Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10444
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
---|---|---|
dc.contributor.advisor | 林郁真(Angela Yu-Chen Lin) | |
dc.contributor.author | Kuan-Yueh Fang | en |
dc.contributor.author | 方冠岳 | zh_TW |
dc.date.accessioned | 2021-05-20T21:30:01Z | - |
dc.date.available | 2014-01-01 | |
dc.date.available | 2021-05-20T21:30:01Z | - |
dc.date.copyright | 2011-08-22 | |
dc.date.issued | 2011 | |
dc.date.submitted | 2011-08-19 | |
dc.identifier.citation | A. Tauxe-Wuersch, L. F. De Alencastro, D. Grandjean, and J. Tarradellas. 2005. Trace determination of Tamoxifen and 5-Fluorouracil in hospital and urban wastewaters. International Journal of Environmental Analytical Chemistry.
Bagley, C.M., F.W. Bostick, and V.T. DeVita. 1973. Clinical Pharmacology of Cyclophosphamide. Cancer Research. 33:226-233. Boreen, A.L., W.A. Arnold, and K. McNeill. 2004. Photochemical Fate of Sulfa Drugs in the Aquatic Environment: Sulfa Drugs Containing Five-Membered Heterocyclic Groups. Environmental Science & Technology. 38:3933-3940. Boreen, A.L., W.A. Arnold, and K. McNeill. 2005. Triplet-Sensitized Photodegradation of Sulfa Drugs Containing Six-Membered Heterocyclic Groups: Identification of an SO2 Extrusion Photoproduct. Environmental Science & Technology. 39:3630-3638. Bouillon, R.-C., and W.L. Miller. 2005. Photodegradation of Dimethyl Sulfide (DMS) in Natural Waters: Laboratory Assessment of the Nitrate-Photolysis-Induced DMS Oxidation. Environmental Science & Technology. 39:9471-9477. Buerge, I.J., H.-R. Buser, T. Poiger, and M.D. Müller. 2006. Occurrence and Fate of the Cytostatic Drugs Cyclophosphamide and Ifosfamide in Wastewater and Surface Waters+. Environmental Science & Technology. 40:7242-7250. Chen, Y., C. Hu, X. Hu, and J. Qu. 2009. Indirect Photodegradation of Amine Drugs in Aqueous Solution under Simulated Sunlight. Environmental Science & Technology. 43:2760-2765. Chen, Y., C. Hu, J. Qu, and M. Yang. 2008. Photodegradation of tetracycline and formation of reactive oxygen species in aqueous tetracycline solution under simulated sunlight irradiation. Journal of Photochemistry and Photobiology A: Chemistry. 197:81-87. Chowdhury, R.R., P.A. Charpentier, and M.B. Ray. 2011. Photodegradation of 17[beta]-estradiol in aquatic solution under solar irradiation: Kinetics and influencing water parameters. Journal of Photochemistry and Photobiology A: Chemistry. 219:67-75. Colvin, O.M. 1999. An overview of cyclophosphamide development and clinical applications. Current Pharmaceutical Design. 5:555-560. Cooper, W.J., R.G. Zika, R.G. Petasne, and A.M. Fischer. 1989. Sunlight-Induced Photochemistry of Humic Substances in Natural Waters: Major Reactive Species. 219:333-362. Doede, C.M., and C.A. Walker. 1955. Photochemical Engineering. Chem. &Engi.:159. Dulin, D., and T. Mill. 1982. Development and evaluation of sunlight actinometers. Environmental Science & Technology. 16:815-820. Ghoshal, K., and S.T. Jacob. 1997. An alternative molecular mechanism of action of 5-fluorouracil, a potent anticancer drug. Biochemical Pharmacology. 53:1569-1575. Heggie, G.D., J.-P. Sommadossi, D.S. Cross, W.J. Huster, and R.B. Diasio. 1987. Clinical Pharmacokinetics of 5-Fluorouracil and Its Metabolites in Plasma, Urine, and Bile. Cancer Research. 47:2203-2206. Kiffmeyer, T., H.-J. Götze, M. Jursch, and U. Lüders. 1998. Trace enrichment, chromatographic separation and biodegradation of cytostatic compounds in surface water. Fresenius' Journal of Analytical Chemistry. 361:185-191-191. Lam, M.W., and S.A. Mabury. 2005. Photodegradation of the pharmaceuticals atorvastatin, carbamazepine, levofloxacin, and sulfamethoxazole in natural waters. Aquatic Sciences. 67:177-188. Lam, M.W., K. Tantuco, and S.A. Mabury. 2003. PhotoFate: A New Approach in Accounting for the Contribution of Indirect Photolysis of Pesticides and Pharmaceuticals in Surface Waters. Environmental Science & Technology. 37:899-907. Latch, D.E., B.L. Stender, J.L. Packer, W.A. Arnold, and K. McNeill. 2003. Photochemical Fate of Pharmaceuticals in the Environment: Cimetidine and Ranitidine. Environmental Science & Technology. 37:3342-3350. Legan, R.W. 1982. Ultraviolet light take on CPI roles. Chemical Engineering. 89:95-100. Lin, A.Y.-C., and M. Reinhard. 2005. Photodegradation of common environmental pharmaceuticals and estrogens in river water. Environmental Toxicology and Chemistry. 24:1303-1309. Lin, A.Y.-C., and Y.-T. Tsai. 2009. Occurrence of pharmaceuticals in Taiwan's surface waters: Impact of waste streams from hospitals and pharmaceutical production facilities. Science of The Total Environment. 407:3793-3802. Lin, A.Y.-C., T.-H. Yu, and S.K. Lateef. 2009. Removal of pharmaceuticals in secondary wastewater treatment processes in Taiwan. Journal of Hazardous Materials. 167:1163-1169. Liu, Q.-T., and H.E. Williams. 2006. Kinetics and Degradation Products for Direct Photolysis of β-Blockers in Water. Environmental Science & Technology. 41:803-810. Liu, Y., Y. Tong, and J. Liu. 2010. Photodegradation of Acetaminophen in Secondary Effluent of Sewage Treatment Plant under Simulated Sunlight Irradiation. Bioinformatics and Biomedical Engineering (iCBBE), 2010 4th International Conference on 1-4. Lubomira, K. 2009. Cytostatics in the aquatic environment : analysis, occurrence, and possibilities for removal. Mack, J., and J.R. Bolton. 1999. Photochemistry of nitrite and nitrate in aqueous solution: a review. Journal of Photochemistry and Photobiology A: Chemistry. 128:1-13. Mahnik, S., K. Lenz, N. Weissenbacher, R. Mader, and M. Fuerhacker. 2007. Fate of 5-fluorouracil, doxorubicin, epirubicin, and daunorubicin in hospital wastewater and their elimination by activated sludge and treatment in a membrane-bio-reactor system. Chemosphere. 66:30-37. Mahnik, S., B. Rizovski, M. Fuerhacker, and R. Mader. 2004. Determination of 5-fluorouracil in hospital effluents. Analytical and Bioanalytical Chemistry. 380. Mirkes, P.E. 1985. Cyclophosphamide teratogenesis: A review. Teratogenesis, Carcinogenesis, and Mutagenesis. 5:75-88. Ou, W.-S., M.-C. Ho, J.-L. Chen, J.-F. Chen, and S.-C. Lo. 2008. The Study on the Typical Radiation for Solar Architecture Design of Taiwan. Journal of Architecture. 64:103-118. Razavi, B., S. Ben Abdelmelek, W. Song, K.E. O’Shea, and W.J. Cooper. 2011. Photochemical fate of atorvastatin (lipitor) in simulated natural waters. Water Research. 45:625-631. Schmoll, H.J., T. Büchele, A. Grothey, and W. Dempke. 1999. Where do we stand with 5-fluorouracil? Seminars in Oncology. 26:589-605. Seymour. S. Cohen, Joel G. Flaks, Hazel D. Barner, Marilyn R. Loeb, and J. Lichtenstein. 1958. The mode of action of 5-fluorouracil and its derivatives. Proc Natl Acad Sci U S A. 44:1004–1012. Shah, R.M., and R.A. MacKay. 1978. Teratological evaluation of 5-fluorouracil and 5-bromo-2-deoxyuridine on hamster fetuses. Journal of Embryology and Experimental Morphology. 43:47-54. Steger-Hartmann, T., K. Kümmerer, and A. Hartmann. 1997. Biological Degradation of Cyclophosphamide and Its Occurrence in Sewage Water. Ecotoxicology and Environmental Safety. 36:174-179. Vione, D., S. Khanra, S.C. Man, P.R. Maddigapu, R. Das, C. Arsene, R.-I. Olariu, V. Maurino, and C. Minero. 2009. Inhibition vs. enhancement of the nitrate-induced phototransformation of organic substrates by the •OH scavengers bicarbonate and carbonate. Water Research. 43:4718-4728. Wang, L., C. Albasi, V. Faucet-Marquis, A. Pfohl-Leszkowicz, C. Dorandeu, B. Marion, and C. Causserand. 2009. Cyclophosphamide removal from water by nanofiltration and reverse osmosis membrane. Water Research. 43:4115-4122. Weeks, J.L., and J. Rabani. 1966. The Pulse Radiolysis of Deaerated Aqueous Carbonate Solutions. I. Transient Optical Spectrum and Mechanism. II. pK for OH Radicals1. The Journal of Physical Chemistry. 70:2100-2106. Werner, J.J., W.A. Arnold, and K. McNeill. 2006. Water Hardness as a Photochemical Parameter: Tetracycline Photolysis as a Function of Calcium Concentration, Magnesium Concentration, and pH+. Environmental Science & Technology. 40:7236-7241. Zepp, R.G. 1988. Factors affecting the photochemical treatment of hazardous waste. Environmental Science & Technology. 22:256-257. Zounková, R., P. Odráška, L. Doležalová, K. Hilscherová, B. Maršálek, and L. Bláha. 2007. Ecotoxicity and genotoxicity assessment of cytostatic pharmaceuticals. Environmental Toxicology and Chemistry. 26:2208-2214. Zuccato, E., D. Calamari, M. Natangelo, and R. Fanelli. 2000. Presence of therapeutic drugs in the environment. The Lancet. 355:1789-1790. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10444 | - |
dc.description.abstract | 本研究主要探討兩種廣泛使用的抗癌藥物環磷醯胺(cyclophosphamide)及5-氟尿嘧啶(5-fluorouracil)在水體環境中的光降解宿命。實驗方法為使用日光模擬器 (氙弧燈,765 W/m2,波長大於 290 nm)模擬日光照射下目標化合物的直接、間接及環境水體中的光降解。實驗室的合成水質為單獨及綜合探討三種光降解前趨物質的影響,包括溶解性有機物質(dissolved organic matter, DOM)、硝酸鹽(nitrate)及碳酸氫鹽(bicarbonate),另外選擇四個臺灣北部都會區的表面水體做為代表環境水體光降解的不同基質。
研究結果顯示環磷醯胺無法進行直接光降解,然而5-氟尿嘧啶具有直接光降解的能力,其初始濃度5至500 μg/L之半生期為45.5 ± 5.1至74.9 ± 17.8小時。DOM、硝酸鹽及碳酸氫鹽對於環磷醯胺及5-氟尿嘧啶的光降解皆具有重要性。經由這三種前趨物質分別產生的氫氧自由基 (hydroxyl radical, •OH)及單重激發態氧 (singlet oxygen, 1O2)皆能與環磷醯胺及5-氟尿嘧啶進行反應,然而激發態溶解性有機物質(triplet excited states of dissolved organic matter, 3DOM*)及碳酸自由基(carbonate radical, •CO3-)只能與5-氟尿嘧啶進行反應。四個表面水體的基質雖然相當複雜,但整體光降解趨勢大致與實驗室合成水質得到的結論一致,可說明本研究所選擇的三種前趨物質即為在水體環境中主要影響光降解的物質。環磷醯胺及5-氟尿嘧啶在景美溪水樣中的光降解半生期分別為50.1 ± 0.5及9.2 ± 0.7小時,經由本研究可說明環磷醯胺較具持久性而且可能容易殘留在自然水體環境裡。 | zh_TW |
dc.description.abstract | This work aimed to investigate the photodegradation of two widely used anticancer drugs, cyclophosphamide and 5-fluorouracil. Direct, indirect and surface water photolysis experiments were processed by sunlight simulator (Xenon–arc lamp, 765 W/m2, wavelength above 290 nm). Three precursors which generate photoreactive species including dissolved organic matter (DOM), nitrate and bicarbonate were studied individually and in combination in the indirect photolysis batch experiments. Four surface water samples were collected from the metropolitan area in northern Taiwan and were used to study the effect of different water matrices.
Results show that cyclophosphamide does not undergo direct photolysis while 5-fluorouracil can be directly photodegraded with initial concentration from 5 to 500 μg/L, having corresponding half-lives 45.5 ± 5.1 to 74.9 ± 17.8 hours. DOM, nitrate and bicarbonate demonstrated to be important factors for cyclophosphamide and 5-fluorouracil photodegradation. Produced by the three precursors, the hydroxyl radical (•OH) and singlet oxygen (1O2) can both react with cyclophosphamide and 5-fluorouracil, but triplet excited states of dissolved organic matter (3DOM*) and carbonate radical (•CO3-) can only react with 5-fluorouracil. Althought the matrices were quite complex in the four surface water samples, their overall photodegradation rate were consistent with the conclusion of the indirect photolysis batch experiments, it indicates that the selected three precursors are the major materials affecting the photodegradation in the aquatic environments.The half-lives of cyclophosphamide and 5-fluorouracil in JingMei River sample were 50.1 ± 0.5 and 9.2 ± 0.7 hours, indicating that cyclophosphamide is more persistent. This possibly explains its high occurrence in the nature aquatic environments. | en |
dc.description.provenance | Made available in DSpace on 2021-05-20T21:30:01Z (GMT). No. of bitstreams: 1 ntu-100-R98541134-1.pdf: 1875273 bytes, checksum: 9cda6916947051d3d526a6641931202c (MD5) Previous issue date: 2011 | en |
dc.description.tableofcontents | 摘要 i
ABSTRACT ii 目錄 iv 圖目錄 vii 表目錄 ix 第一章 緒論 1 1.1 研究緣起 1 1.2 研究目的 2 1.3 研究內容 2 第二章 文獻回顧 3 2.1 Cyclophosphamide (環磷醯胺) 及 5-fluorouracil (5-氟尿嘧啶) 3 2.1.1 物化性質 3 2.1.2 來源與使用 3 2.1.3 藥理機制 4 2.1.4 生物毒性 4 2.1.5 環境生態毒性 5 2.1.6 環境流佈 6 2.1.7 工程處理方法 7 2.2 光降解反應原理與機制 9 2.2.1 直接光降解 9 2.2.2 間接光降解 10 2.3 PPCPs在環境中的光降解宿命 13 第三章 實驗方法 17 3.1 實驗設計流程 17 3.2 實驗藥品及儀器設備 20 3.2.1 藥品明細 20 3.2.2 儀器設備 20 3.2.3 液相層析串聯質譜儀 21 3.3 光降解實驗儀器架設 22 3.4 光降解實驗方式 23 3.4.1 照光實驗(photolysis) 23 3.4.2 未照光實驗(dark control) 23 3.4.3 取樣間隔及定量分析 23 3.4.4 數據整理 23 3.5 實驗步驟 24 3.5.1 化合物標準品儲備溶液 24 3.5.2 光降解實驗初始濃度的配置 24 3.5.3 UV-Vis吸收光譜 24 3.5.4 直接光降解 24 3.5.5 間接光降解(合成水質) 25 3.5.6 環境水體光降解 26 3.6 定量分析方法 29 3.6.1 目標化合物濃度定量分析 29 3.6.2 環境水體水質分析 29 第四章 結果與討論 31 4.1 UV-Vis吸收光譜 31 4.2 直接光降解 33 4.2.1 初始濃度對直接光降解的影響 33 4.2.2 5-fluorouracil直接光降解的反應階數(reaction order) 35 4.2.3 pH值對於5-fluorouracil直接光降解的影響 36 4.2.4 5-fluorouracil直接光降解的量子產率(quantum yield) 38 4.3 間接光降解(合成水質) 39 4.3.1 單獨添加DOM、nitrate及bicarbonate 39 4.3.2 pH值對於5-fluorouracil間接光降解的影響 43 4.3.3 組合添加DOM、nitrate及bicarbonate 45 4.3.4 加入抑制劑iPrOH或NaN3 49 4.3.5 5-fluorouracil間接光降解副產物(byproduct)的分析 52 4.4 環境水體光降解 54 4.4.1 四個環境水體的光降解 54 4.4.2 JingMei River(景美溪, JMR)使用高壓滅菌以及加入抑制劑iPrOH及NaN3 60 4.5 全部實驗之半生期 64 第五章 結論與建議 66 5.1 結論 66 5.1.1 Cyclophosphamide在水體環境中的光降解宿命 66 5.1.2 5-Fluorouracil在水體環境中的光降解宿命 67 5.2 建議 68 參考文獻 69 附錄 74 7.1 未照光實驗數據 74 7.2 其他實驗數據 78 7.2.1 5-fluorouracil直接光降解產生的反應性含氧物質(ROS) 78 7.3 目標化合物標準品之液相層析串聯質譜儀圖譜 80 7.4 Student t test 81 | |
dc.language.iso | zh-TW | |
dc.title | 抗癌藥物在水體環境中的光降解:環磷醯胺及5-氟尿嘧啶 | zh_TW |
dc.title | Photodegradation of Anticancer Drugs in Aquatic Environments: Cyclophosphamide and 5-Fluorouracil | en |
dc.type | Thesis | |
dc.date.schoolyear | 99-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 林正芳,康佩群 | |
dc.subject.keyword | 光降解,環磷醯胺,5-氟尿嘧啶,溶解性有機物質,硝酸鹽,碳酸氫鹽,水體環境, | zh_TW |
dc.subject.keyword | photodegradation,cyclophosphamide,5-fluorouracil,dissolved organic matter (DOM),nitrate,bicarbonate,aquatic environments, | en |
dc.relation.page | 81 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2011-08-19 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 環境工程學研究所 | zh_TW |
Appears in Collections: | 環境工程學研究所 |
Files in This Item:
File | Size | Format | |
---|---|---|---|
ntu-100-1.pdf | 1.83 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.