Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 臨床醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10550
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張金堅(King-Jen Chang),許博欽(Bor-Ching Sheu)
dc.contributor.authorChao-Hsu Lien
dc.contributor.author李朝樹zh_TW
dc.date.accessioned2021-05-20T21:38:36Z-
dc.date.available2010-09-09
dc.date.available2021-05-20T21:38:36Z-
dc.date.copyright2010-09-09
dc.date.issued2010
dc.date.submitted2010-08-14
dc.identifier.citation[1] G.P. Dunn, A.T. Bruce, H. Ikeda, L.J. Old and R.D. Schreiber, Cancer immunoediting: from immunosurveillance to tumor escape, Nat Immunol 3 (2002), pp. 991-998.
[2] G.P. Dunn, L.J. Old and R.D. Schreiber, The three Es of cancer immunoediting, Annu Rev Immunol 22 (2004), pp. 329-360.
[3] G.P. Dunn, L.J. Old and R.D. Schreiber, The immunobiology of cancer immunosurveillance and immunoediting, Immunity 21 (2004), pp. 137-148.
[4] H. Jonuleit, E. Schmitt, M. Stassen, A. Tuettenberg, J. Knop and A.H. Enk, Identification and functional characterization of human CD4(+)CD25(+) T cells with regulatory properties isolated from peripheral blood, J Exp Med 193 (2001), pp. 1285-1294.
[5] L.J. Standish, E.S. Sweet, J. Novack, C.A. Wenner, C. Bridge, A. Nelson, et al., Breast cancer and the immune system, J Soc Integr Oncol 6 (2008), pp. 158-168.
[6] A.M. Gallimore and A.K. Simon, Positive and negative influences of regulatory T cells on tumour immunity, Oncogene 27 (2008), pp. 5886-5893.
[7] Y. Belkaid, Regulatory T cells and infection: a dangerous necessity, Nat Rev Immunol 7 (2007), pp. 875-888.
[8] K. Kretschmer, I. Apostolou, E. Jaeckel, K. Khazaie and H. von Boehmer, Making regulatory T cells with defined antigen specificity: role in autoimmunity and cancer, Immunol Rev 212 (2006), pp. 163-169.
[9] L. Strauss, C. Bergmann, M. Szczepanski, W. Gooding, J.T. Johnson and T.L. Whiteside, A unique subset of CD4+CD25highFoxp3+ T cells secreting interleukin-10 and transforming growth factor-beta1 mediates suppression in the tumor microenvironment, Clin Cancer Res 13 (2007), pp. 4345-4354.
[10] D.A. Vignali, L.W. Collison and C.J. Workman, How regulatory T cells work, Nat Rev Immunol 8 (2008), pp. 523-532.
[11] F. Sallusto, D. Lenig, R. Forster, M. Lipp and A. Lanzavecchia, Two subsets of memory T lymphocytes with distinct homing potentials and effector functions, Nature 401 (1999), pp. 708-712.
[12] C.A. Klebanoff, L. Gattinoni and N.P. Restifo, CD8+ T-cell memory in tumor immunology and immunotherapy, Immunol Rev 211 (2006), pp. 214-224.
[13] C. Yee, J.A. Thompson, D. Byrd, S.R. Riddell, P. Roche, E. Celis, et al., Adoptive T cell therapy using antigen-specific CD8+ T cell clones for the treatment of patients with metastatic melanoma: in vivo persistence, migration, and antitumor effect of transferred T cells, Proc Natl Acad Sci U S A 99 (2002), pp. 16168-16173.
[14] A. Mackensen, N. Meidenbauer, S. Vogl, M. Laumer, J. Berger and R. Andreesen, Phase I study of adoptive T-cell therapy using antigen-specific CD8+ T cells for the treatment of patients with metastatic melanoma, J Clin Oncol 24 (2006), pp. 5060-5069.
[15] M.E. Dudley, J.R. Wunderlich, J.C. Yang, R.M. Sherry, S.L. Topalian, N.P. Restifo, et al., Adoptive cell transfer therapy following non-myeloablative but lymphodepleting chemotherapy for the treatment of patients with refractory metastatic melanoma, J Clin Oncol 23 (2005), pp. 2346-2357.
[16] B.C. Sheu, W.H. Kuo, R.J. Chen, S.C. Huang, K.J. Chang and S.N. Chow, Clinical significance of tumor-infiltrating lymphocytes in neoplastic progression and lymph node metastasis of human breast cancer, Breast 17 (2008), pp. 604-610.
[17] C. Badoual, S. Hans, J. Rodriguez, S. Peyrard, C. Klein, H. Agueznay Nel, et al., Prognostic value of tumor-infiltrating CD4+ T-cell subpopulations in head and neck cancers, Clin Cancer Res 12 (2006), pp. 465-472.
[18] E. Sato, S.H. Olson, J. Ahn, B. Bundy, H. Nishikawa, F. Qian, et al., Intraepithelial CD8+ tumor-infiltrating lymphocytes and a high CD8+/regulatory T cell ratio are associated with favorable prognosis in ovarian cancer, Proc Natl Acad Sci U S A 102 (2005), pp. 18538-18543.
[19] E.Y. Woo, C.S. Chu, T.J. Goletz, K. Schlienger, H. Yeh, G. Coukos, et al., Regulatory CD4(+)CD25(+) T cells in tumors from patients with early-stage non-small cell lung cancer and late-stage ovarian cancer, Cancer Res 61 (2001), pp. 4766-4772.
[20] U.K. Liyanage, P.S. Goedegebuure, T.T. Moore, C.T. Viehl, T.A. Moo-Young, J.W. Larson, et al., Increased prevalence of regulatory T cells (Treg) is induced by pancreas adenocarcinoma, J Immunother 29 (2006), pp. 416-424.
[21] X.H. Yang, S. Yamagiwa, T. Ichida, Y. Matsuda, S. Sugahara, H. Watanabe, et al., Increase of CD4+ CD25+ regulatory T-cells in the liver of patients with hepatocellular carcinoma, J Hepatol 45 (2006), pp. 254-262.
[22] T. Sasada, M. Kimura, Y. Yoshida, M. Kanai and A. Takabayashi, CD4+CD25+ regulatory T cells in patients with gastrointestinal malignancies: possible involvement of regulatory T cells in disease progression, Cancer 98 (2003), pp. 1089-1099.
[23] P. Salama, M. Phillips, F. Grieu, M. Morris, N. Zeps, D. Joseph, et al., Tumor-infiltrating FOXP3+ T regulatory cells show strong prognostic significance in colorectal cancer, J Clin Oncol 27 (2009), pp. 186-192.
[24] M. Viguier, F. Lemaitre, O. Verola, M.S. Cho, G. Gorochov, L. Dubertret, et al., Foxp3 expressing CD4+CD25(high) regulatory T cells are overrepresented in human metastatic melanoma lymph nodes and inhibit the function of infiltrating T cells, J Immunol 173 (2004), pp. 1444-1453.
[25] U.K. Liyanage, T.T. Moore, H.G. Joo, Y. Tanaka, V. Herrmann, G. Doherty, et al., Prevalence of regulatory T cells is increased in peripheral blood and tumor microenvironment of patients with pancreas or breast adenocarcinoma, J Immunol 169 (2002), pp. 2756-2761.
[26] P.P. Leong, R. Mohammad, N. Ibrahim, H. Ithnin, M. Abdullah, W.C. Davis, et al., Phenotyping of lymphocytes expressing regulatory and effector markers in infiltrating ductal carcinoma of the breast, Immunol Lett 102 (2006), pp. 229-236.
[27] F. Pages, A. Berger, M. Camus, F. Sanchez-Cabo, A. Costes, R. Molidor, et al., Effector memory T cells, early metastasis, and survival in colorectal cancer, N Engl J Med 353 (2005), pp. 2654-2666.
[28] B.C. Sheu, S.M. Hsu, H.N. Ho, R.H. Lin, P.L. Torng and S.C. Huang, Reversed CD4/CD8 ratios of tumor-infiltrating lymphocytes are correlated with the progression of human cervical carcinoma, Cancer 86 (1999), pp. 1537-1543.
[29] B.C. Sheu, S.M. Hsu, H.N. Ho, H.C. Lien, S.C. Huang and R.H. Lin, A novel role of metalloproteinase in cancer-mediated immunosuppression, Cancer Res 61 (2001), pp. 237-242.
[30] B.C. Sheu, S.H. Chiou, H.H. Lin, S.N. Chow, S.C. Huang, H.N. Ho, et al., Up-regulation of inhibitory natural killer receptors CD94/NKG2A with suppressed intracellular perforin expression of tumor-infiltrating CD8+ T lymphocytes in human cervical carcinoma, Cancer Res 65 (2005), pp. 2921-2929.
[31] A. Kosmaczewska, L. Ciszak, S. Potoczek and I. Frydecka, The significance of Treg cells in defective tumor immunity, Arch Immunol Ther Exp (Warsz) 56 (2008), pp. 181-191.
[32] M.E. van den Broek, D. Kagi, F. Ossendorp, R. Toes, S. Vamvakas, W.K. Lutz, et al., Decreased tumor surveillance in perforin-deficient mice, J Exp Med 184 (1996), pp. 1781-1790.
[33] M.J. Smyth, K.Y. Thia, S.E. Street, D. MacGregor, D.I. Godfrey and J.A. Trapani, Perforin-mediated cytotoxicity is critical for surveillance of spontaneous lymphoma, J Exp Med 192 (2000), pp. 755-760.
[34] V. Cetica, D. Pende, G.M. Griffiths and M. Arico, Molecular basis of familial hemophagocytic lymphohistiocytosis, Haematologica 95 (2010), pp. 538-541.
[35] X. Cao, S.F. Cai, T.A. Fehniger, J. Song, L.I. Collins, D.R. Piwnica-Worms, et al., Granzyme B and perforin are important for regulatory T cell-mediated suppression of tumor clearance, Immunity 27 (2007), pp. 635-646.
[36] W.J. Grossman, J.W. Verbsky, B.L. Tollefsen, C. Kemper, J.P. Atkinson and T.J. Ley, Differential expression of granzymes A and B in human cytotoxic lymphocyte subsets and T regulatory cells, Blood 104 (2004), pp. 2840-2848.
[37] W.J. Grossman, J.W. Verbsky, W. Barchet, M. Colonna, J.P. Atkinson and T.J. Ley, Human T regulatory cells can use the perforin pathway to cause autologous target cell death, Immunity 21 (2004), pp. 589-601.
[38] D.M. Zhao, A.M. Thornton, R.J. DiPaolo and E.M. Shevach, Activated CD4+CD25+ T cells selectively kill B lymphocytes, Blood 107 (2006), pp. 3925-3932.
[39] D.C. Gondek, L.F. Lu, S.A. Quezada, S. Sakaguchi and R.J. Noelle, Cutting edge: contact-mediated suppression by CD4+CD25+ regulatory cells involves a granzyme B-dependent, perforin-independent mechanism, J Immunol 174 (2005), pp. 1783-1786.
[40] H.Y. Wang and R.F. Wang, Regulatory T cells and cancer, Curr Opin Immunol 19 (2007), pp. 217-223.
[41] C. Demanet, J. Brissinck, J. De Jonge and K. Thielemans, Bispecific antibody-mediated immunotherapy of the BCL1 lymphoma: increased efficacy with multiple injections and CD28-induced costimulation, Blood 87 (1996), pp. 4390-4398.
[42] T.R. Mempel, M.J. Pittet, K. Khazaie, W. Weninger, R. Weissleder, H. von Boehmer, et al., Regulatory T cells reversibly suppress cytotoxic T cell function independent of effector differentiation, Immunity 25 (2006), pp. 129-141.
[43] S.A. Siddiqui, X. Frigola, S. Bonne-Annee, M. Mercader, S.M. Kuntz, A.E. Krambeck, et al., Tumor-infiltrating Foxp3-CD4+CD25+ T cells predict poor survival in renal cell carcinoma, Clin Cancer Res 13 (2007), pp. 2075-2081.
[44] E.S. Jordanova, A. Gorter, O. Ayachi, F. Prins, L.G. Durrant, G.G. Kenter, et al., Human leukocyte antigen class I, MHC class I chain-related molecule A, and CD8+/regulatory T-cell ratio: which variable determines survival of cervical cancer patients?, Clin Cancer Res 14 (2008), pp. 2028-2035.
[45] G.J. Bates, S.B. Fox, C. Han, R.D. Leek, J.F. Garcia, A.L. Harris, et al., Quantification of regulatory T cells enables the identification of high-risk breast cancer patients and those at risk of late relapse, J Clin Oncol 24 (2006), pp. 5373-5380.
[46] B.C. Sheu, W.C. Chang, C.Y. Cheng, H.H. Lin, D.Y. Chang and S.C. Huang, Cytokine regulation networks in the cancer microenvironment, Front Biosci 13 (2008), pp. 6255-6268.
[47] S. Hori, T. Nomura and S. Sakaguchi, Control of regulatory T cell development by the transcription factor Foxp3, Science 299 (2003), pp. 1057-1061.
[48] J. Huehn, K. Siegmund, J.C. Lehmann, C. Siewert, U. Haubold, M. Feuerer, et al., Developmental stage, phenotype, and migration distinguish naive- and effector/memory-like CD4+ regulatory T cells, J Exp Med 199 (2004), pp. 303-313.
[49] H. Yagi, T. Nomura, K. Nakamura, S. Yamazaki, T. Kitawaki, S. Hori, et al., Crucial role of FOXP3 in the development and function of human CD25+CD4+ regulatory T cells, Int Immunol 16 (2004), pp. 1643-1656.
[50] L. Chavez-Galan, M.C. Arenas-Del Angel, E. Zenteno, R. Chavez and R. Lascurain, Cell death mechanisms induced by cytotoxic lymphocytes, Cell Mol Immunol 6 (2009), pp. 15-25.
[51] J.A. Trapani and M.J. Smyth, Functional significance of the perforin/granzyme cell death pathway, Nat Rev Immunol 2 (2002), pp. 735-747.
[52] J.P. Medema, J. de Jong, L.T. Peltenburg, E.M. Verdegaal, A. Gorter, S.A. Bres, et al., Blockade of the granzyme B/perforin pathway through overexpression of the serine protease inhibitor PI-9/SPI-6 constitutes a mechanism for immune escape by tumors, Proc Natl Acad Sci U S A 98 (2001), pp. 11515-11520.
[53] S.E. Street, N. Zerafa, M. Iezzi, J.A. Westwood, J. Stagg, P. Musiani, et al., Host perforin reduces tumor number but does not increase survival in oncogene-driven mammary adenocarcinoma, Cancer Res 67 (2007), pp. 5454-5460.
[54] M.J. Waldner, S. Wirtz, C. Becker, D. Seidel, I. Tubbe, K. Cappel, et al., Perforin deficiency attenuates inflammation and tumor growth in colitis-associated cancer, Inflamm Bowel Dis 16 (2010), pp. 559-567.
[55] J. Chia, K.P. Yeo, J.C. Whisstock, M.A. Dunstone, J.A. Trapani and I. Voskoboinik, Temperature sensitivity of human perforin mutants unmasks subtotal loss of cytotoxicity, delayed FHL, and a predisposition to cancer, Proc Natl Acad Sci U S A 106 (2009), pp. 9809-9814.
[56] S. Radoja, M. Saio, D. Schaer, M. Koneru, S. Vukmanovic and A.B. Frey, CD8(+) tumor-infiltrating T cells are deficient in perforin-mediated cytolytic activity due to defective microtubule-organizing center mobilization and lytic granule exocytosis, J Immunol 167 (2001), pp. 5042-5051.
[57] M.E. Dudley, J.R. Wunderlich, P.F. Robbins, J.C. Yang, P. Hwu, D.J. Schwartzentruber, et al., Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes, Science 298 (2002), pp. 850-854.
[58] J.A. Gonzalo, T. Delaney, J. Corcoran, A. Goodearl, J.C. Gutierrez-Ramos and A.J. Coyle, Cutting edge: the related molecules CD28 and inducible costimulator deliver both unique and complementary signals required for optimal T cell activation, J Immunol 166 (2001), pp. 1-5.
[59] C.T. Viehl, T.T. Moore, U.K. Liyanage, D.M. Frey, J.P. Ehlers, T.J. Eberlein, et al., Depletion of CD4+CD25+ regulatory T cells promotes a tumor-specific immune response in pancreas cancer-bearing mice, Ann Surg Oncol 13 (2006), pp. 1252-1258.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10550-
dc.description.abstract背景與目的
腫瘤細胞的生長需對抗來自宿主免疫系統的清除作用,在腫瘤組織微環境中有大量的浸潤淋巴球聚集(tumor infiltrating lymphocytes,TILs)。其中有一群 T 細胞具有調節免疫作用,具有 CD4+CD25+ 表現特徵,稱為調節性 T 細胞。調節性 T 細胞於細胞內高度表現 FOXP3 轉錄分子,其負向調節作用需靠細胞與細胞接觸的機制。許多的研究指出腫瘤細胞的免疫逃脫機制有調節性 T 細胞參與。T 細胞經過與抗原表現細胞接觸後受到刺激,naive cell 會轉化成記憶 T 細胞,之後若經一定刺激可以再度被活化。記憶 T 細胞(memory T lymphocyte)以返回次級淋巴器官的能力與 effector 的功能區分為兩種類型:central memory cell(TCM)及 effector memory cell(TEM)。依據之前本實驗室對乳癌病患腫瘤浸潤淋巴球的測定,發現 TIL 中的 CD8+ T 細胞的比例會增加,而 CD4+ T 細胞的比例會減少。而增加的 CD8+ T 細胞顯著與乳癌疾病期別進展有相關。CD8+ T 細胞具有毒殺腫瘤細胞能力,但於腫瘤微環境中由於免疫功能被抑制,其毒殺腫瘤細胞能力亦被抑制。我們欲了解乳癌病患 TILs 中調節性 T 細胞與 CD8+ T 細胞其免疫標記表現與細胞毒殺能力的關係,尤其是記憶細胞是否能經刺激後再具免疫功能,希望能對未來發展對腫瘤的免疫治療有所幫助。
材料與方法
實驗標本的收集:臨床診斷第一至第三期乳癌的病患,依疾病狀況接受手術治療。病患乳癌腫瘤組織(註記為 TIL)將會被收集成實驗組。同時收集病患的血液(註記為 PBL)為對照組。依據病理報告的結果,記錄每個病例的臨床病理特徵。在分離純化浸潤淋巴細胞與分離出周邊血液中的單核細胞後對細胞表面抗原與細胞內作用分子作測定,運用流式細胞儀分析。探討 TIL 中CD4+CD25+ 調節性 T 細胞及其上 FOXP3、GITR、CD103 和 CD152(CTLA-4) 的表現,及探討調節性 T 細胞分泌 cytokine 的表現,最後探討調節性 T 細胞對 CD8+ T 細胞毒殺能力之影響。也分析調節性 T 細胞與 CD8+記憶 T 細胞及 effector cell 表現之相關。然後我們將檢測 CD4+CD25+ 調節性 T 細胞分泌 Th1 cytokines(IFN-γ、IL-12 和 TNF-α)與 Th2 cytokines(IL-4 和IL-10)的狀態,也對細胞內毒殺顆粒(包括 granzyme B 及 perforin)的表現作分析。
結果
共有30位病患列入分析,性別均為女性,平均年齡為56.8歲(28歲至89歲)。CD4+CD25+ 調節性 T 細胞在腫瘤中的比例與血液相比為增加(11.6
zh_TW
dc.description.abstractBackground:
To determine the functional attributes of CD4+CD25+regulatory T cells (Tregs) in cancer microenvironment
.
Material and Methods:
Triple-color flow cytometry was utilized to study the phenotype expression of CD4+CD25+Tregs and CD8+T-cell in the peripheral blood lymphocytes (PBLs) and tumor infiltrating lymphocytes (TILs) of 30 stage I to III breast cancer.
Results:
The prevalence of CD4+CD25+T cells was significantly higher in the TILs than PBLs. The expression of FOXP3, CD103 and GITR on CD4+CD25+Tregs was lower in PBLs than TILs. Most tumor-infiltrating CD8+T cells were CD28-CD45RA-CD45RO+CCR7-, suggesting good terminal differentiation. Most of them had an activated role with CD69+CD103+CD152+. Functionally, both granzyme B and perforin were scarcely expressed in peripheral Tregs but were highly expressed in Treg cells in the tumor micro-environment. On the contrary, CD8+cytotoxic T cells derived from PBLs expressed both granzyme B and perforin, and were significantly higher than those in TILs. Further functional assays demonstrated that Th1 cytokines and cytotoxic molecules can be synchronously up-regulated in CD8+cytotoxic T cells.
Conclusions:
Tregs in the tumor microenvironment may abrogate CD8+T cell cytotoxicity in a granzyme B-and perforin-dependent conduit. Decreases in both Th1 cytokines and cytotoxic enzymes are relevant for Treg-mediated restraint of tumor clearance in vivo. Of clinical significance, the expression of Tregs in TILs may mediate T-cell immune repression within cancer milieu.
en
dc.description.provenanceMade available in DSpace on 2021-05-20T21:38:36Z (GMT). No. of bitstreams: 1
ntu-99-P96421004-1.pdf: 1096238 bytes, checksum: 4e0b8cf3c39f456df0ea3eea4d94e91e (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
中文摘要 iii
Abstract vi
第一章 緒論 1
第一節 研究背景 1
腫瘤微環境與免疫系統 1
調節性T細胞 1
記憶T細胞 2
第二節 腫瘤浸潤細胞與癌症相關性之文獻回顧 2
第三節 研究目的 3
第四節 研究的假說 4
第二章 研究方法與材料 5
第一節 研究材料 5
實驗標本的收集 5
病歷基本資料登錄 5
第二節 研究方法 5
分離純化浸潤淋巴細胞 5
細胞表面免疫標記測定 6
細胞內細胞激素的染色 7
流式細胞儀分析 7
細胞收集 7
細胞培養 8
第三節 分析方法 9
表現比例的定義 9
分析軟體與統計分析 9
第三章 結果 10
第一節 比較Treg與CD8+ T細胞 10
個案基本資料 10
乳癌病患的腫瘤內浸潤淋巴球含有較高比例的 CD4+CD25+調節T細胞 10
乳癌病患的腫瘤內浸潤淋巴細胞與週邊血液淋巴細胞細胞CD4+CD25+ 調節性T細胞的組成不同 10
乳癌病患腫瘤內的CD4+CD25+調節性T細胞表現較高的FOXP3、GITR與CD103 10
乳癌腫瘤內各種記憶T8細胞的表現 11
第二節 分析毒殺細胞分子與誘發實驗 11
乳癌病患腫瘤內CD4+CD25+調節性T細胞表現較多毒殺顆粒 11
乳癌腫瘤內CD8+ T細胞功能被抑制 11
乳癌腫瘤內浸潤淋巴球的Th1細胞激素分泌可被誘發 11
乳癌腫瘤內CD8+ T細胞被抑制的功能是可回復的 12
第四章 討論 13
第五章 展望 17
第六章 論文英文簡述 18
Introduction 18
Materials And Methods 19
Patient Recruitment 19
Collection of Tumor Tissue and Peripheral Blood 19
Immunophenotyping Analysis by Flow Cytometry 19
Cell Culture 20
Definition of expression ratio (ER) 21
Statistical Analysis 21
Results 21
Compositional differences of CD4+CD25+ Treg cells in PBLs and TILs in breast cancer patients 21
Significant functional compromise of CD8+TILs derived from breast cancer 22
Treg-mediated immunosuppression of CD8+TILs is reversible 23
Enhanced Th1 Cytokine Production can be achieved in TILs from breast cancer 24
Up-regulated expression of Perforin and Granzyme B in TILs 24
Discussion 24
表一 35
圖一 36
圖二 37
圖三 38
圖四 40
圖五 41
圖六 42
dc.language.isozh-TW
dc.title乳癌腫瘤浸潤淋巴細胞分析:比較調節性T細胞、CD8+T細胞與相關免疫標記的表現zh_TW
dc.titleExpression and Cell Markers of Regulatory T Cells and CD8+ T Cells in Tumor-Infiltrating Lymphocytes of Human Breast Canceren
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.advisor-orcid,許博欽(bcsheu@ntu.edu.tw)
dc.contributor.oralexamcommittee楊偉勛(Wei-Shiung Yang)
dc.subject.keyword乳癌,調節性T細胞,CD8+ T細胞,腫瘤浸潤淋巴球,記憶T細胞,zh_TW
dc.subject.keywordBreast cancer,regulatory T cells,CD8+ T cells,tumor-infiltrating lymphocytes,memory T cells,en
dc.relation.page42
dc.rights.note同意授權(全球公開)
dc.date.accepted2010-08-15
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept臨床醫學研究所zh_TW
顯示於系所單位:臨床醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf1.07 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved