請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10396完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃偉邦(Wei-Pang Huang) | |
| dc.contributor.author | Ang-Yu Liu | en |
| dc.contributor.author | 劉昂宇 | zh_TW |
| dc.date.accessioned | 2021-05-20T21:26:14Z | - |
| dc.date.available | 2011-08-20 | |
| dc.date.available | 2021-05-20T21:26:14Z | - |
| dc.date.copyright | 2010-08-20 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-08-19 | |
| dc.identifier.citation | Baumeister, W., Walz, J., Zuhl, F., and Seemuller, E. (1998). The proteasome: paradigm of a self-compartmentalizing protease. Cell 92, 367-380.
Bellu, A.R., and Kiel, J. (2003). Selective degradation of peroxisomes in yeasts. Microscopy Research and Technique 61, 161-170. Bertolaet, B.L., Clarke, D.J., Wolff, M., Watson, M.H., Henze, M., Divita, G., and Reed, S.I. (2001). UBA domains of DNA damage-inducible proteins interact with ubiquitin. Nature Structural Biology 8, 417-422. Cadwell, K., and Coscoy, L. (2005). Ubiquitination on nonlysine residues by a viral E3 ubiquitin ligase. Science 309, 127-130. Chang, C.Y., and Huang, W.P. (2007). Atg19 mediates a dual interaction cargo sorting mechanism in selective autophagy. Molecular Biology of the Cell 18, 919-929. Chen, Z.J., and Sun, L.J. (2009). Nonproteolytic functions of ubiquitin in cell signaling. Molecular Cell 33, 275-286. Ciechanover, A., and Ben-Saadon, R. (2004). N-terminal ubiquitination: more protein substrates join in. Trends in Cell Biology 14, 103-106. Coux, O., Tanaka, K., and Goldberg, A.L. (1996). Structure and functions of the 20S and 26S proteasomes. Annual Review of Biochemistry 65, 801-847. Dantuma, N.P., Heinen, C., and Hoogstraten, D. (2009). The ubiquitin receptor Rad23: At the crossroads of nucleotide excision repair and proteasomal degradation. DNA Repair 8, 449-460. Dantuma, N.P., Lindsten, K., Glas, R., Jellne, M., and Masucci, M.G. (2000). Short-lived green fluorescent proteins for quantifying ubiquitin/proteasome-dependent proteolysis in living cells. Nature Biotechnology 18, 538-543. Funakoshi, M., Sasaki, T., Nishimoto, T., and Kobayashi, H. (2002). Budding yeast Dsk2p is a polyubiquitin-binding protein that can interact with the proteasome. Proceedings of the National Academy of Sciences of the United States of America 99, 745-750. Geng, J., Nair, U., Yasumura-Yorimitsu, K., and Klionsky, D.J. (2010). Post-Golgi Sec Proteins Are Required for Autophagy in Saccharomyces cerevisiae. Molecular Biology of the Cell 21, 2257-2269. Goldberg, A.L. (2003). Protein degradation and protection against misfolded or damaged proteins. Nature 426, 895-899. Hailey, D.W., Rambold, A.S., Satpute-Krishnan, P., Mitra, K., Sougrat, R., Kim, P.K., and Lippincott-Schwartz, J. (2010). Mitochondria supply membranes for autophagosome biogenesis during starvation. Cell 141, 656-667. Hanada, T., Noda, N.N., Satomi, Y., Ichimura, Y., Fujioka, Y., Takao, T., Inagaki, F., and Ohsumi, Y. (2007). The Atg12-Atg5 conjugate has a novel E3-like activity for protein lipidation in autophagy. Journal of Biological Chemistry 282, 37298-37302. Hershko, A., Ciechanover, A., and Varshavsky, A. (2000). Basic Medical Research Award. The ubiquitin system. Nature Medicine 6, 1073-1081. Hough, R., Pratt, G., and Rechsteiner, M. (1986). Ubiquitin-lysozyme conjugates. Identification and characterization of an ATP-dependent protease from rabbit reticulocyte lysates. Journal of Biological Chemistry 261, 2400-2408. Ikeda, F., and Dikic, I. (2008). Atypical ubiquitin chains: new molecular signals. 'Protein Modifications: Beyond the Usual Suspects' review series. EMBO Reports 9, 536-542. Imai, Y., Soda, M., Hatakeyama, S., Akagi, T., Hashikawa, T., Nakayama, K., and Takahashi, R. (2002). CHIP is associated with Parkin, a gene responsible for familial Parkinson's disease, and enhances its ubiquitin ligase activity. Molecular Cell 10, 55-67. Johnson, E.S., Bartel, B., Seufert, W., and Varshavsky, A. (1992). Ubiquitin as a degradation signal. EMBO Journal 11, 497-505. Johnson, E.S., Ma, P.C.M., Ota, I.M., and Varshavsky, A. (1995). A proteolytic pathway that recognizes ubiquitin as a degradation signal. Journal of Biological Chemistry 270, 17442-17456. Jung, C.H., Ro, S.H., Cao, J., Otto, N.M., and Kim, D.H. (2010). mTOR regulation of autophagy. FEBS Letters 584, 1287-1295. Kamada, Y., Yoshino, K., Kondo, C., Kawamata, T., Oshiro, N., Yonezawa, K., and Ohsumi, Y. (2010). Tor Directly Controls the Atg1 Kinase Complex To Regulate Autophagy. Molecular and Cellular Biology 30, 1049-1058. Kanki, T., and Klionsky, D.J. (2008). Mitophagy in yeast occurs through a selective mechanism. Journal of Biological Chemistry 283, 32386-32393. Kanki, T., Wang, K., Cao, Y., Baba, M., and Klionsky, D.J. (2009). Atg32 is a mitochondrial protein that confers selectivity during mitophagy. Developmental Cell 17, 98-109. Kerscher, O., Felberbaum, R., and Hochstrasser, M. (2006). Modification of proteins by ubiquitin and ubiquitin-like proteins. Annual Review of Cell and Developmental Biology 22, 159-180. Khurana, V., and Lindquist, S. (2010). OPINION Modelling neurodegeneration in Saccharomyces cerevisiae: why cook with baker's yeast? Nature Reviews Neuroscience 11, 436-449. Kihara, A., Noda, T., Ishihara, N., and Ohsumi, Y. (2001). Two distinct Vps34 phosphatidylinositol 3-kinase complexes function in autophagy and carboxypeptidase Y sorting in Saccharomyces cerevisiae. Journal of Cell Biology 152, 519-530. Kim, J., Huang, W.P., and Klionsky, D.J. (2001). Membrane recruitment of Aut7p in the autophagy and cytoplasm to vacuole targeting pathways requires Aut1p, Aut2p, and the autophagy conjugation complex. Journal of Cell Biology 152, 51-64. Kim, J., Huang, W.P., Stromhaug, P.E., and Klionsky, D.J. (2002). Convergence of multiple autophagy and cytoplasm to vacuole targeting components to a perivacuolar membrane compartment prior to de novo vesicle formation. Journal of Biological Chemistry 277, 763-773. Kim, P.K., Hailey, D.W., Mullen, R.T., and Lippincott-Schwartz, J. (2008). Ubiquitin signals autophagic degradation of cytosolic proteins and peroxisomes. Proceedings of the National Academy of Sciences of the United States of America 105, 20567-20574. Kirkin, V., Lamark, T., Sou, Y.S., Bjorkoy, G., Nunn, J.L., Bruun, J.A., Shvets, E., McEwan, D.G., Clausen, T.H., Wild, P., Bilusic, I., Theurillat, J.P., Overvatn, A., Ishii, T., Elazar, Z., Komatsu, M., Dikic, I., and Johansen, T. (2009a). A role for NBR1 in autophagosomal degradation of ubiquitinated substrates. Molecular Cell 33, 505-516. Kirkin, V., McEwan, D.G., Novak, I., and Dikic, I. (2009b). A role for ubiquitin in selective autophagy. Molecular Cell 34, 259-269. Klionsky, D.J., Cueva, R., and Yaver, D.S. (1992). Aminopeptidase-I of Saccharomyces cerevisiae is localized to the vacuole independent of the secretory pathway. Journal of Cell Biology 119, 287-299. Komatsu, M., Waguri, S., Koike, M., Sou, Y., Ueno, T., Hara, T., Mizushima, N., Iwata, J., Ezaki, J., Murata, S., Hamazaki, J., Nishito, Y., Iemura, S., Natsume, T., Yanagawa, T., Uwayama, J., Warabi, E., Yoshida, H., Ishii, T., Kobayashi, A., Yamamoto, M., Yue, Z., Uchiyama, Y., Kominami, E., and Tanaka, K. (2007). Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice. Cell 131, 1149-1163. Korolchuk, V.I., Mansilla, A., Menzies, F.M., and Rubinsztein, D.C. (2009). Autophagy inhibition compromises degradation of ubiquitin-proteasome pathway substrates. Molecular Cell 33, 517-527. Kraft, C., Reggiori, F., and Peter, M. (2009a). Selective types of autophagy in yeast. Biochimica et Biophysica Acta 1793, 1404-1412. Kraft, C., Reggiori, F., and Peter, M. (2009b). Selective types of autophagy in yeast. Biochimica Et Biophysica Acta-Molecular Cell Research 1793, 1404-1412. Lang, T., Schaeffeler, E., Bernreuther, D., Bredschneider, M., Wolf, D.H., and Thumm, M. (1998). Aut2p and Aut7p, two novel microtubule-associated proteins are essential for delivery of autophagic vesicles to the vacuole. EMBO Journal 17, 3597-3607. Lee, D.H., and Goldberg, A.L. (1996). Selective inhibitors of the proteasome-dependent and vacuolar pathways of protein degradation in Saccharomyces cerevisiae. Journal of Biological Chemistry 271, 27280-27284. Levine, B., and Klionsky, D.J. (2004). Development by self-digestion: molecular mechanisms and biological functions of autophagy. Developmental Cell 6, 463-477. Liu, C., Apodaca, J., Davis, L.E., and Rao, H. (2007). Proteasome inhibition in wild-type yeast Saccharomyces cerevisiae cells. Biotechniques 42, 158-162. Lynch-Day, M.A., Bhandari, D., Menon, S., Huang, J., Cai, H., Bartholomew, C.R., Brumell, J.H., Ferro-Novick, S., and Klionsky, D.J. (2010). Trs85 directs a Ypt1 GEF, TRAPPIII, to the phagophore to promote autophagy. Proceedings of the National Academy of Sciences of the United States of America 107, 7811-7816. Lynch-Day, M.A., and Klionsky, D.J. (2010). The Cvt pathway as a model for selective autophagy. FEBS Letters 584, 1359-1366. Monastyrska, I., Rieter, E., Klionsky, D.J., and Reggiori, F. (2009). Multiple roles of the cytoskeleton in autophagy. Biological Reviews 84, 431-448. Murata, S., Yashiroda, H., and Tanaka, K. (2009). Molecular mechanisms of proteasome assembly. Nature Reviews Molecular Cell Biology 10, 104-115. Nakatogawa, H., Ichimura, Y., and Ohsumi, Y. (2007). Atg8, a ubiquitin-like protein required for autophagosome formation, mediates membrane tethering and hemifusion. Cell 130, 165-178. Ohsumi, Y. (2001). Molecular dissection of autophagy: Two ubiquitin-like systems. Nature Reviews Molecular Cell Biology 2, 211-216. Okamoto, K., Kondo-Okamoto, N., and Ohsumi, Y. (2009). Mitochondria-anchored receptor Atg32 mediates degradation of mitochondria via selective autophagy. Developmental Cell 17, 87-97. Pankiv, S., Clausen, T.H., Lamark, T., Brech, A., Bruun, J.A., Outzen, H., Overvatn, A., Bjorkoy, G., and Johansen, T. (2007). p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. Journal of Biological Chemistry 282, 24131-24145. Pannunzio, V.G., Burgos, H.I., Alonso, M., Mattoon, J.R., Ramos, E.H., and Stella, C.A. (2004). A simple chemical method for rendering wild-type yeast permeable to brefeldin A that does not require the presence of an erg6 mutation. Journal of Biomedicine and Biotechnology, 150-155. Pickart, C.M. (2001). Mechanisms underlying ubiquitination. Annual Review of Biochemistry 70, 503-533. Reggiori, F., and Klionsky, D.J. (2002). Autophagy in the eukaryotic cell. Eukaryotic Cell 1, 11-21. Reggiori, F., Monastyrska, L., Shintani, T., and Klionsky, D.J. (2005). The actin cytoskeleton is required for selective types of autophagy, but not nonspecific autophagy, in the yeast Saccharomyces cerevisiae. Molecular Biology of the Cell 16, 5843-5856. Reggiori, F., Wang, C.W., Nair, U., Shintani, T., Abeliovich, H., and Klionsky, D.J. (2004). Early stages of the secretory pathway, but not endosomes, are required for cvt vesicle and autophagosome assembly in Saccharomyces cerevisiae. Molecular Biology of the Cell 15, 2189-2204. Richly, H., Rape, M., Braun, S., Rumpf, S., Hoege, C., and Jentsch, S. (2005). A series of ubiquitin binding factors connects CDC48/p97 to substrate multiubiquitylation and proteasomal targeting. Cell 120, 73-84. Robinson, J.S., Klionsky, D.J., Banta, L.M., and Emr, S.D. (1988). Protein sorting in Saccharomyces cerevisiae - Isolation of mutants defective in the delivery and processing of multiple vacuolar hydrolases. Molecular and Cellular Biology 8, 4936-4948. Sakai, Y., Oku, M., van der Klei, I.J., and Kiel, J. (2006). Pexophagy: Autophagic degradation of peroxisomes. Biochimica Et Biophysica Acta-Molecular Cell Research 1763, 1767-1775. Scott, S.V., Baba, M., Ohsumi, Y., and Klionsky, D.J. (1997). Aminopeptidase I is targeted to the vacuole by a nonclassical vesicular mechanism. Journal of Cell Biology 138, 37-44. Seibenhener, M.L., Geetha, T., and Wooten, M.W. (2007). Sequestosome 1/p62--more than just a scaffold. FEBS Letters 581, 175-179. Shintani, T., Huang, W.P., Stromhaug, P.E., and Klionsky, D.J. (2002). Mechanism of cargo selection in the cytoplasm to vacuole targeting pathway. Developmental Cell 3, 825-837. Suzuki, K., Kirisako, T., Kamada, Y., Mizushima, N., Noda, T., and Ohsumi, Y. (2001). The pre-autophagosomal structure organized by concerted functions of APG genes is essential for autophagosome formation. EMBO Journal 20, 5971-5981. Suzuki, K., and Ohsumi, Y. (2007). Molecular machinery of autophagosome formation in yeast, Saccharomyces cerevisiae. FEBS Letters 581, 2156-2161. Tsukada, M., and Ohsumi, Y. (1993). Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae. FEBS Letters 333, 169-174. van der Vaart, A., Griffith, J., and Reggiori, F. (2010). Exit from the Golgi Is required for the expansion of the autophagosomal phagophore in yeast Saccharomyces cerevisiae. Molecular Biology of the Cell 21, 2270-2284. Wang, C.W., and Klionsky, D.J. (2003). The molecular mechanism of autophagy. Molecular Medicine 9, 65-76. Xie, Z., Nair, U., and Klionsky, D.J. (2008). Atg8 controls phagophore expansion during autophagosome formation. Molecular Biology of the Cell 19, 3290-3298. Yang, Z.F., Huang, J., Geng, J.F., Nair, U., and Klionsky, D.J. (2006). Atg22 recycles amino acids to link the degradative and recycling functions of autophagy. Molecular Biology of the Cell 17, 5094-5104. Ye, Y.H. (2006). Diverse functions with a common regulator: Ubiquitin takes command of an AAA ATPase. Journal of Structural Biology 156, 29-40. Yen, W.L., Shintani, T., Nair, U., Cao, Y., Richardson, B.C., Li, Z.J., Hughson, F.M., Baba, M., and Klionsky, D.J. (2010). The conserved oligomeric Golgi complex is involved in double-membrane vesicle formation during autophagy. Journal of Cell Biology 188, 101-114. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10396 | - |
| dc.description.abstract | 泛素是種小而保守的蛋白質,普遍的被用來標定在真核生物中將要被蛋白脢體分解的異常構型蛋白質。細胞自噬則是真核生物中另一條降解蛋白質的路徑;透過由雙層膜包裹的細胞質所形成的自噬小體與細胞中的液胞或溶小體進行融合,細胞能有效的分解胞器以及蛋白質,以獲得養分應付充滿壓力的環境。已知在哺乳動物細胞中,被泛素所標定的蛋白質除了透過蛋白脢體分解外,也會形成蛋白質聚集體,堆積在細胞質當中,而這些蛋白質聚集體,已被證實能選擇性的透過細胞自噬所清除。這次研究,我們發現在酵母菌中泛素修飾並不會促進蛋白質形成聚集體,且泛素化的修飾不但不會促進蛋白質透過細胞自噬分解,反而扮演著抑制性的角色。我們同時發現,泛素的一個已知的突變能破壞泛素與大部分泛素結合區的交互作用,而這種泛素突變也喪失抑制細胞自噬分解蛋白質的作用。我們認為,透過泛素與某種未知蛋白質的交互作用,阻礙了泛素化蛋白質被自噬小體包裹的過程。這個發現,是泛素抑制細胞自噬分解作用的首件案例。 | zh_TW |
| dc.description.abstract | Ubiquitin is a small, conserved molecule among eukaryotes that serves as a tag for the breakdown of misfolded-proteins by the 26s proteasome in eukaryotes. Autophagy is another protein turnover process, which sequesters cytoplasm into double membrane vesicles, called autophagosomes. Subsequent fusion with the vacuole/lysosome mediates breakdown of proteins or organelles in eukaryotes facing stressful environments. In mammalian cells, ubiquitylated protein aggregates in cytosol associated with neural degeneration diseases were shown to be specific substrates for autophagic degradation. However, in this study, we showed that the ubiquitin modification does not trigger the formation of protein aggregates in saccharomyces cerevisiae. Moreover, we found that ubiquitylation impedes, instead promotes, the degradation of cytosolic proteins by starvation-induced autophagy in yeast. We also identified an ubiquitin mutant, which was previously shown defective in interacting with most known ubiquitin-binding domains (UBD), lost the delay on autophagic degradation of cytosolic proteins. We propose that the interaction of ubiquitin with an unknown factor prevents sequestration of ubiquitylated cytosolic soluble proteins into autophagosomes for degradation. This is the first report indicating that ubiquitylation of cargo proteins hinder their autophagic degradation. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-20T21:26:14Z (GMT). No. of bitstreams: 1 ntu-99-R97b41027-1.pdf: 1319910 bytes, checksum: f3ed7a28aa21ef108a1deb6b7bf6155a (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | CONTENTS
摘要…………………………………………………………………………………..i ABSTRACT………………………………………………………………………ii INTRODUCTION Overview of the UPS pathway……………………………………………………1 Overview of autophagy…………………………….……………………………….5 The selectivity of autophagy………………………………………………………..9 MATERIALS AND METHODS Strains and Media………………………………………………………………….13 Plasmid construction………………………………………………………………13 Western blot analysis………………………………………………………………15 Fluorescent microscopy analysis…………………………………………………..16 Inhibition of proteasome activity with the treatment of MG132………………......16 RESULTS Ubiquitylation does not trigger protein aggregation in yeast………………….......17 Ubiquitylated EGFP is a substrate for autophagic degradation……………………20 Proteasomes, but not autophagy, degrade most ubiquitylated EGFP during starvation……………………………………………………………………………..21 Autophagic degradation of UbG76V-EGFP was slower than that of UbI44A,G76V-EGFP…………………………………………………………………….23 Low level of ubiquitylated EGFP is not a substrate for autophagic degradation….26 Delay of ubiquitylated EGFP in autophagic degradation is not unique to specific genetic background………………………………………………………….27 Autophagic degradation of ubiquitylated EGFP is slower than that of other cytosolic proteins…………………………………………………………………...28 DISCUSSION Ubiquitylation triggers no protein aggregation in yeast…………………………...32 Delay, rather than acceleration, of UbG76V-EGFP in autophagic degradation……..32 Low level of ubiquitylated EGFP is not a substrate for autophagy………………..34 I44A mutation destroys the delay of ubiquitylation in autophagic degradation of cytosolic protein……………………………………………………………………...34 The competition between proteasome and autophagy for UbG76V-EGFP as a substrate………………………………………………………………………………35 The first report that ubiquitylation hinders autophagic degradation of cytosolic soluble proteins………………………………………………………………………38 REFERENCES…………………………………………………………………41 TABLES…………………………………………………………………………..52 FIGURES…………………………………………………………………………53 | |
| dc.language.iso | en | |
| dc.title | 泛素化在細胞自噬分解酵母菌胞內蛋白質中
所扮演的角色 | zh_TW |
| dc.title | Role of ubiquitylation in autophagic degradation of cytosolic soluble protein in Saccharomyces cerevisiae | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳俊宏(Jiun-Hong Chen),李心予(Hsin-yu Lee),朱家瑩(Chia-Ying Chu) | |
| dc.subject.keyword | 泛素, | zh_TW |
| dc.subject.keyword | Ubiquitin,Ubiquitylation,Autophagy, | en |
| dc.relation.page | 65 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2010-08-19 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 動物學研究所 | zh_TW |
| 顯示於系所單位: | 動物學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf | 1.29 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
