請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10461完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳昭瑩 | |
| dc.contributor.author | An-Tzu Tseng | en |
| dc.contributor.author | 曾安慈 | zh_TW |
| dc.date.accessioned | 2021-05-20T21:31:22Z | - |
| dc.date.available | 2010-08-21 | |
| dc.date.available | 2021-05-20T21:31:22Z | - |
| dc.date.copyright | 2010-08-21 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-08-17 | |
| dc.identifier.citation | 林玉儒。2008。臘狀芽孢桿菌C1L菌株在臺灣百合根部群聚能力之探討。國立臺灣大學植物病理與微生物學系碩士論文。臺北。臺灣。85頁。
楊耿豪。2007。臘狀芽孢桿菌C1L菌株誘導玉米系統性抗玉米葉枯病之應用研究。國立臺灣大學植物病理與微生物學系碩士論文。臺北。臺灣。78頁。 楊琇萍。2008。臘狀芽孢桿菌C1L菌株揮發氣體促進植物生長之探討。國立臺灣大學植物病理與微生物學系碩士論文。臺北。臺灣。60頁。 劉益宏。2004。臺灣百合根圈細菌之篩選及灰黴病防治應用研究。國立臺灣大學植物病理與微生物學系碩士論文。臺北。臺灣。64頁。 劉益宏。2008。臘狀芽孢桿菌C1L菌株誘導百合系統性抗灰黴病菌之研究。國立臺灣大學植物病理與微生物學研究所博士論文。臺北。臺灣。151頁。 Abranches, J., Candella, M. M., Wen, Z. Z. T., Baker, H. V., and Burne, R. A. 2006. Different roles of EIIABMan and EIIGlc in regulation of energy metabolism, biofilm development, and competence in Streptococcus mutans. J. Bacteriol. 188:3748-3756. Aiken, R. M., and Smucker, A. J. M. 1996. Root system regulation of whole plant growth. Annu. Rev. Phytopathol. 34:325-346. Araujo, W. L., Marcon, J., Maccheroni, W., van Elsas, J. D., van Vuurde, J. W. L., and Azevedo, J. L. 2002. Diversity of endophytic bacterial populations and their interaction with Xylella fastidiosa in citrus plants. Appl. Environ. Microbiol. 68:4906-4914. Audenaert, K., Pattery, T., Cornelis, P., and Hofte, M. 2002. Induction of systemic resistance to Botrytis cinerea in tomato by Pseudomonas aeruginosa 7NSK2: role of salicylic acid, pyochelin, and pyocyanin. Mol. Plant-Microbe Interact. 15:1147-1156. Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J.G., Smith, J. A., and Struhl, K. 2010. Current protocols in molecular biology [electronic resource]. New York: John Wiley & Sons. Bacon, C. W., Yates, I. E., Hinton, D. M., and Meredith, F. 2001. Biological control of Fusarium moniliforme in maize. Environ. Health Persp. 109:325-332. Badri, D. V., and Vivanco, J. M. 2009. Regulation and function of root exudates. Plant Cell Environ. 32:666-681. Bais, H. P., Prithiviraj, B., Jha, A. K., Ausubel, F. M., and Vivanco, J. M. 2005. Mediation of pathogen resistance by exudation of antimicrobials from roots. Nature 434:217-221. Bais, H. P., Weir, T. L., Perry, L. G., Gilroy, S., and Vivanco, J. M. 2006. The role of root exudates in rhizosphere interactions with plants and other organisms. Annu. Rev. Plant Biol. 57:233-266. Bakker, P. A., Pieterse, C. M., and van Loon, L. C. 2007. Induced systemic resistance by Fluorescent Pseudomonas spp. Phytopathology 97:239-243. Bensalim, S., Nowak, J., and Asiedu, S. K. 1998. A plant growth promoting rhizobacterium and temperature effects on performance of 18 clones of potato Am. J. Potato Res. 75:200-200. Choudhary, D. K., and Johri, B. N. 2009. Interactions of Bacillus spp. and plants - With special reference to induced systemic resistance (ISR). Microbiol. Res. 164:493-513. Compant, S., Duffy, B., Nowak, J., Clement, C., and Barka, E. A. 2005a. Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl. Environ. Microbiol. 71:4951-4959. Compant, S., Reiter, B., Sessitsch, A., Nowak, J., Clement, C., and Ait Barka, E. 2005b. Endophytic colonization of Vitis vinifera L. by plant growth-promoting bacterium Burkholderia sp. strain PsJN. Appl. Environ. Microbiol. 71:1685-1693. Defago, G. 1993. 2,4-Diacetylphloroglucinol, a promising compound in biocontrol. Plant Pathol. 42:311-312. Dong, Y. M., Iniguez, A. L., and Triplett, E. W. 2003. Quantitative assessments of the host range and strain specificity of endophytic colonization by Klebsiella pneumoniae 342. Plant Soil 257:49-59. Dunn, A. K., Klimowicz, A. K., and Handelsman, J. 2003. Use of a promoter trap to identify Bacillus cereus genes regulated by tomato seed exudate and a rhizosphere resident, Pseudomonas aureofaciens. Appl. Environ. Microb. 69:1197-1205. Frankowski, J., Lorito, M., Scala, F., Schmid, R., Berg, G., and Bahl, H. 2001. Purification and properties of two chitinolytic enzymes of Serratia plymuthica HRO-C48. Arch. Microbiol. 176:421-426. Gang, W., Kloepper, J. W., and Tuzun, S. 1991. Induction of systemic resistance of cucumber to Colletotrichum orbiculare by select strains of plant growth-promoting rhizobacteria. Phytopathology 81:1508-1512. Gerhardson, B. 2002. Biological substitutes for pesticides. Trends Biotechnol. 20:338-343. Graham, T. L., Sequeira, L., and Huang, T. S. R. 1977. Bacterial lipopolysaccharides as inducers of disease resistance in tobacco. Appl. Environ. Microbiol. 34:424-432. Grebe, T. W., and Stock, J. 1998. Bacterial chemotaxis: the five sensors of a bacterium. Curr. Biol. 8:154-157. Hardoim, P. R., van Overbeek, L. S., and van Elsas, J. D. 2008. Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol. 16:463-471. Hiltner, L. 1904. U‥ ber neuere Erfahrungen und Probleme auf dem Gebiete der Bodenbakteriologie unter besonderer Beru‥cksichtigung der Gru‥ndu‥ngung und Brache. Arb. Dtsch. Landwirtsch. Ges. Berl. 98:59-78. Hinton, D. M., and Bacon, C. W. 1995. Enterobacter cloacae is an endophytic symbiont of corn. Mycopathologia 129:117-125. Houot, L., and Watnick, P. I. 2008. A novel role for enzyme I of the Vibrio cholerae phosphoenolpyruvate phosphotransferase system in regulation of growth in a biofilm. J. Bacteriol. 190:311-320. Iavicoli, A., Boutet, E., Buchala, A., and Metraux, J. P. 2003. Induced systemic resistance in Arabidopsis thaliana in response to root inoculation with Pseudomonas fluorescens CHA0. Mol. Plant-Microbe Interact. 16:851-858. Kamilova, F., Kravchenko, L. V., Shaposhnikov, A. I., Azarova, T., Makarova, N., and Lugtenberg, B. 2006a. Organic acids, sugars, and L-tryptophane in exudates of vegetables growing on stonewool and their effects on activities of rhizosphere bacteria. Mol. Plant-Microbe Interact. 19:250-256. Kamilova, F., Kravchenko, L. V., Shaposhnikov, A. I., Makarova, N., and Lugtenberg, B. 2006b. Effects of the tomato pathogen Fusarium oxysporum f. sp. radicis-lycopersici and of the biocontrol bacterium Pseudomonas fluorescens WCS365 on the composition of organic acids and sugars in tomato root exudate. Mol. Plant-Microbe Interact. 19:1121-1126. Kamilova, F., Lamers, G., and Lugtenberg, B. 2008. Biocontrol strain Pseudomonas fluorescens WCS365 inhibits germination of Fusarium oxysporum spores in tomato root exudate as well as subsequent formation of new spores. Environ. Microbiol. 10:2455-2461. Kamilova, F., Validov, S., Azarova, T., Mulders, I., and Lugtenberg, B. 2005. Enrichment for enhanced competitive plant root tip colonizers selects for a new class of biocontrol bacteria. Environ. Microbiol. 7:1809-1817. Kloepper, J. W., Ryu, C. M., and Zhang, S. A. 2004. Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 94:1259-1266. Kotrba, P., Inui, M., and Yukawa, H. 2001. Bacterial phosphotransferase system (PTS) in carbohydrate uptake and control of carbon metabolism. J. Biosci. Bioeng. 92:502-517. Kuiper, I., Kravchenko, L. V., Bloemberg, G. V., and Lugtenberg, B. J. 2002. Pseudomonas putida strain PCL1444, selected for efficient root colonization and naphthalene degradation, effectively utilizes root exudate components. Mol. Plant-Microbe Interact. 15:734-741. Kundig, W., Roseman, S., and Ghosh, S. 1964. Phosphate bound to histidine in protein as intermediate in novel phospho-transferase system. Proc. Natl. Acad. Sci. USA. 52:1067-1074. Leeman, M., Vanpelt, J. A., Hendrickx, M. J., Scheffer, R. J., Bakker, P. A. H. M., and Schippers, B. 1995. Biocontrol of Fusarium wilt of radish in commercial greenhouse trials by seed treatment with Pseudomonas fluorescens WCS374. Phytopathology 85:1301-1305. Lengeler, J., Auburger, A. M., Mayer, R., and Pecher, A. 1981. The phosphoenolpyruvate-dependent carbohydrate - phosphotransferase system enzymes II as chemoreceptors in chemotaxis of Escherichia coli K12. Mol. Gen. Genet. 183:163-170. Lugtenberg, B. J., Kravchenko, L. V., and Simons, M. 1999. Tomato seed and root exudate sugars: composition, utilization by Pseudomonas biocontrol strains and role in rhizosphere colonization. Environ. Microbiol. 1:439-446. Maloney, P. E., van Bruggen, A. H. C., and Hu, S. 1997. Bacterial community structure in relation to the carbon environments in lettuce and tomato rhizospheres and in bulk soil. Microb. Ecol. 34:109-117. Mateos, P. F., Jimenezzurdo, J. I., Chen, J., Squartini, A. S., Haack, S. K., Martinezmolina, E., Hubbell, D. H., and Dazzo, F. B. 1992. Cell-associated pectinolytic and cellulolytic enzymes in Rhizobium leguminosarum Biovar Trifolii. Appl. Environ. Microbiol. 58:1816-1822. Mazumder, R., Phelps, T. J., Krieg, N. R., and Benoit, R. E. 1999. Determining chemotactic responses by two subsurface microaerophiles using a simplified capillary assay method. J. Microbiol. Methods 37:255-263. Meziane, H., Van der Sluis, I., Van Loon, L. C., Hofte, M., and Bakker, P. A. H. M. 2005. Determinants of Pseudomonas putida WCS358 involved in inducing systemic resistance in plants. Mol. Plant Pathol. 6:177-185. Milner, J. L., Silo-Suh, L., Lee, J. C., He, H., Clardy, J., and Handelsman, J. 1996. Production of kanosamine by Bacillus cereus UW85. Appl. Environ. Microbiol. 62:3061-3065. Narasimhan, K., Basheer, C., Bajic, V. B., and Swarup, S. 2003. Enhancement of plant-microbe interactions using a rhizosphere metabolomics-driven approach and its application in the removal of polychlorinated biphenyls. Plant Physiol. 132:146-153. Nehl, D. B., Allen, S. J., and Brown, J. F. 1997. Deleterious rhizosphere bacteria: an integrating perspective. Appl. Soil Ecol. 5:1-20. Obrien, T. P., Feder, N., and Mccully, M. E. 1964. Polychromatic staining of plant cell walls by toluidine blue O. Protoplasma 59:368-373. Parkinson, J. S., and Kofoid, E. C. 1992. Communication modules in bacterial signaling proteins. Annu. Rev. Genet. 26:71-112. Pineros, M. A., Magalhaes, J. V., Carvalho Alves, V. M., and Kochian, L. V. 2002. The physiology and biophysics of an aluminum tolerance mechanism based on root citrate exudation in maize. Plant Physiol. 129:1194-1206. Postma, P. W., Lengeler, J. W., and Jacobson, G. R. 1993. Phosphoenolpyruvate - carbohydrate phosphotransferase systems of bacteria. Microbiol. Rev. 57:543-594. Roncato-Maccari, L. D., Ramos, H. J., Pedrosa, F. O., Alquini, Y., Chubatsu, L. S., Yates, M. G., Rigo, L. U., Steffens, M. B., and Souza, E. M. 2003. Endophytic Herbaspirillum seropedicae expresses nif genes in gramineous plants. FEMS Microbiol. Ecol. 45:39-47. Rosenblueth, M., and Martinez-Romero, E. 2006. Bacterial endophytes and their interactions with hosts. Mol. Plant-Microbe Interact. 19:827-837. Rovira, A. D. 1969. Plant Root Exudates. Bot. Rev. 35:35-57. Ryu, C. M., Farag, M. A., Hu, C. H., Reddy, M. S., Kloepper, J. W., and Pare, P. W. 2004. Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol. 134:1017-1026. Ryu, C. M., Farag, M. A., Hu, C. H., Reddy, M. S., Wei, H. X., Pare, P. W., and Kloepper, J. W. 2003. Bacterial volatiles promote growth in Arabidopsis. Proc. Natl. Acad. Sci. USA 100:4927-4932. Saier, M. H., Chauvaux, S., Cook, G. M., Deutscher, J., Paulsen, I. T., Reizer, J., and Ye, J. J. 1996. Catabolite repression and inducer control in Gram-positive bacteria. Microbiology 142:217-230. Schuhegger, R., Ihring, A., Gantner, S., Bahnweg, G., Knappe, C., Vogg, G., Hutzler, P., Schmid, M., Van Breusegem, F., Eberl, L., Hartmann, A., and Langebartels, C. 2006. Induction of systemic resistance in tomato by N-acyl-L-homoserine lactone-producing rhizosphere bacteria. Plant Cell Environ. 29:909-918. Silo-Suh, L. A., Lethbridge, B. J., Raffel, S. J., He, H., Clardy, J., and Handelsman, J. 1994. Biological activities of two fungistatic antibiotics produced by Bacillus cereus UW85. Appl. Environ. Microbiol. 60:2023-2030. Simons, M., van der Bij, A. J., Brand, I., de Weger, L. A., Wijffelman, C. A., and Lugtenberg, B. J. 1996. Gnotobiotic system for studying rhizosphere colonization by plant growth-promoting Pseudomonas bacteria. Mol. Plant-Microbe Interact. 9:600-607. Singh, P. P., Shin, Y. C., Park, C. S., and Chung, Y. R. 1999. Biological control of Fusarium wilt of cucumber by chitinolytic bacteria. Phytopathology 89:92-99. Strobel, G., Daisy, B., Castillo, U., and Harper, J. 2004. Natural products from endophytic microorganisms. J. Nat. Prod. 67:257-268. Stulke, J., MartinVerstraete, I., Zagorec, M., Rose, M., Klier, A., and Rapoport, G. 1997. Induction of the Bacillus subtilis ptsGHI operon by glucose is controlled by a novel antiterminator, GlcT. Mol. Microbiol. 25:65-78. Sturz, A. V., and Kimpinski, J. 2004. Endoroot bacteria derived from marigolds (Tagetes spp.) can decrease soil population densities of root-lesion nematodes in the potato root zone. Plant Soil 262:241-249. Toyoda, H., Hashimoto, H., Utsumi, R., Kobayashi, H., and Ouchi, S. 1988. Detoxification of Fusaric Acid by a Fusaric Acid-Resistant Mutant of Pseudomonas-Solanacearum and Its Application to Biological-Control of Fusarium-Wilt of Tomato. Phytopathol. 78:1307-1311. van Loon, L. C., Bakker, P. A., and Pieterse, C. M. 1998. Systemic resistance induced by rhizosphere bacteria. Annu. Rev. Phytopathol. 36:453-483. van Peer, R., Niemann, G. J., and Schippers, B. 1991. Induced resistance and phytoalexin accumulation in biological control of Fusarium wilt of carnation by Pseudomonas sp. Strain WCS417r. Phytopathology 81:728-734. van Peer, R., and Schippers, B. 1992. Lipopolysaccharides of plant-growth promoting Pseudomonas sp. strain WCS417r induce resistance in carnation to Fusarium wilt. Neth. J. Plant Pathol. 98:129-139. Wilson, D. 1995. Endophyte - the evolution of a term, and clarification of its use and definition. Oikos 73:274-276. Zehnder, G. W., Yao, C. B., Murphy, J. F., Sikora, E. R., and Kloepper, J. W. 2000. Induction of resistance in tomato against cucumber mosaic cucumovirus by plant growth-promoting rhizobacteria. Biocontrol 45:127-137. Zhang, L., and Birch, R. G. 1996. Biocontrol of sugar cane leaf scald disease by an isolate of Pantoea dispersa which detoxifies albicidin phytotoxins. Lett. Appl. Microbiol. 22:132-136. Zhang, L. H., and Birch, R. G. 1997. The gene for albicidin detoxification from Pantoea dispersa encodes an esterase and attenuates pathogenicity of Xanthomonas albilineans to sugarcane. Proc. Natl. Acad. Sci. USA 94:9984-9989. Zipfel, C., Robatzek, S., Navarro, L., Oakeley, E. J., Jones, J. D. G., Felix, G., and Boller, T. 2004. Bacterial disease resistance in Arabidopsis through flagellin perception. Nature 428:764-767. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10461 | - |
| dc.description.abstract | 臘狀芽孢桿菌C1L菌株為本實驗室自花蓮太魯閣國家公園布洛灣遊憩區臺灣百合根圈分離之細菌菌株,將C1L菌株澆灌於土壤中有助於臺灣百合、葵百合對抗灰黴病及玉米對抗葉枯病,顯示C1L菌株具有生物防治應用潛能。林(2008)利用轉位子Tn917ac1於C1L菌株中進行轉位誘變,並針對突變株於玉米根內的群聚能力、泳動性以及誘導植物產生系統性抗病等特性進行篩選,序列比對分析結果指出突變株M71之誘變基因與臘狀芽孢桿菌ATCC 14579菌株之糖類磷酸根傳遞運輸系統(phosphotransferase system, PTS)中的glucose-specific II ABC component (ptsG)相似度達90%以上。本研究將C1L菌株及M71突變株培養於含有1%葡萄糖之LB液態培養基中,發現M71突變株對葡萄糖的利用能力低於C1L菌株,顯示M71突變株中與葡萄糖利用相關的基因可能已遭破壞。由過去研究指出,葡萄糖為植物根部主要泌出物之ㄧ,可作為根圈環境中微生物的碳素源,故本研究進一步以組織培養系統,收集株齡14天之玉米根部泌出物,經分析後發現玉米根部泌出物含有葡萄糖。而經試驗發現,C1L菌株及互補株M71C對葡萄糖具趨向性、而M71突變株則失去對葡萄糖之化學趨向性。另一方面,透過切片及染色觀察C1L菌株、M71突變株及M71C互補株於玉米根內部的群聚情形,發現C1L菌株及M71C互補株可進入玉米根部表皮細胞及皮層間隙。本研究構築之互補株M71C,可恢復誘導玉米產生抗病性、根部內生及少許葡萄糖趨向性等特性,但其他變異現象則無法恢復。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2021-05-20T21:31:22Z (GMT). No. of bitstreams: 1 ntu-99-R95633009-1.pdf: 3683594 bytes, checksum: 5f9e7b8d46f932d9f9b77b7dd30b5d73 (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | 壹、 中文摘要 1
貳、 英文摘要 2 參、 前 言 3 肆、 前人研究 5 一、 植物促生根圈細菌(Plant growth-promoting rhizobacteria, PGPR) 5 二、 誘導系統性抗病(Induced systemic resistance) 7 三、 內生細菌(Bacterial endophytes) 8 四、 植物根部泌出物(Root exudates) 9 五、 糖類磷酸根傳遞運輸系統(Phosphotransferase system, PTS) 10 伍、 材料與方法 12 一、 供試菌株之培養與保存 12 二、 基因比對 12 三、 M71突變株特性分析 13 1. 生長曲線 13 2. 內孢子染色(Endospore staining) 13 3. 葡萄糖利用試驗(Glucose utilization test) 13 4. 趨向性試驗(Capillary chemotaxis assay) 14 四、 玉米根部泌出物收取 14 1. 玉米無菌培養方式 14 2. 收取玉米根部泌出物 14 五、 觀察C1L菌株與M71突變株在玉米根內群聚情形 15 1. 玉米根內群聚觀察 15 2. 冷凍切片前處理及切片 15 3. 染色 15 六、 觀察C1L菌株與M71突變株在玉米根內群聚數量 16 七、 互補試驗 16 1. 穿梭質體之構築 16 2. 確認互補株之南方雜合分析 21 3. 臘狀芽孢桿菌C1L菌株、M71及M71C菌株之ISR作用 22 陸、 結 果 24 一、 M71突變株跳躍子插入分析 24 二、 M71突變株生理特性分析 25 1. M71突變株於LB液態培養基中生長速率較C1L菌株慢 25 2. 於LB液態培養基中M71突變株不產生內孢子 25 3. M71突變株較C1L菌株利用葡萄糖能力較差 25 4. M71突變株失去對葡萄糖之化學趨向性 26 三、 玉米根部泌出物收取 26 四、 觀察C1L菌株與M71突變株在玉米根內群聚情形 27 五、 互補試驗 27 柒、 討 論 29 捌、 參考文獻 34 玖、 圖 表 集 43 表一、供試菌株及載體 44 表二、供試載體 45 表三、引子 46 圖一、臘狀芽孢桿菌糖類磷酸根傳遞運輸系統基因組成圖 47 圖二、臘狀芽孢桿菌C1L菌株 ptsG及下游ptsH、ptsI之基因序列 49 圖三、臘狀芽孢桿菌C1L菌株、M71突變株及M71C互補株之生長曲線 50 圖四、内孢子染色 51 圖五、葡萄糖利用能力測試 52 圖六、葡萄糖趨向性測試 54 圖七、臘狀芽孢桿菌C1L菌株與互補株M71C群聚於玉米根部 56 圖八、pLKptsG圖譜 57 圖九、pLKptsG序列 59 圖十、南方雜合分析 60 圖十一、臘狀芽孢桿菌C1L菌株、突變株M71及互補株M71C內生於玉米根部數量 61 圖十二、臘狀芽孢桿菌C1L菌株、M71及互補株M1C誘導玉米產生系統性抗病測試 62 圖十三、臘狀芽孢桿菌C1L 菌株內生於玉米根部預測圖 63 壹拾、 附錄 64 附錄一:臘狀芽孢桿菌C1L菌株ptsG與ATCC 14579菌株胺基酸序列比對 66 附錄二:臘狀芽孢桿菌C1L菌株ptsH與ATCC 14579菌株胺基酸序列比對 67 附錄三:臘狀芽孢桿菌C1L菌株ptsI與ATCC 14579菌株胺基酸序列比對 68 附錄四:臘狀芽孢桿菌C1L菌株ptsGHI基因與ATCC 14579菌株核酸序列比對 76 | |
| dc.language.iso | zh-TW | |
| dc.title | 臘狀芽孢桿菌於玉米根圈群聚與誘導抗病能力相關性探討 | zh_TW |
| dc.title | Study of the relatedness of colonization and induced systemic resistance of Bacillus cereus | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 黃秀珍,賴爾?,黃姿碧 | |
| dc.subject.keyword | 臘狀芽孢桿菌,誘導性抗病,糖類磷酸根傳遞運輸系統,植物根部泌出物,趨向性,內生細菌, | zh_TW |
| dc.subject.keyword | Bacillus cereus,induced systemic resistance,phosphotransferase system,plant exudates,chemotaxis,endophytic bacteria, | en |
| dc.relation.page | 76 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2010-08-18 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 植物病理與微生物學研究所 | zh_TW |
| 顯示於系所單位: | 植物病理與微生物學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf | 3.6 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
