請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10575
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 馮哲川(Zhe Chuan Feng) | |
dc.contributor.author | Tsung-Han Wu | en |
dc.contributor.author | 吳宗翰 | zh_TW |
dc.date.accessioned | 2021-05-20T21:40:36Z | - |
dc.date.available | 2010-10-10 | |
dc.date.available | 2021-05-20T21:40:36Z | - |
dc.date.copyright | 2010-08-20 | |
dc.date.issued | 2010 | |
dc.date.submitted | 2010-08-12 | |
dc.identifier.citation | [1.1] H. L. Tsai, T. Y. Wang, J. R. Yang, C. C. Chuo, J. T. Hsu, Z. C. Feng and M. Shiojiri, Materials Transactions, 48, 894-898 (2007).
[1.2] Z. C. Feng, J. H. Chen, A. G Li, and L. C. Chen, J. Physics: Conf. Ser., 28, 42-47 (2006). [1.3] J. H. Chen, Z. C. Feng, H. L. Tsai, J. R. Yang, P. Li, C. Wetzel, T. Detchprohm, and J. Nelson, Thin Solid Films, 498, 123-127 (2006). [1.4] J. H. Chen, Z. C. Feng, J. C. Wang , H. L. Tsai, J. R. Yang, A. Parekh, E. Armour, and P. Faniano, Journal of Crystal Growth, 287, 354-358 (2006). [1.5] Pécz B, di Forte-Poisson M A, Huet F, et al. J. Appl. Phys. 86, 6059-6067 (1999). [1.6] KAMINSKA E, PIOTROWSKA A, BARCZ A, Material Science and Engineering B, 82, 265-267 (2001). [1.7] H. Amano, M. Kito, K. Hiramatsu, I. Akasaki, Japanese Journal of Applied Physics, 28, L2112 (1989). [1.8] S. Nakamura, M. Senoh, S. Hagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyoku, Appl. Phys. Lett. 69, 3034 (1996). [1.9] K. Itaya, M. Onomura, J. Nishio, L. Sugiura, S. Saito, M. Suzuki, J. Rennie, S. Nunoue, M. Yamamato, H. Fujimoto, Y. Kokomot, Kokobun, Y. Ohba, G. Hatakoshi, and M. Ishikawa, Jpn. J. Appl. Phys., 35, 11315 (1996). [1.10] I. Akasaki, S. Sota, H. Sakai, T. Tanaka, M. Koike, and H. Amano, Electron. Lett. 32, 1105 (1996). [1.11] G. F. Bulman, K. Doverspike, S. T. Sheppard, T. W. Weeks, H. S. Kong, H. M. Dieringer, J. A. Edmond, J. D. Brown, J. T. Swindell, and J. F. Schetzina, Electron. Lett. 33, 1556 (1997). [1.12] M. P. Mack, A. Abare, M. Aizcorbe, P. Kozodov, S. Keller, U. K. Mishra, L. Coldren, and S. DenBaars, MRS Internet J. Nitride Semicond. Res. 2, 41 (1997). [1.13] E. S. Jeon, V. Kozlov, Y. K. Song, A. Vertikov, M. Kuball, A. V. Nurmikko, H. Liu, C. Chen, R. S. Kern, C. P. Kuo, and M. G. Craford, Appl. Phys. Lett. 69, 4194 (1996). [1.14] M. Pophristic, F. H. Long, C. Tran, I. T. Ferguson, and R. F. Karlicek, Jr., J. Appl. Phys. 86, 1114 (1999). [1.15] Tsutomu Araki and Hiroaki Misawa, Rev. Sci. Instrum. 66, 5469 (1995). [1.16] S. F. Chichibu, M. Sugiyama, T. Onuma, T. Kitamura, H. Nakanishi, T. Kuroda, A. Tackeuchi, T. Sota, Y. Ishida, and H. Okumura, Appl. Phys. Lett. 79, 4319 (2001). [1.17] K. S. Ramaiah, Y. K. Su, S. J. Chang, B. Kerr, H. P. Liu, and I. G. Chen, Appl. Phys. Lett. 84, 3307 (2004). [1.18] S. Nakashima and H. Harima, phys. stat. sol. (a) 162, 39 (1997). [1.19] Goldberg Yu., Levinshtein M.E. and Rumyantsev S.L., “in Properties of Advanced SemiconductorMaterials GaN, AlN, SiC, BN, SiC, SiGe”, Wiley, New York, (2001). [2.1] Smoluchovskii, Einstein and Debye, W. Hayes, R. Loudon, Scattering of Light by Crystals (1978) [2.2] Mandelstam, Zh. Russ. Fiz-Khim. Ova., 58, 381 (1926) [2.3] Beghi, Every, Zinin, in T. Kundu ed., Ultrasonic Nondestructive Evaluation: Engineering and Biological Material Characterization, chpt. 10, 581, (2003) [2.4] http://www.soest.hawaii.edu/~zinin/Zi-Brillouin.html [2.5] R. A. Stradling and P. C. Klipstein, in Growth and Characterisation of Semiconductors (Hilger, 1990). [2.6] Department of Physics National Taiwan University, Optical and Electrical Properties of Type-II GaAsSb/GaAs Multiple Quantum Wells, Tzung Te Chen. [2.7] Timothy H. Gfroerer, “Photoluminescence in Analysis of Surfaces and Interfaces”, Ó John Wiley & Sons Ltd, Chichester, 2000, pp. 9209–9231. [2.8] Lee, Zhen-Sheng, “Optical Properties of InGaN/GaN Multi-Quantum Wells Structure Grown by Metalorganic Chemical Vapor Deposition”, Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Master Thesis (2007). [2.9] Huang, Yi-Zhe, “Optical Measurements and Analyses of InGaN/GaN on ZnO and Field Emission Studies of Carbon Nanotubes”, Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Master Thesis (2008). [2.10] Rothen et al., Ellipsometry in the Measurement of Surfaces and Thin Films, Washington, DC: U.S. Government Printing Office, Nati. Bur. Stand. Misc. PubI. 256 (1964). [2.11] N. M. Bashara, A. B. Buckman, and A. C. Hall (eds.), Proceedings of the Symposium on Recent Developments in Ellipsometiy, Amsterdam: North Holland (1969). [2.12] N. M. Bashara and R. M. A. Azzam (eds.), Ellipsometiy, Proceedings of the Third International Conference on Ellipsometiy, Amsterdam: North Holland (1976). [3.1] G.T. Thaler, D.D. Koleske, S.R. Lee, K.H.A. Bogart, M.H. Crawford, Journal of Crystal Growth, 312, 1817 (2010) [3.2] X.H. He, J. Zhou, N. Lian, J.H. Sun, M. Guan, Journal of Luminescence, 130, 743 (2010) [3.3] F.M. Morales, D. Gonza’lez, J.G. Lozano, R. Garcı’a , S. Hauguth-Frank , V. Lebedev, V. Cimalla, O. Ambacher, Acta Materialia , 57, 5681 (2009) [3.4] A. Polian, M. Grimsditch, I. Grzegory, J. A. Phy. 79, 3343 (1996) [3.5] M . Yamaguchi, T. Yagi, T. Sota, T. Deguchi, and K. Shimada, S. Nakamura , J. A. Phy. 8502 (1999) [3.6] C. C. Chen, C. C. Lin, L. Liu, S.V. Sinogeikin, J.D. Bass, Am. Miner. 86, 1525(2001) [3.7] S. V. Sinogeikin, J. D. Bass, Phys. Earth Planet. Int. 120, 43. (2000) [3.8] T. Kawashima, H. Yoshikawa, S. Adachi, S. Fuke, and K. Ohtsuka, J. Appl.Phys. 82, 3528(1997) [3.9] V. Bucur , P. Lanceleur, B. Roge, Ultrasonics 40, 537 (2002) [3.10] I. Vurgaftman and J. R. Meyer, J. Appl. Phys. 94, 6, 3675(1999) [3.11] G. Wetzel, T. Takeuchi, S. Yamagachi, H. Katoh, H. Amano, and I.Akasaki, Appl. Phys. Lett. 73, 1994 (1998). [3.12] L. Bellaiche, T. Mattila, L.-W. Wang, S.-H. Wei, and A. Zunger, Appl. Phys. Lett. 74, 1842 (1999). [3.13] Z. C. FENG, “III-Nitride Devices and Nano-Engineering”, Imperia College Press, London (2008) [3.14] Z. C. FENG, “III-Nitride Semiconductor Materials”, Imperia College Press, London (2006) [3.15] G. M. Laws, E. C. Larkins, and I. Harrison, C. Molloy and D. Somerford, J. Appl. Phys. 89, 2, 1108 (2002) [3.16] C. Degera, E. Born, H. Angerer, O. Ambacher, M. Stutzmann, J. Hornsteiner, E. Riha, and G. Fischerauer, Appl. Phys. Lett. 72, 19 (1998) [3.17] M. Iuga, G. Stein-Neumann, and J. Meinhardt, Eur. Phys. J. B 58, 127 (2007) [3.18] F. Demangeot, J. Groenen, J. Frandon, M.A. Renucci, O. Briot, S. Uffenach-Clur, R.L. Aulombard, MRS Internet J. Nitride Semicond. Res.; 2: 40.( 1997) [3.19] A. Cros, H. Angerer, R. Handschuh, O, Ambacher, M. Stutzmann, MRS Internet J. Nitride Semicond. Res. 2, 43. ( 1997) [4.1] Ho Won Jang, Chang Min Jeon, Ki Hong Kim, Jong Kyu Kim, Sung-Bum Bae, Jung-Hee Lee, Jae Wu Choi, and Jong-Lam Lee, Appl. Phys. Lett. vol 81, num 7, 1249, (2002). [4.2] Y. F. Wu, B. P. Keller, S. Keller, D. Kalponek, P. Kozodoy, S. P. DenBaas, and U. K. Mishra, Appl. Phys. Lett, 69, 1438 (1996). [4.3] N. Maeda, T. Saitoh, K. Tsubaki, T. Nishida, and N. Kobayashi, Jpn. J. Appl. Phys., Part 2 38, L799 (1999). [4.4] T. Egawa, H. Ishikawa, M. Umeno, and T. Jimbo, Appl. Phys. Lett, 76, 121 (2000). [4.5] Cho, Kai-Sin, “ Spin-dependent properties of two-dimensional AlGaN/GaN electron systems”, Graduate Institute of Physics College of Science, National Taiwan University, Doctoral Dissertation (2007). [4.6] K. B. Lee, P. J. Parbrook, T. Wang, F. Ranalli, T. Martin, R. S. Balmer, and D. J. Wallis, “Optical investigation of exciton localization in AlxGa1-xN”, J. Appl. Phys. 101, 053513 (2007). [4.7] Lee, Zhen-Sheng, “Optical Properties of InGaN/GaN Multi-Quantum Wells Structure Grown by Metalorganic Chemical Vapor Deposition”, Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Master Thesis (2007). [4.8] S.S. Hullavarad, N.V. Hullavarad, D.E. Pugel, S. Dhar, T. Venkatesan, R.D. Vispute, “Structural and chemical analysis of pulsed laser deposited MgxZn1-xO hexagonal (x = 0.15, 0.28) and cubic (x = 0.85) thin films.” , Optical Materials 30, 993-1000, (2008). [4.9] S. Nakamura, M. Senoh, and T. Mukai, Jpn. J. Appl. Phys., Part 2 30, L1708 (1991). [4.10] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, T. H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, Appl. Phys. Lett. 72, 2014 (1998). [4.11] T. Mukai, H. Narimatsu, and S. Nakamura, Jpn. J. Appl. Phys., Part 2 37, L479 (1998). [4.12] M. Khan, J. N. Kusnia, D. T. Olson, G. M. Van Hove, M. Blasingane, and L. F. Reitz, Appl. Phys. Lett. 60, 2917 (1992). [4.13] D. Walker, X. Zhang, P. Kung, A. Saxler, S. Javadpour, J. Xu, and M. Razeghi, Appl. Phys. Lett. 68, 2100 (1996). [4.14] 6 K. Ito, K. Hiramatsu, H. Amano, and I. Akasaki, J. Cryst. Growth 104, 533 (1989). [4.15] S. J. Chung, M. Senthil Kumar, H. J. Lee, and E.-K. Suh, J. Appl. Phys., Vol 95, Num 7, 3565, (2004). [4.16] S. Choopun, R.D. Vispute, W. Yang, R.P. Sharma, T. Venkatesan, H. Shen, Appl. Phys. Lett. 80, 1529 (2002). [4.17] A. Ohtomo, M. Kawasaki, T. Koida, K. Masubuchi, H. Koinuma, Appl. Phys. Lett. 72, 2466 (1998). [4.18] C.W. Teng, J.F. Muth, U. Ozgur, M.J. Bergmann, H.O. Everitt, A.K. Sharma, C. Jin, J. Narayan, Appl. Phys. Lett. 76, 979. (2000) [4.19] J. Chen, W.Z. Shen, N.B. Chen, D.J. Qiu, H.Z. Wu, J. Phys. Condens. Matter 15 L475, (2003) [4.20] N.B. Chen, C.H. Sui, Materials Science and Engineering B 126 16–21 (2006). [4.21] Lijia Liu, Y. M. Yiu, and T. K. Sham ,Liying Zhang and Yafei Zhang* J. Phys. Chem. C, 114, 6966 (2010) [5.1] G. Wetzel, T. Takeuchi, S. Yamagachi, H. Katoh, H. Amano, and I.Akasaki, Appl. Phys. Lett. 73, 1994 (1998). [5.2] L. Bellaiche, T. Mattila, L.-W. Wang, S.-H. Wei, and A. Zunger, Appl. Phys. Lett. 74, 1842 (1999). [5.3] X. Li, P. W. Bohn, J. Kim, J. O. White, and J. J. Coleman, Appl. Phys. Lett. 76, 3031 (2000). [5.4] J. Elsner, R. Jones, M. I. Heggie, P. K. Sitch, M. Haugk, Th. Frauenheim, S. Oberg, and P. R. Briddon, Phys. Rev. B 58, 12571 (1998). [5.5] F. A. Ponce, D. P. Bour, W. Gotz, and P. J. Wright, Appl. Phys. Lett. 68, 57 (1996). [5.6] T. Wang, P. J. Parbrook, W. H. Fan, and A. M. Fox, Appl. Phys. Lett. 84, 5159 (2004). [5.7] H. Q. Ni, Z. C. Niu, X. H. Xu, Y. Q. Xu, W. Zhang, X. Wei, L. F. Bian, Z. H. He, Q. Han, and R. H. Wu, Appl. Phys. Lett. 84, 5100 (2004). [5.8] D. Bimberg, M. Sondergeld, and E. Grobe, Phys. Rev. B, 4, 3451 (1971). [5.9] M. E. White, K. P. O’Donnell, R. W. Martin, S. Pereira, C. J. Deatcher, and I. M. Watson, Mater. Sci. Eng. B 93, 147 (2002). [5.10] C. Gourdon and P. Lavallard, Phys. Status Solidi B 153, 641 (1989). [5.11] Cheng-Yen Chen, Dong-Ming Yeh, Yen-Cheng Lu, and C. C. Yang, Appl. Phys. Lett. 89, 203113 (2006). [5.12] Tetsuya Akasaka,a_ Hideki Gotoh, Yasuyuki Kobayashi, Hidetoshi Nakano, and Toshiki Makimoto, Appl. Phys. Lett. 89, 101110 (2006). [5.13] T. Onuma, S. Keller, S. P. DenBaars, J. S. Speck, S. Nakamura, and U. K. Mishra, T. Sota, S. F. Chichibua, Appl. Phys. Lett. 88, 111912 (2006). [5.14] Seiji Nagahara,a_ Munetaka Arita, and Yasuhiko Arakawa, Appl. Phys. Lett. 88, 083101 (2006). [5.15] S. F. Chichibu, A. C. Abare, M. S. Minsky, S. Keller, S. B. Fleisher, J. E. Bowers, E. Hu, U. K. Mishra, L. A. Coldren, S. P. Denbaars, and T. Sota, Appl. Phys. Lett. 73, 2006 (1998). [5.16] Y. Narukawa, Y. Kawakami, M. Funato, Sz. Fujita, Sg. Fujita, and S.Nakamura, Appl. Phys. Lett. 70, 981 (1997). [5.17] Y. Narukawa, S. Saijou, Y. Kawakami, S. Fujita, T. Mukai, and S. Nakamura, Appl. Phys. Lett. 74, 558 (1999). [5.18] M. E. White, K. P. O’Donnell, R. W. Martin, S. Pereira, C. J. Deatcher, and I. M. Watson, Mater. Sci. Eng. B 93, 147 (2002). [6.1] K. Kamitani, M. Grimsditch, J. C. Nipko, and C.-K. Loong, M. Okada, I. Kimura, J. Appl. Phys. 82 (6), 15, 3152 (1997) [6.2] M. Katsikini, E.C. Paloura, T.D. Moustakas, Appl. Phys. Lett. 69, 4206. (1996) [6.3] M. Katsikini, E.C. Paloura, T.D. Moustakas, J. Appl. Phys 83, 1437(1998) [6.4] M. Katsikini, E.C. Paloura, T.S. Cheng, C.T. Foxon, J. Appl Phys. 82, 1166 (1997) [6.9] M. Katsikini, E.C. Paloura , M. Fieber-Erdmann, E. Holub-Krappeb, D. Korakakisc, T.D. Moustakas, Journal of Electron Spectroscopy and Related Phenomena 101, 695 (1999) 695–699 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10575 | - |
dc.description.abstract | 光學量測對於分析半導體材料具有很重要的地位,尤其是對於材料的結構、特性,甚至是物理機制。而近幾年的半導體材料,由於它的材料特性非常適合應用在現今生活的電器設備用品上,譬如:發光二極體、積體電路原件…等,所以被廣泛而且深入的研究,縱使已經有不少上市產品應用半導體為材料,但是仍然有許多的問題與困難需要解答與突破,因此,我們將針對目前的許多挑戰做研究。我們會利用各種不同的光學量測系統得到更多的材料特性。在第三章,我們利用布里淵散射光譜量測氮化鎵,氮化銦鎵以及不同鋁含量的氮化鋁鎵之布里淵位移頻率。藉由聲子縱波與橫波的位移頻率進而算出聲速,然後利用克里斯托夫方程式得到其彈性常數。藉由拉曼散射中,縱向光學聲子的位移量來判斷估計出不同氮化鋁鎵材料中的鋁含量,並用X光繞射譜來分析樣品內部的材料結構以及結晶性的好壞。在第四章,利用同步輻射X光吸收光源精細結構頻譜圖探討參雜濃度不同的碳化矽樣品中,矽原子跟鄰近碳原子的距離變化,也討論參雜濃度對拉曼光譜的影響。在第五章中,我們量測的是不同溫度生長方向的氮化銦鎵/氮化鎵多重量子井發光二極體之光電性質,由變溫光激螢光光譜了解其發光現象,然後利用時間鑑別光激發光頻譜,來測定樣品的衰退時間。 | zh_TW |
dc.description.abstract | The III–V nitrides GaN, AlN, InN and their ternary compounds are of significant technological importance for semiconductor device applications in the blue and UV wavelengths, such as light-emitting diodes and semiconductor lasers. These nitrides possess large direct bandgaps, extremely high hardness, very large heterojunction offsets, high thermal conductivity and high melting temperature, which also make them promising candidates for high-temperature and high-power devices.
In chapter 3, we measured the Brillouin scattering spectroscopy of GaN, InGaN, and AlGaN. The Brillouin shift frequencies have obtained from the spectra, and the acoustic velocities can be calculated. Further, the elastic constants can be computed by Christiffel’s equation. The shifts of A1(LO) peak in Raman scattering spectroscopy can determine the aluminum contents in AlGaN sample. And X-ray diffraction (XRD) show us the sample’s crystallinity. In chapter 4, we discuss the distance between silicon atom and neighbor carbon atom by extended X-ray absorption fine structure, and try to realize how the nitrogen doped concentrations affect the Raman scattering spectrum. We investigate the InGaN/GaN multiple-quantum well with different growth direction in chapter 5. Via PL spectra to analyze the temperature-dependent emission energy. Besides, the temperature TRPL measurement results show that sample’s decay time. | en |
dc.description.provenance | Made available in DSpace on 2021-05-20T21:40:36Z (GMT). No. of bitstreams: 1 ntu-99-R97941106-1.pdf: 2335845 bytes, checksum: 48037fa6c55c0c361d06e35d1296af7b (MD5) Previous issue date: 2010 | en |
dc.description.tableofcontents | 口試委員會審定書.........................................................................................
誌謝...............................................................................................................I 摘要..............................................................................................................II Abstract.......................................................................................................III Content........................................................................................................IV Lists of Figures.........................................................................................VIII Lists of Tables..........................................................................................XIV Chapter 1 Introduction 1.1. Publication………………………………….…………………...1 1.1.1. Conference or Proceeding Papers………….……………….1 1.2. III-Nitride semiconductors……………………………………...2 1.3. Properties of AlGaN alloys………………………….……….…4 1.4. Properties of InGaN……………………….…………………....6 1.5. SiC……………………………………………………………....8 Reference……………………………………………………………..10 Chapter 2 Theoretical Background and Experimental Details 2.1. Introduction of Brillouin scattering spectroscopy…………..…13 2.1.1 History…………………………………...……………….. 13 2.1.2 Spectrometer……………………………………………….14 2.1.3 Principles…………………………………………………..14 2.1.4 Application…………………………………………………15 2.2. Photoluminescence (PL)………………………………………16 2.3. Raman Scattering (RS)………………………………………...19 2.4. Time-Resolved Photoluminescence (TRPL)…………………..20 Reference …………………………………………………………….24 Chapter 3 Brillouin scattering and the other material studies of GaN, InGaN, and AlGaN 3.1 InGaN/GaN Heterostructure Grown on Sapphire Substrate by Metalorganic Chemical Vapor Deposition……………………..27 3.1.1 Introduction……………………………………………….27 3.1.2 Experimental……………………………………………...28 3.1.3 Results and discussion…………………………………….29 3.1.3.1 Brillouin scattering……………………………..…29 3.1.3.2 Photoluminescence (PL)…………………………..36 3.1.3.3 Optical transmission (OT)…………...……………37 3.1.4 Summary………………………………………………....38 3.2 AlGaN Grown on Sapphire Substrate by Metalorganic Chemical Vapor Deposition……………………………………….……..39 3.2.1 Introduction……………………………………………….39 3.2.2 Experimental……………………………………………...40 3.2.3 Result and discussion……………………………………..43 3.2.3.1 Brillouin scattering………………………………..43 3.2.3.2 High-resolution X-ray Diffraction Measurement…50 3.2.3.3 Raman scattering (RS)…………………………….52 3.2.4 Summary………………………………………………….55 References………………………………………………………....…55 Chapter 4 Synchrotron Radiation and Related Studies on 6H-SiC materials 4.1 Introduction…………………………………………………....59 4.1.1 Silicon carbide……………………………………….…....59 4.1.2 Synchrotron radiation beamline end station………………61 4.2 Result and discussion…………………………………………...65 4.2.1 Sample information………………………………………65 4.2.2 Raman Scattering……………...…………………………65 4.2.3 X-ray Absorption Fine-Structure Study on 6H-SiC……...67 4.2.4 X-ray absorption near edge spectroscopy (XANES)…….76 4.3 Summary………………………………………………………77 References……………………………………………………………77 Chapter 5 Optical Study of InGaN/GaN Multi-quantum Wells Structures Light Emitting Diode 5.1. Sample Information……………………………………………81 5.2. Optical Measurement and analysis…………………………….82 5.2.1 PL Experimental Results………………………..…….…82 5.2.2 Activation energy………………………………..………89 5.2.3 Photoluminescence Excitation Experimental Results...…91 5.2.4 TRPL experimental results……………………………....94 5.3 Summary…………………………………………………..…104 References…………………………………………………………..105 Chapter 6 Others 6.1. Brillouin scattering spectrum of 6H-SiC…………………..…107 6.1.1. Introduction…………………………………………...…107 6.1.2. Ressults…………………………………………….…….108 6.2. InGaN N K-edge X-ray Asorption Near Edge Spectroscopy (XANES)……………………………………………………..111 6.2.1. Synchrotron Radiation Beamline End Station…………...111 6.2.2. Ressults……………………………………………..……114 References………………………………………...………………...117 | |
dc.language.iso | en | |
dc.title | 氮化銦鎵,氮化鋁鎵,碳化矽及氮化銦鎵/氮化鎵多重量子井之布里淵散射光譜與材料研究 | zh_TW |
dc.title | Brillouin Scattering Spectroscopy and Material Studies of InGaN, AlGaN, SiC and InGaN/GaN Multi-Quantum Wells Light Emitting Diodes | en |
dc.type | Thesis | |
dc.date.schoolyear | 98-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 陳淮義(Huai-Yi Chen),駱芳鈺(Fang-Yuh Lo) | |
dc.subject.keyword | 布里淵,氮化鋁鎵,碳化矽,氮化銦鎵, | zh_TW |
dc.subject.keyword | Brillouin,AlGaN,SiC,InGaN, | en |
dc.relation.page | 117 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2010-08-13 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
顯示於系所單位: | 光電工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-99-1.pdf | 2.28 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。