Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10408
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林坤佑(Kun-You Lin)
dc.contributor.authorYu-Chung Hsuen
dc.contributor.author許譽鐘zh_TW
dc.date.accessioned2021-05-20T21:27:11Z-
dc.date.available2011-08-20
dc.date.available2021-05-20T21:27:11Z-
dc.date.copyright2010-08-20
dc.date.issued2010
dc.date.submitted2010-08-19
dc.identifier.citation[1] IEEE P802.15-05-0596-01-003c.pdf
[2] G. M. Rebeiz, and Kwang-Jin Koh, “Silicon RFICs for phased arrays,” IEEE Microwave Magazine, vol.10, no.3, pp. 96 – 103, May 2009.
[3] H. Hashemi, X. Guan, and A. Hajimiri, “A fully integrated 24 GHz 8-path phased-array receiver in silicon,” in IEEE Int. Solid-State Circuit Conf. Dig., Feb. 2004, pp. 390–39.
[4] T. Yu, and G. M. Rebeiz, “A 22-24 GHz phased array receiver with on-chip coupling characterization,” IEEE Journal Solid-State Circuits, vol. 43, no. 9, pp. 2134–2142, Sept. 2008.
[5] K. Koh and G. M. Rebeiz, “A millimeter-wave (40–45 GHz) 16-element phased-array transmitter in 0.18-μm SiGe BiCMOS technology,” in IEEE RFIC Symp. Dig., Jun. 2008, pp. 225–228.
[6] J.-H. Tsai, H.-Y. Chang, P.-S. Wu, Y.-L. Lee, T.-W. Huang, and H. Wang, “Design and analysis of a 44-GHz MMIC low-loss built-in linearizer for high-linearity medium power amplifiers,” IEEE Trans. Micro. Theory Tech., vol. 54, no. 6, pp. 2487-2496, Jun. 2006.
[7] J.-L. Kuo, Z.-M. Tsai, K.-Y. Lin, and H. Wang, “A 50 to 70 GHz power amplifier using 90 nm CMOS technology,” IEEE Microw. Wireless Compon. Lett., vol.19, no. 1, pp. 45–47, Jan. 2009.
[8] Y. N. Jen, J. H. Tsai, T. W. Huang, and H. Wang, “A V-band fully-integrated CMOS distributed active transformer power amplifier for 802.15.TG3c wireless personal area network applications,” in 2008 Compound Semiconductor Integrated Circuits Symposium Digest, Oct. 2008, pp. 1-4.
[9] T. LaRocca, and M.-C. F. Chang, “60GHz CMOS differential and transformer-coupled power amplifier for compact design,” in 2008 IEEE Radio Frequency Integrated Circuits (RFIC) Symposium Digest, 2008, pp. 65-68.
[10] U. R. Pfeiffer, and D. Goren, ” A 23-dBm 60-GHz distributed active transformer in a silicon process technology,” IEEE Trans. Micro. Theory Tech., vol. 55, no. 5, pp. 857-865, May 2007.
[11] K. Raczkowski, S. Thijs, W. De Raedt, B. Nauwelaers, and P. Wambacq, '50-to-67GHz ESD-protected power amplifiers in digital 45nm LP CMOS,' in IEEE Int. Solid-State Circuits Conf. Dig., Feb. 2009, pp. 382-383.
[12] W. L. Chan,et. al., 'A 60GHz-Band 1V 11.5dBm power amplifier with 11% PAE in 65nm CMOS,' in IEEE Int. Solid-State Circuits Conf. Dig., Feb. 2009, pp. 380-381.
[13] R. G. Freitag, “A unified analysis of MMIC power amplifier stability,” in IEEE MTT-S Int. Microw. Symp. Dig., 1992, pp. 297-300.
[14] S. Pinel, S. Sarkar, P. Sen, B. Perumana, D. Yeh, D. Dawn, and J. Laskar, “A 90nm CMOS 60GHz radio,” in IEEE Int. Solid-State Circuits Conf. Dig., Feb. 2008, pp. 130-131.
[15] C.-C. Huang, and Wu-C. Lin, “A compact high-efficiency CMOS power amplifier with built-in linearizer,” IEEE Microw. Wireless Compon. Lett., vol.19, no. 9, pp. 587–589, Sept. 2009.
[16] O. S. A. Tang, K. H. G. Duh,; S. M. J. Liu, P. M. Smith, W. F. Kopp, T. J. Rogers, and D. J. Pritchard, “Design of high-power, high-efficiency 60-GHz MMICs using an improved nonlinear PHEMT model,” IEEE Journal Solid-State Circuits, vol. 32, no. 9, pp. 1326-1333, Sept. 1997.
[17] T. Yao, M. Q. Gordon, K. K. W. Tang, K. H. K. Yau, M. T. Yang, P. Schvan, and S. P. Voinigescu, “Algorithmic design of CMOS LNAs and Pas for 60-GHz radio,” IEEE J. Solid-State Circuits, vol. 42, no. 5, pp. 1044-1057, May 2007.
[18] Y. Jin, M. A. T. Sanduleanu, and J. R. Long, “A wideband millimeter-wave power amplifier with 20 dB linear power gain and +8 dBm maximum saturated output power,” IEEE J. Solid-State Circuits, vol. 43, no. 7, pp. 1553-1562, Jul. 2008.
[19] T. Suzuki, Y. Kawano, M. Sato, T. Hirose, and K. Joshin, “60 and 77GHz power amplifiers in standard 90nm CMOS,” in IEEE Int. Solid-State Circuits Conf. Dig., Feb. 2008, pp. 562-563.
[20] M. Tanomura, Y. Hanada, S. Kishmoto, M. Ito, N. Orihashi, K. Maruhashi, and H. Shimawaki, “TX and RX front-ends for 60GHz band in 90nm standard bulk CMOS,” in IEEE Int. Solid-State Circuits Conf. Dig., Feb. 2008, pp. 558-559.
[21] D. Chowdhury, P. Reynaert, and A. Niknejad, “A 60GHz 1V +12.3dBm transformer-coupled wideband PA in 90nm CMOS,” in IEEE Int. Solid-State Circuits Conf. Dig., Feb. 2008, pp. 560-561.
[22] C. Y. Law, and A.-V. Pham, “A high-gain 60GHz power amplifier with 20dBm output power in 90nm CMOS,” in IEEE Int. Solid-State Circuits Conf. Dig., Feb. 2010, pp. 426-427.
[23] N. Kurita, and H. Kondoh, “60GHz and 80GHz wide band power amplifier MMICs in 90nm CMOS technology” in IEEE RFIC Symp. Dig., Jun. 2009, pp. 39-42.
[24] M. Bohsali, and A. Niknejad, “Current combining 60GHz CMOS power amplifiers,” in IEEE RFIC Symp. Dig., June 2009, pp. 31-34.
[25] A. Valdes-Garcia, S. Reynolds, and J.-O. Plouchart, “60 GHz transmitter circuits in 65nm CMOS,“ in IEEE RFIC Symp. Dig., June 2008, pp. 641-644.
[26] T. Quemerais, L. Moquillon, S. Pruvost, J.-M. Fournier, P. Benech, and N. Corrao, “A CMOS class-A 65nm power amplifier for 60 GHz applications,” in Silicon Monolithic Integrated Circuits in RF Systems (SiRF), Jan. 2010, pp. 120-123.
[27] J.-W. Lai, and A. Valdes-Garcia, “A 1V 17.9dBm 60GHz power amplifier in standard 65nm CMOS,” in IEEE Int. Solid-State Circuits Conf. Dig. Feb. 2010, pp. 424-425.
[28] D. Dawn, S. Sarkar, P. Sen, B. Perumana, M. Leung, N. Mallavarpu, S. Pinel, and J. Laskar, “60GHz CMOS power amplifier with 20-dB-gain and 12dBm Psat,” in IEEE MTT-S Int. Microw. Symp. Dig., 2009, pp. 537-540.
[29] W. L. Chan, and J. R. Long, “A 58–65 GHz Neutralized CMOS Power Amplifier With PAE Above 10% at 1-V Supply,” IEEE J. Solid-State Circuits, vol. 45, no. 3, pp. 554-564. Mar. 2010.
[30] M. Abbasi, T. Kjellberg, A. de Graauw, E. van der Heijden, R. Roovers, and H. Zirath, “A broadband differential cascode power amplifier in 45 nm CMOS for high-speed 60 GHz system-on-chip,” in IEEE RFIC Symp. Dig., Jun. 2010, pp. 533-536.
[31] T. Kjellberg, M. Abbasi, M. Ferndahl, A. de Graauw,E. van der Heijden, and H. Zirath, “A compact cascode power amplifier in 45-nm CMOS for 60-GHz wireless systems,” in 2009 Compound Semiconductor Integrated Circuits Symposium Digest, Oct. 2009, pp. 1-4.
[32] A. Siligaris, Y. Hamada, C. Mounet, C. Raynaud, B. Martineau, N. Deparis, N. Rolland, M. Fukaishi, and P. Vincent, “A 60 GHz power amplifier with 14.5 dBm saturation power and 25% peak PAE in CMOS 65 nm SOI,” IEEE J. Solid-State Circuits, vol. 45, no. 7, pp. 1286-1294. Mar. 2010.
[33] C. F. Campbell, S. Moochalla, D. Daugherty, W. J. Taft, M.-Y. Kao, and D. Fanning, “V-band power amplifier MMICs exhibiting low power slump characteristics utilizing a production released 0.15-um GaAs PHEMT process,” in IEEE MTT-S Int. Microw. Symp. Dig., 2009, pp. 433-436.
[34] U. R. Pfeiffer, “A 20 dBm fully integrated 60 GHz SiGe power amplifier with automatic level control,” in Eur. Solid-State Circuits Conf., Sept. 2006, pp. 356–359.
[35] A. Valdes-Garcia, S. Reynolds, and U. R. Pfeiffer, “A 60 GHz class-E power amplifier in SiGe,” in Asian Solid-State Circuits Conf., Nov. 2006, pp. 199–202.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10408-
dc.description.abstract這篇論文將提出一個可以使用在毫米波頻段的改良式線性器,具有改善互補式金氧半導體功率放大器的功能。在此之前所提出的線性器是使用在40 GHz,並使用了砷化鎵高電子移動率電晶體製程,展現了良好的特性。然而,同樣的架構卻難以在60 GHz頻段有效的移植到互補式金氧半導體製程。因此,我們探討了現性器的詳細運作情形,並提出以相位延遲線來改善普通線性器的改進。另外,我們提出了一個偏壓優化的方法,可以保證針對特定功率放大器可以找到最適合的線性器大小及其控制偏壓。
  我們使用90奈米LP互補式金氧半導體來製作一個在60 GHz的功率放大器,並且完全的以提升1 dB衰減點為目標,來做出優化。量測的結果,功率放大器在增益1 dB衰減點呈現了高達14 %的功率附加效率。並且,其還具有15 dB的小訊號增益、13.7 dBm的增益1 dB衰減輸出功率以及15.4 dBm的飽和輸出功率。這是我們所知,在所有發表過的電路中,使用互補式金氧半導體製程在增益1 dB衰減點有最高功率附加效率的60 GHz功率放大器。
zh_TW
dc.description.abstractIn this dissertation, a modified cold-FET pre-distortion linearizer is proposed to improve the linearity of the millimeter-wave CMOS power amplifiers. The previous reported cold-FET linearizer as applied to a 40 GHz power amplifier with a low-loss built-in linearizer in GaAs HEMT technology [6]. However, the effect of the linearizer is not good enough when we try to transplant the technique to 60 GHz using CMOS technology. Therefore, we investigate the operation detail of the linearizer and propose a modified linearizer by adding a delay line. Besides, a bias optimization method that can effectively guarantee the linearity of specific cascode device for power amplifier application is also presented.
A 60GHz cascode power amplifier with modified linearizer is then fabricated under 90-nm LP CMOS technology and fully characterized to enhance its linearity which demonstrated by its extremely well OP1dB. The measurement results of the power amplifier show a power-added-efficiency at OP1dB up to 14% while maintaining 15 dB small signal gain, 13.7 dBm OP1dB and 15.4 dBm Psat. It is the highest power-added-efficiency at OP1dB for millimeter-wave CMOS power amplifiers which ever been published.
en
dc.description.provenanceMade available in DSpace on 2021-05-20T21:27:11Z (GMT). No. of bitstreams: 1
ntu-99-R97942023-1.pdf: 8150624 bytes, checksum: 0ac75654b478088e8652327ea55f288f (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents誌謝 i
中文摘要 iii
ABSTRACT iv
CONTENTS v
LIST OF FIGURES viii
LIST OF TABLES xiii
Chapter 1 Introduction 1
1.1 Background and Motivation 1
1.2 Literature Survey 2
1.3 Contributions 6
1.4 Dissertation Organization 8
Chapter 2 Linearity of MMW Power Amplifier 9
2.1 Introduction of Power Amplifier 9
2.1.1 Introduction 9
2.1.2 Important Parameters 10
2.2 Linearity Consideration of Power Amplifier 12
2.2.1 Nonlinear Distortion Characterization 12
2.2.2 AM-AM Characteristic 13
2.2.3 Nonlinearity from two-tone input signal 14
Chapter 3 Cold-FET Linearizer with Delay Line 17
3.1 Pre-distortion Linearizer 18
3.1.1 Pre-distortion Technique 19
3.1.2 Loss Characteristic of Pre-Distortion Linearizer 20
3.1.3 Cascading with Power Amplifier 22
3.2 Cold FET Linearizer 25
3.2.1 Introduction 25
3.2.2 Operation Principle 25
3.2.3 Challenge of CMOS Process in V-band 27
3.3 Modified Cold-Mode Linearizer Using Delay Line 29
3.3.1 Guideline to Develop a Modified Linearizer 30
3.3.2 Modified Cold-Mode Linearizer 30
3.3.3 Intuitive Interpretation of the Modification 32
3.4 Operation Detail of Modified Linearizer 33
3.4.1 Analysis of Possible Effects during Operation33
3.4.2 Earlier Saturation Region 36
3.4.3 Lower Current Loss at Saturation Region 41
3.4.4 Varying Resistor Effect 43
3.4.5 Verification of the modified linearizer 49
3.5 Conclusion 52
Chapter 4 A 60GHz Cascode Power Amplifier with Modified Linearizer 53
4.1 Introduction 53
4.1.1 Motivation 53
4.1.2 Objective 54
4.1.3 Design Flow 55
4.2 Previous Published Literatures 57
4.2.1 Cascode Device and the Proposed Power Amplifier 57
4.2.2 Amplifier with Linearizer 58
4.2.3 High PAE Power Amplifier 59
4.3 Pre-Design a Two-Stage Power Amplifier 59
4.3.1 Device Selection 61
4.3.2 One -Stage Power Amplifier 68
4.3.3 Link Budget 71
4.3.4 Conventional Two-Stage Power Amplifier 73
4.3.5 Power Performance at Different Node of Power Amplifier 76
4.4 Integration of Linearizer to Power Amplifier 76
4.4.1 Power Division and Gain compensation 77
4.4.2 Linearizer Size and Control Voltage Selection82
4.4.3 Two-stage Power Amplifier with Modified Linearizer 90
4.5 Measurement Results 97
4.5.1 S-parameter 98
4.5.2 Power Performance 100
4.5.3 IMD3 101
4.5.4 Debug and Discussion 103
4.6 Conclusion 107
Chapter 5 Conclusions 109
REFERENCE 110
dc.language.isoen
dc.title互補式金氧半導體功率放大器之線性化技術研究zh_TW
dc.titleResearch on Linearization Technique for CMOS Power Amplifieren
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.oralexamcommittee王暉(Huei Wang),蔡政翰(Jeng-Han Tsai),張鴻埜(Hong-Yeh Chang),蔡作敏(Zuo-Min Tsai)
dc.subject.keyword功率放大器,60 GHz,高功率附加效率,線性器,V頻段,前置性衰減,線性化技術,zh_TW
dc.subject.keywordPower Amplifier,PA,High PAE,Linearizer,60 GHz,V-band,Pre-distortion,Linearization Technique,en
dc.relation.page114
dc.rights.note同意授權(全球公開)
dc.date.accepted2010-08-19
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電信工程學研究所zh_TW
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf7.96 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved