………………………………………………………………………17
I.在一個artifical system探討FAP-1對角蛋白8或18進行蛋白質降解的功能性影響
II.探討FAP-1是否會影響角蛋白18或8的蛋白質穩定度 (protein stability)
III.探討不正常堆積的角蛋白18或8經由哪一條蛋白質降解路徑被分解
IV.探討FAP-1參與角蛋白18或8走哪一條蛋白質降解途徑
V.探討角蛋白18或8在不同時間點分別經由proteasome和autophagy進行
降解的情形VI. 探討在短時間的lenti-virus based RNAi和蛋白質抑制劑處理下(short-term effect),FAP-1參與角蛋白18或8走哪一條蛋白質降解途徑
VII.探討FAP-1專一性調控不正常堆積的角蛋白18走向autophagy降解的可能機制
結果討論…………………………………………………………………25
參考文獻…………………………………………………………………30
圖附錄…………………………………………………………………35
dc.language.isozh-TW
dc.title探討FAP-1去磷酸酶對角蛋白8與18的功能性影響zh_TW
dc.titleThe Functional Effect of Fas-Associated Phosphatase(FAP-1) on Keratin 8/18 in Hepatocytesen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳培哲,吳君泰
dc.subject.keywordFAP-1去磷酸&#37238,zh_TW
dc.subject.keywordFas-associated phosphatase-1,en
dc.relation.page43
dc.rights.note同意授權(全球公開)
dc.date.accepted2010-08-12
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept微生物學研究所zh_TW
顯示於系所單位:微生物學科所

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf2.63 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved