Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物機電工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10379
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林達德(Ta-Te Lin)
dc.contributor.authorTung-Chang Wuen
dc.contributor.author吳東璋zh_TW
dc.date.accessioned2021-05-20T21:24:55Z-
dc.date.available2010-08-20
dc.date.available2021-05-20T21:24:55Z-
dc.date.copyright2010-08-20
dc.date.issued2010
dc.date.submitted2010-08-19
dc.identifier.citation1.呂美麗、林定勇、李哖。2002。金花石蒜。初版,15-55。台北:財團法人台灣區花卉發展會。
2.李哖。1998。高低溫處理對金花石蒜結球與開花之影響。行政院國家科學委員會專題研究計劃成果報告。
3.林定勇、李哖。1993。石蒜屬球根花卉之分類、形態、生長與開花。中國園藝39(2): 67-72。
4.林定勇、李哖。1994。金花石蒜切花品質之調查。中國園藝論文宣讀摘要。
5.林宛瑩。2008。糖類與植物生長調節物質對金花石蒜儲運後開花品質之影響。碩士論文。台北:台灣大學園藝學研究所。
6.林純瑛、馬朔軒。1987。金花石蒜鱗片組織培養繁殖。中國園藝 33(4): 255-264。
7.黃澤偉、楊妙曼、楊恩誠、江昭皚、林達德、陳子瑋。2007。X光自動化檢疫系統之研發與應用。出自'植物重要防疫檢疫害蟲診斷鑑定研習會(七)',59-68。台北:行政院農業委員會動植防疫檢疫局。
8.許圳塗。1989。新興球根花卉石蒜類Nerine及Lycoris之研究與栽培展望。台灣花藝月刊 49: 8-11。
9.梁素秋。1992。金花石蒜花芽分化及體外培養之探討。碩士論文。台北:臺灣大學園藝學研究所。
10.鄭宇哲。2002。應用核磁共振影像討論水果內部損傷。碩士論文。台北:臺灣大學生物產業機電工程學研究所。
11.戴天佑。2001。金花石蒜組培苗與原生苗中加蘭它敏之毛細管柱氣相層析儀成分分析。碩士論文。台北:台北醫學大學。
12.Bailey, L. H. 1976. Hortus Third. 1st., 689-690. New York: Macmillan Publishing Co. INC.
13.Barcelon, E. G., E. Tojo, and K. Watanabe. 1999. X-ray CT imaging and quality detection of peach at different physiological maturity. Trans. ASAE. 42(2): 435-441.
14.Bookstein, F. L. 1989. Principal warps: Thin-plate splines and the decomposition of deformations. IEEE Trans. Pattern Anal. Mach. Intell. 11(6): 567-585.
15.Brown, L. G. 1992. A survey of image registration techniques. ACM Comput. Surv. 24(4): 325-376.
16.Cameron, I.L, V.A. Ord, and G.D. Fullerton. 1884. Characterization of proton NMR relaxation times in normal and pathological tissues by correlation with other tissue parameters. Magn. Reson. Imaging. 2(2): 97-106
17.Choi, H., and D. C. Munson. 1998. Direct-Fourier reconstruction in tomography and synthetic aperture radar. Int. J. Imag. Syst. Tech. 9(1): 1-13.
18.DeVore, M. L., P. Kenrick, K. B. Pigg, and R. A. Ketcham. 2006. Utility of high resolution x-ray computed tomography (HRXCT) for paleobotanical studies: an example using London Clay fruits and seeds. Am. J. Bot. 93(12): 1848-1851.
19.Dewdney, A. K. 1978. Analysis of a steepest-descent image-matching algorithm. Pattern Recognition. 10(1): 31-39.
20.Dougherty, G. 2009. Digital Image Processing for Medical Application. 1st ed. 73-75. Cambridge: Cambridge University Press.
21.Edzes, H. T.,D. V. Dusschoten, and H. V. As. 1998. Quantitative T2 Imaging of Plant Tissues by Means of Multi-Echo MRI Microscopy. Magn. Reson. Imaging. 16(2): 185-196.
22.Goitein, M., M. Abrams, D. Rowell, H. Pollari, and J. Wiles. 1983. Multi-dimensional treatment planning: II. Beam's eye-view, back projection, and projection through CT sections. Int. J. Radiat. Oncol. 9(6): 789-797.
23.Gonzalez, R. C., and R. E. Woods. 2008. Digital Image Processing. 3rd ed., 9-11, 365-368. Upper Saddle River, NJ : Pearson/Prentice Hall.
24.Goshtasby, A. A. 2005. 2-D and 3-D Image Registration for Medical, Remote Sensing, and Industrial Applications. 1st ed., 1-141. Hoboken, New Jersey: J. Wiley & Sons.
25.Gregory, P. J., D. J. Hutchison, D. B. Read, P. M. Jenneson, W. B. Gilboy, and E. J. Morton. 2003. Non-invasive imaging of roots with high resolution X-ray micro-tomography. Plant Soil. 255(1): 351-359.
26.Hashemi, R. H., and W. B. Bradley. 1997. MRI the Basics. 1st ed., 2-10. Maryland: Williams & Wilkins.
27.Heeraman, D. A., J. W. Hopmans, and V. Clausnitzer. 1997. Three dimensional imaging of plant roots in situ with X-ray computed tomography. Plant Soil. 189(2): 167-179.
28.Herk, V. M., and H. M. Kooy. 1994. Automatic three-dimensional correlation of CT-CT, CT-MRI, and CT-SPECT using chamfer matching. Med. Phys. 21(7): 1163-1178
29.Ishida, N., M. Koizumi, and H. Kano. 2000. The NMR microscope: a unique and promising tool for plant science. Ann. Bot. 86(2): 259:279.
30.Iwaya-Inoue, M., K. Motooka, N. Ishida, M. Koizumi, and H. Kano. 1996. Chilling effects for normal growth of tulip bulbs estimated by MRI. Acta Hort. 440: 407-412.
31.Jahnke, S., M. I. Menzel, D. van Dusschoten, G. W. Roeb, J. Bühler, S. Minwuyelet, P. Blümler, V. M. Temperton, T. Hombach 1, M. Streun, S. Beer, M. Khodaverdi, K. Ziemons, H. H. Coenen, and U. Schurr. 2009. Combined MRI–PET dissects dynamic changes in plant structures and functions. Plant J. 59(4): 634-644.
32.Junck, L., J. G. Moen, G. D. Hutchins, M. B. Brown, and D. E. Kuhl. 1990.Correlation method for the centering, rotation, and alignment of functional brain images. J. Nucl. Med. 31(7): 1220-1226.
33.Kamenetsky, R., H. Zemah, A. P. Ranwala, F. Vergeldt, N. K. Ranwala, W. B. Miller, H. Van As, and P. Bendel. 2003. Water status and carbohydrate pools in tulip bulbs during dormancy release. New Phytol. 158(1): 109-118.
34.Katsevich, A. 2002. Theoretically Exact Filtered Backprojection-Type Inversion Algorithm for Spiral CT. Siam. J. Appl. Math. 62(6): 2012-2026.
35.Li, X., and J. P. Hornak. 1994. T2 calculation in MRI: linear versus nonlinear method. J. Imaging Sci. Techn. 38(2): 154-157.
36.Maes, F., D. Vandermeulen, and P. Suetens. 2003. Medical image registration using mutual information. P. IEEE. 91(10): 1699-1722.
37.Maintz, J. B. A. and M. A. Viergever. 1998. A survey of medical image registration. Med. Image Anal. 2(1): 1-36.
38.Mitchell, D.G., J. Palazzo, H.W. Hann, M.D. Rifkin, D.L. Jr. Burk, and R . Rubin. 1991. Hepatocellular tumors with high signal on T1-weighted MR images: chemical shift MR imaging and histologic correlation. J. Comput. Assist. Tomogr. 15(5): 762-769.
39.Nikolaos, L. K., C. S. Richard, and T. W. John, 1996. Malignant lesions of the liver with high signal intensity on T1-Weighted MR images. J. Magn. Reson. Image. 6(2): 291-294.
40.Otsu, N. 1979. A threshold selection method from gray-level histograms. IEEE T Syst. Man. Cybern. 9(1): 62-66.
41.Perret, J.S., M.E. Al-Belushi, and M. Deadman. 2006. Non-destructive visualization and quantification of roots using computed tomography. Soil Biol. Biochem. 39(2): 391-399.
42.Salerno, A., F. Pierandrei, E. Rea, P. sequi, and M. Valentini. Definition of internal morphology and structural changes due to dehydration of radish (Raphanus sativus L. cv. Suprella) using Magnetic Resonance Imaging Spectroscopy. 2005. J. Food Quality. 28(5): 407-508.
43.Sanchez-Marin, F. J. 2003. Image registration of gray-scale images using the hotelling transform. In “4th EURASIP Conference focused on Video/Image Processing and Multimedia Communications.”, 119-123. M. Grgic, eds. Zadar, Croatia: Proceedings VIPromCom.
44.Stanisz, G.J., E.E. Odrobina, J. Pun, M. Escaravage, S. J. Graham, M. J. Bronskill, and R. M. Henkelman. 2005. T1, T2 relaxation and magnetization transfer in tissue at 3T. Magn. Reson. Med. 54(3): 507-512.
45.Studholme, C., D. L. G. Hill, and D. J. Hawkes. 1996. Automated 3D registration of MR and PET brain images by multi-resolution optimisation of voxel similarity measures. Med Phys. 24(1): 25-35.
46.Stuppy, W. H., J. A. Maisano, M. W. Colbert, P. J. Rundall, and T. B. Rowe. 2003. Three-dimensional analysis of plant structure using high-resolution X-ray computed tomography. Trends Plant Sci. 8(1): 2-6.
47.Tollner, E. W., W. C. Hung, B. L. Upchurch, and S. E. Prussia. 1992. Relating X-ray absorption to density and water content in apples. Trans. ASAE. 35(6): 1921-1928.
48.Van der Toorn, A., H. Zemah, H. Van As, P. Bendel, and R. Kamenetsky. 2000. Developmental changes and water status in tulip bulbs during storage: visualization by NMR imaging. J. Exp. Bot. 51(348): 1277-1287.
49.Van Kilsdonk, M. G., K. Nicolay, J. M. Franssen, and C. Kollöffel. 2002. Bub abortion in tulip bulbs studied by magnetic resonance imaging. J. Exp. Bot. 53(374): 1603-1611.
50.Viola, P., and W.M. Wells. 1995. Alignment by maximization of mutual information. In “International Conference on Computer Vision”, 16-23. E. Grimson, S. Shafer, A. Blake and K. Sugihara, eds. Los Alamitos, CA: IEEE Computer Society Press.
51.Webster, J.G. 1990. Encyclopedia of Medical Devices and Instrumentation. 1st ed., New York, USA: John Wiley & Sons, Inc.
52.Whittal, K. P., and A. L. MacKay. 1989. Quantitative interpretation of NMR relaxation data. J. Magn. Reson. 84(1): 134-152
53.Young, J. R., S. P. Won, and H. Cho. 2003. Correcting image distortion in the X-ray digital tomosynthesis system for PCB solder joint inspection. Image Vis. Comput. 21(12): 1063-1075.
54.Zemah, H., P. Bendel, H. D. Rabinowitch, and R. Kamenetsky. 1999. Visualization of morphological structure and water status during storage of Allium aflatunense bulbs by NMR imaging. Plant Sci. 147(1): 65-73.
55.Zitová, B., and J. Flusser. 2003. Image registration methods: a survey. Image Vis. Comput. 21(11): 977-1000.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10379-
dc.description.abstract金花石蒜為台灣的原生球根花卉,是台灣主要的出口花卉之一。為了解其鱗莖生長過程與性質常需透過破壞性實驗進行研究,本研究將兩種不同模式之非破壞性影像,核磁共振影像與電腦斷層掃描影像整合,開發一套適用於金花石蒜鱗莖之影像對位與融合演算法,達到連續觀察同一鱗莖成長過程之目的。對於核磁共振影像,使用7T Bruker Biospec 70/30 USR小系統核磁共振儀,以 MSME (Multi-slice-multi-echo)掃描序列,利用不同的重複時間與迴訊時間掃描參數,尋找最佳成像參數。而電腦斷層掃描儀則使用GE eXplore Vista PET/CT,以不同的電壓、電流與發射次數,尋找最佳金花石蒜鱗莖組織對比影像。於影像對位與融合演算法中,將電腦斷層影像與核磁共振影像分別視為參考影像與測試影像,在影像前處理時,利用Hotelling轉換重新定位兩影像,再使用剛性轉換函式,依面積樣板的匹配指標,輸出最佳的轉換函數參數,將兩異質影像融合為棋盤式影像,其中匹配指標達87.4%。在41張棋盤式融合影像中,有36張邊緣完全接合。而對於金花石蒜鱗莖內部形態,在五月休眠期時,即可明顯區分葉芽或花芽,並發現當溫度由28℃下降至23℃左右,花芽會快速成長並抽苔。本研究中並利用核磁共振影像當中的T2值與電腦斷層掃描的CT值探討金花石蒜鱗莖內部水分變化情形,實驗結果顯示金花石蒜鱗莖乾燥過程中,T2值與CT值皆會下降。zh_TW
dc.description.abstractLycoris aurea Herb., one of Taiwan’s major export flowers, is a flower bulb native to Taiwan. The invasive experiments usually used to understand the growth progress and properties of the bulbs. In this study, the images from the two non-invasive techniques, X-ray computed tomography (CT) and magnetic resonance imaging (MRI) had been integrated to develop an image registration and fusion algorithm, which is applied to observe the continuous changes of the same Lycoris aurea Herb. bulb. In MRI experiments, parameters such as repetition time (TR), echo time (TE) were adjusted by using a standard MSME (Multi-slice-multi-echo) spin-echo sequence in the 7T Bruker Biospec 70/30 to acquire high quality MR images with high contrast. On the other hand, the CT scanner was performed in GE eXplore Vista PET/CT, and parameters such as voltages, current, and shots of the X-ray source were adjusted to obtain the CT images with good tissue contrast of Lycoris aurea Herb. bulb. In image registration and fusion algorithm, CT images and MR images was regarded as reference image and test image, respectively. In image preprocessing, Hotelling transform was employed to realign the two images, and then rigid transformation was used to output the best parameters of transform function according to the matching index of area template. Finally, the two images were fused to the checkerboard rendered image. The matching index up to 87.4% and 36 images were fully matched in 41 block fusion images. For the morphological structure of Lycoris aurea Herb. bulbs, the difference between the flower and leaves buds were classified obviously in dormancy status in May. In addition, the flower buds grew quickly when the temperature decrease from 28℃ to 23℃. The moisture content change of interior Lycoris aurea Herb. bulb was evaluated by the T2 value and CT number. The results showed that both T2 value and CT number decreased during the drying process of Lycoris aurea Herb. bulb.en
dc.description.provenanceMade available in DSpace on 2021-05-20T21:24:55Z (GMT). No. of bitstreams: 1
ntu-99-R97631010-1.pdf: 10413704 bytes, checksum: 2d68d60aecd6e0c1bc216b0f43430d6c (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents誌謝............................................i
摘要...........................................ii
Abstract......................................iii
目錄............................................v
圖目錄........................................vii
表目錄..........................................x
第一章 緒論....................................1
1.1 前言....................................1
1.2 研究目的................................2
第二章 文獻探討................................4
2.1 影像對位與融合..........................4
2.1.1 依據特徵擷取與匹配分類之影像對位方法....5
2.1.2 依據轉換函式分類之影像對位方法..........7
2.2 核磁共振原理與應用......................9
2.2.1 核磁共振成像簡介........................9
2.2.2 球根花卉應用核磁共振成像之研究.........10
2.3 電腦斷層影像原理與應用.................13
2.3.1 電腦斷層影像簡介.......................13
2.3.2 電腦斷層掃描之應用.....................15
2.4 金花石蒜...............................17
2.4.1 形態特徵...............................18
2.4.2 生長週期與繁殖方式.....................19
2.4.3 栽培環境...............................20
第三章 材料與方法.............................23
3.1 金花石蒜鱗莖來源與切面方向定義.........23
3.2 核磁共振影像實驗.......................25
3.2.1 核磁共振成像實驗流程與儀器.............25
3.2.2 掃描序列...............................28
3.2.3 核磁共振影像顯像法.....................29
3.2.4 影像品質分析...........................32
3.2.5 核磁共振影像量化方法...................32
3.3 電腦斷層掃描實驗.......................34
3.3.1 電腦斷層掃描實驗流程與儀器.............34
3.3.2 掃描參數設定...........................34
3.3.3 影像擷取與轉換方式.....................37
3.4 影像對位與融合.........................40
3.4.1 影像前處理 (Image preprocessing).......41
3.4.2 樣板擷取 (template extraction).........44
3.4.3 轉換函式 (transformation function)與樣板匹配 (template matching).........47
3.4.4 影像融合 (image fusion)................49
第四章 結果與討論.............................51
4.1 金花石蒜鱗莖內部核磁共振影像...........51
4.1.1 核磁共振影像品質分析...................51
4.1.2 核磁共振影像顯示.......................58
4.2 金花石蒜鱗莖內部電腦斷層掃瞄影像.......61
4.2.1 電腦斷層影像轉換與顯示.................61
4.2.2 電腦斷層掃描影像的切面校正.............64
4.2.3 電腦斷層掃描影像分析軟體...............64
4.3 影像對位與融合.........................66
4.3.1 影像對位...............................67
4.3.2 影像融合...............................71
4.3.3 影像對位與融合分析軟體.................71
4.4 金花石蒜鱗莖...........................78
4.4.1 鱗莖內部結構...........................78
4.4.2 花芽成長趨勢...........................80
4.4.3 金花石蒜鱗莖葉芽乾燥實驗...............85
第五章 結論與建議.............................96
5.1 結論...................................96
5.2 建議...................................97
參考文獻.......................................98
dc.language.isozh-TW
dc.title多模式影像對位與融合技術之研究-以金花石蒜鱗莖影像為例zh_TW
dc.titleA Study of Multimodal Image Registration and Fusion:Images of Lycoris aurea Herb. Bulbsen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張祖亮(Tsu-Liang Chang),周呈霙(Cheng-Ying Chou)
dc.subject.keyword影像對位,影像融合,核磁共振影像,電腦斷層掃描,植物形態,zh_TW
dc.subject.keywordimage registration,image fusion,magnetic resonance imaging,computed tomography,plant morphology,en
dc.relation.page103
dc.rights.note同意授權(全球公開)
dc.date.accepted2010-08-20
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物產業機電工程學研究所zh_TW
顯示於系所單位:生物機電工程學系

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf10.17 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved