Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 海洋研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10430
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor喬淩雲(Ling-Yun Chiao)
dc.contributor.authorYen-Shin Chenen
dc.contributor.author陳硯歆zh_TW
dc.date.accessioned2021-05-20T21:28:55Z-
dc.date.available2010-11-20
dc.date.available2021-05-20T21:28:55Z-
dc.date.copyright2010-08-20
dc.date.issued2010
dc.date.submitted2010-08-19
dc.identifier.citationAki, K., and Richards, P., 2002, Quantitative seismology, Univ Science Books.
Angelier, J., 1979, Determination of the mean principal directions of stresses for a given fault population: Tectonophysics, v. 56, p. T17-T26.
─, 1984, Tectonic analysis of fault slip data sets: Journal of Geophysical Research, v. 89, p. 5835-5848.
─, 1989, From orientation to magnitudes in paleostress determinations using fault slip data: Journal of Structural Geology, v. 11, p. 37-50.
─, 1994, Fault slip analysis and paleostress reconstruction: Continental deformation, v. 1, p. 53-100.
Bott, M., 1959, The mechanics of oblique slip faulting: Geol Mag, v. 96, p. 109-117.
Chung, S., Sun, S., Tu, K., Chen, C., and Lee, C., 1994, Late Cenozoic basaltic volcanism around the Taiwan Strait, SE China: Product of lithosphere-asthenosphere interaction during continental extension: Chemical Geology, v. 112, p. 1-20.
Dreger, D., and Helmberger, D., 1993, Determination of source parameters at regional distances with three-component sparse network data: Journal of Geophysical Research, v. 98, p. 8107-8125.
Dziewonski, A., and Woodhouse, J., 1983, An experiment in systematic study of global seismicity Centroid-moment tensor solutions for 201 moderate and large earthquakes of 1981: Journal of Geophysical Research, v. 88.
Ebel, J., and Bonjer, K., 1990, Moment tensor inversion of small earthquakes in southwestern Germany for the fault plane solution: Geophysical Journal International, v. 101, p. 133-146.
Efron, B., Tibshirani, R., and Tibshirani, R., 1993, An introduction to the bootstrap, Chapman & Hall/CRC.
Gephart, J., 1990, Stress and the direction of slip on fault planes: Tectonics, v. 9, p. 845-858.
Gephart, J., and Forsyth, D., 1984, An improved method for determining the regional stress tensor using earthquake focal mechanism data: application to the San Fernando earthquake sequence: Journal of Geophysical Research, v. 89, p. 9305-9320.
Gillard, D., and Wyss, M., 1995, Comparison of strain and stress tensor orientation: Application to Iran and southern California: Journal of Geophysical Research, v. 100, p. 22197.
Hardebeck, J., and Hauksson, E., 2001, Stress orientations obtained from earthquake focal mechanisms: what are appropriate uncertainty estimates?: Bulletin of the Seismological Society of America, v. 91, p. 250.
Huang, B., Chen, K., Wang, K., and Yen, H., 1998, Velocities of Pn waves in the Taiwan strait and Its surrounding area from regional earthquakes:Terrestrial, Atmosphere and Oceanic Science, v. 9, p. 473-486.
Kao, H., and Angelier, J., 2001, Stress tensor inversion for the Chi-Chi earthquake sequence and its implications on regional collision: Bulletin of the Seismological Society of America, v. 91, p. 1028.
Kao, H., and Wu, F., 1996, The 16 September 1994 earthquake (mb= 6.5) in the Taiwan strait and its tectonic implications: Terrestrial, Atmosphere and Oceanic Science, v. 7, p. 13-29.
Kim, K., Chiu, J., Kao, H., Liu, Q., and Yeh, Y., 2004, A preliminary study of crustal structure in Taiwan region using receiver function analysis: Geophysical Journal International, v. 159, p. 146-164.
Kisslinger, C., Bowman, J., and Koch, K., 1982, Determination of focal mechanism from SV/P amplitude ratios at small distances: Physics of the Earth and Planetary Interiors, v. 30, p. 172-176.
Langston, J., Ballard, P., Tetrud, J., and Irwin, I., 1983, Chronic parkinsonism in humans due to a product of meperidine-analog synthesis: Science, v. 219, p. 979.
Lisle, R., 1988, Romsa: a basic program for paleostress analysis using fault-striation data: Computers & Geosciences, v. 14, p. 255-259.
Liu, C., Liu, S., Lallemand, S., Lundberg, N., and Reed, D., 1998, Digital elevation model offshore Taiwan and its tectonic implications: Terrestrial, Atmospheric and Oceanic Sciences, v. 9, p. 705
Lu, C., Chan, Y., Kuo, L., Lee, J., and Chang, K., 2009, Neotectonic Patterns of Taiwan Based on Recent Multi-Source Data, p. 1899.
Mckenzie, D., 1969, The relation between fault plane solutions for earthquakes and the directions of the principal stresses: Bulletin of the Seismological Society of America, v. 59, p. 591.
Michael, A., 1984, Determination of stress from slip data: faults and folds: Journal of Geophysical Research, v. 89, p. 11517.
Michael, A., 1987, Use of focal mechanisms to determine stress: a control study: Journal of Geophysical Research, v. 92, p. 357-369.
Rau, R., and Wu, F., 1998, Active tectonics of Taiwan orogeny from focal mechanisms of small-to-moderate-sized earthquakes:Terrestrial, Atmosphere and Oceanic Science, v. 9, p. 755-778.
Sipkin, S., 1982, Estimation of earthquake source parameters by the inversion of waveform data: synthetic waveforms: Physics of the Earth and Planetary Interiors, v. 30, p. 242-259.
Stein, S., and Wysession, M., 2003, An introduction to seismology, earthquakes, and earth structure, Wiley-Blackwell.
Wu, Y., Chang, C., Zhao, L., Shyu, J., Chen, Y., Sieh, K., and Avouac, J., 2007, Seismic tomography of Taiwan: Improved constraints from a dense network of strong motion stations: J. geophys. Res, v. 112.
Wu, Y., Zhao, L., Chang, C., and Hsu, Y., 2008, Focal-mechanism determination in Taiwan by genetic algorithm: Bulletin of the Seismological Society of America, v. 98, p. 651.
Wyss, M., Liang, B., Tanigawa, W., and Wu, X., 1992, Comparison of orientations of stress and strain tensors based on fault plane solutions in Kaoiki, Hawaii: Journal of Geophysical Research, v. 97, p. 4769-4790.
Yu, H., and Chou, Y., 2001, Characteristics and development of the flexural forebulge and basal unconformity of Western Taiwan Foreland Basin: Tectonophysics, v. 333, p. 277-291.
Yu, S., Chen, H., and Kuo, L., 1997, Velocity field of GPS stations in the Taiwan area: Tectonophysics, v. 274, p. 41-59.
Zhao, L., and Helmberger, D., 1994, Source estimation from broadband regional seismograms: Bulletin of the Seismological Society of America, v. 84, p. 91.
Zhu, L., and Helmberger, D., 1996, Advancement in source estimation techniques using broadband regional seismograms: Bulletin of the Seismological Society of America, v. 86, p. 1634.
Zhu, L., and Rivera, L., 2002, Computation of dynamic and static displacement from a point source in multi-layered media: Geophys. J. Int, v. 148, p. 619-627.
Zoback, M., 1992, First-and second-order patterns of stress in the lithosphere: the world stress map project: Journal of Geophysical Research, v. 97, p. 11703.
史旻弘, 2001, 利用重力資料估算台灣海峽之莫霍面深度: 國立中央大學地球物理研究所碩士論文.
江準熙, 2005, 1999 年集集大地震前後地震活動, 震源機制及地殼應力分佈與變化之研究 A Study on the Patterns and Changes in Seismicity, Focal Mechanism and Crustal Stress before and after the 1999 Chi-Chi, Taiwan, Earthquake.
呂玉菀, 2004, 使用震源機制逆推台灣地區應力分區狀況 Using Focal Mechanism to Invert the Stress Fields in the Taiwan Region.
李錫堤, 1986, 大地應力分析與弧陸碰撞對於台灣北部古應力場變遷之影響, 國立台灣大學地質研究所博士論文.
林松建, 丁學仁, 陳為傳, 陳祥熊, 2009, 福建地區震源機制解與現代構造應力場研究: 大地測量與地球動力學, v. 29, p. 27-32.
張建興, 2004, 高密度地震資料分析及其用於台灣中部及東部孕震構造之研究 Applications of a dense seismic network data on the study of seismogenic structures of central and eastern Taiwan.
許振棟, 2006, 1604年泉州海外8级地震研究: 大地測量與地球動力學, v. 26, p. 78-83.
陳正泓, 1996, 利用重力頻譜分析法估算台灣及鄰近地區之莫荷面深度: 國立中正大學應用地球物理研究所碩士論文.
陳愛筑, 2005, 三維重力分析與台灣區域地殼構造之大尺度變化: 國立台灣大學碩士論文.
黃慈流, 蘇達權, 陳漢宗, 駱惠仲, 1997, 台灣海峽西部地質、地球物理和地球
化學綜合調查研究, 廈門大學出版社.
廖彥喆, 2005, 利用接收函數法分析台灣深部地殼構造: 國立中央大學地球物理研究所碩士論文.
廖哲緯, 2008, 台灣地區 BATS 地震矩張量震源解的品質評估及其在地震地體構造上的應用.
蕭承龍, 丁信修, 邱翠雲, 1993, 新竹苗栗外海之震測相及沉積環境分析: 探採研究彙報 p. 16-32.
謝以萱, 1983, 南海東北部的海底地貌: 熱帶海洋, v. 2, p. 182-190.
謝獻祥, 2009, 利用重力資料探討台灣及其鄰近地區之三維地下構造: 國立中央大學地球物理研究所博士論文.
聶頌平, 1989, 台灣海峽西部石油地質地球物理調查研究: 海洋出版社.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10430-
dc.description.abstract台灣海峽位於歐亞大陸邊緣,屬於被動性大陸邊緣。而由地體構造之觀點切入,其坐落於台灣弧陸碰撞帶和穩定之歐亞大陸板塊之間。雖然主要地震能量釋放發生於板塊邊界,但由過去紀錄顯示,一向被認定為板塊內部地區的台灣海峽卻仍有為數不少的地震活動發生。然而,因爲觀測資料的不足,有關台灣海峽地殼構造研究的工作和文獻相當有限,缺乏系統性之震源機制解研究。本研究使用海峽兩側區域寬頻和短週期地震測站之波形資料求解出自1991年以來55筆台灣海峽中小型地震震源機制解,並利用所求得之解進一步估計區域構造應力狀態。
本研究採用Zhao & Helmberger [1994] 和Zhu & Helmberger [1996]所建立之Cut-and-Paste (CAP)波形逆推法以求解震源機制解,並應用Gephart & Forsyth [1984]所發表之Focal Mechanism Stress Inversion (FMSI) 法和Michael [1984, 1987]的Linear Stress Inversion with Bootstrapping (LSIB)法來估計區域應力型態。
本研究斷層型態結果顯示,整個台灣海峽區域地震絕大多數為深度30公里內之淺層地震且以走向滑移斷層為主,並伴隨著多處張裂活動,僅在海峽東北部擁有少數逆斷層地震活動。究其原因,也許暗示著此區域是介於台灣地區板塊隱沒與碰撞造山帶之碰撞壓縮環境與中國大陸東南沿海之伸張應力環境的轉換帶。而海峽南部以1994年9月為首之地震餘震序列,則呈現較為一致之正斷層特性。

應力結果顯示,台灣海峽區域無法視為單一均勻應力場,較爲合理的解釋是將海峽區域劃分為四個應力均質區。台中、新竹外海區域由σ1主軸方向顯示,即使位於變形前緣西側,此區仍受到板塊碰撞效應影響。而台南陸上、沿海區域顯示在變形前緣兩側,空間上應力變化十分高頻。整體而言,台灣海峽就應力結果表現出張裂應力狀態,且σ3由南而北呈現由南北向往東西向偏轉之現象。針對兩應力方法結果之比較,認為雖然兩方法所得之應力主軸方向大致相同,但就可信度範圍和集中程度,本研究區域目前以LSIB法較為適用。
zh_TW
dc.description.abstractThe Taiwan Strait is situated on the Eurasia continental shelf, and, from a tectonic perspective, it sits between the arc-continent collision zone of Taiwan in the east and the stable Eurasian continent in the west. Although the majority of seismic moment release occurs at the plate boundaries, there are still seismic activities in the Taiwan Strait, within the Eurasia Plate. Seismic studies have been very limited in the Taiwan Strait, and the crustal structure and the earthquakes in the strait have been poorly understood. In this study, we determine the depths and focal mechanisms of 55 small and moderate earthquakes in Taiwan Strait since 1991 using regional broadband and short-period waveform records from stations on both sides of the strait, and then estimate orientations of the principle stresses from these focal mechanism solutions.
In this study, the focal mechanisms are inverted by the cut-and-paste (CAP) of Zhao & Helmberger [1994] and Zhu & Helmberger [1996]. The focal mechanism stress inversion (FMSI) method of Gephart & Forsyth [1984] and the linear stress inversion with bootstrapping (LSIB) method of Michael [1984, 1987] are adopted to estimate the stress orientations in the region.
Our result suggests that most events in the Taiwan Strait occurred in the crust above 30-km depth, and strike-slip faulting mechanism dominates in most of the region, although there are some extensional activities and a few thrust events in the northeast of the Taiwan Strait. This may be interpreted as resulting from the transition between extensional and compressional regimes. Focal mechanisms in the south show that strike-slip and normal faulting mechanisms dominate, consistent with the aftershock behavior of the largest event occurred in the region in September, 1994.
Our tests on stress-field orientation estimation indicate that the Taiwan Strait as a whole cannot be represented by a single homogeneous stress orientation. A more reasonable interpretation of our tests is to divide the region into four stress regimes. For the stress field in the northeastern part of the Taiwan Strait, the azimuth of σ1 is consistent with that in previous studies carried out on the island that reveals the variation pattern determined mainly by the direction of the plate motion of the Philippine Sea Plate relative to the Eurasia Plate. Our result also shows a rapid spatial change in stress orientation off the coast near Tainan within a short distance about 30 km, indicating very different tectonic regimes on the two sides of the deformation front. Base on the results of both FMSI and LSIB stress inversion methods, the western part of the Taiwan Strait experiences an extensional stress, and the direction of σ3 rotates clockwise from north-south direction in the south to east-west direction in the north. Although results for stress orientations from FMSI and LSIB methods are compatible in regions of relatively homogeneous stresses, based on the confidence ranges of the two results, we believe that the LSIB method is more suitable for the stress-field estimation in the Taiwan Strait.
en
dc.description.provenanceMade available in DSpace on 2021-05-20T21:28:55Z (GMT). No. of bitstreams: 1
ntu-99-R97241305-1.pdf: 9381034 bytes, checksum: 6126179b94e901a02328a6885de0d73a (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents口試委員會審定書 ......................................... I
誌謝 .................................................... II
中文摘要 ............................................... III
英文摘要 ................................................. V
目錄 ................................................... VII
圖目錄 .................................................. IX
表目錄 .................................................. XI
第一章 緒論 .............................................. 1
1.1 台灣海峽構造 ......................................... 1
1.1.1臺灣海峽之地貌與構造特性............................. 1
1.1.2臺灣海峽之地震活動情形............................... 2
1.1.3臺灣海峽之地殼厚度研究............................... 4
1.2 研究動機與目的........................................ 5
1.3 本論文內容............................................ 6
第二章 台灣海峽內部地震震源機制解........................ 15
2.1 震源機制解........................................... 15
2.2 求解震源機制解之方法................................. 15
2.3 Cut And Paste( CAP)方法.............................. 20
2.4 一維速度模型與格林函數庫之建立....................... 22
2.5 波形資料來源與處理................................... 23
2.6 震源機制結果......................................... 24
2.7 震源機制結果分區討論................................. 25
第三章 台灣海峽內部之應力狀態............................ 47
3.1 區域構造應力型態之估計 .............................. 47
3.2 圖解法(Graphics Method) ............................. 48
3.3 數值逆推法(Numerical Inversion Method) .............. 49
3.3.1 Focal Mechanism Stress Inversion( FMSI) ........... 50
3.3.2 Linear Inversion Method with Bootstrapping( LSIB) . 51
3.3.3 可信度範圍......................................... 52
3.4 區域應力逆推結果和討論 .............................. 53
第四章 結論.............................................. 74
參考文獻................................................. 77
附錄A ................................................... 81
dc.language.isozh-TW
dc.title台灣海峽震源機制及其應力狀態zh_TW
dc.titleEarthquake Focal Mechanisms and the Inferred Stress Orientations in the Taiwan Straiten
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.coadvisor趙里(Li Zhao)
dc.contributor.oralexamcommittee黃柏壽(Bor-Shouh Huang),梁文宗(Wen-Tzong Liang),顏宏元(Horng-Yuan Yen)
dc.subject.keyword台灣海峽,震源機制,波形逆推,應力逆推,zh_TW
dc.subject.keywordTaiwan Strait,focal mechanism,waveform inversion,stress inversion.,en
dc.relation.page113
dc.rights.note同意授權(全球公開)
dc.date.accepted2010-08-19
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept海洋研究所zh_TW
顯示於系所單位:海洋研究所

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf9.16 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved