請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10351完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳兆勛(Chao-Hsun Chen) | |
| dc.contributor.author | Yu-Lin Shen | en |
| dc.contributor.author | 沈育霖 | zh_TW |
| dc.date.accessioned | 2021-05-20T21:22:39Z | - |
| dc.date.available | 2010-02-11 | |
| dc.date.available | 2021-05-20T21:22:39Z | - |
| dc.date.copyright | 2010-02-11 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-02-09 | |
| dc.identifier.citation | [1] T. J. Reynolds, “Second Internation Symposium on the Mechanical Integrity of Process Piping,” HOUSTON, pp. 331, 1996.
[2] L. Zou, A. Graham. Ferrier, F. S. Afshar, Y. Qinrong, C. Liang, and B. Xiaoyi, “Distributed Brillouin scattering sensor for discrimination of wall-thinning defects in steel pipe under internal pressure,” APPLIED OPTICS, Vol. 43, No. 7, pp. 1583-1588, March 2004. [3] D. Inaudi, and B. Glisic, “Application of distributed fiber optic sensory SHM,” SHMII-2, 2005. [4] A. Carrillo, E. Gonzalez, A. Rosas, and A. Marquez, “New distributed optical sensor for detection and localization of liquid leaks part I: experimental studies,” Sensor. Actuator. A, vol. 99, pp. 229-235, 2002. [5] M.C. Maki, and J.K. Weese, “Fiber optic fence sensor development,” IEEE AESS System Magazine, Feb. 2004. [6] L. Zou, X. Bao, Y. Wan, and L. Chen, “Coherent probe-pump-based Brillouin sensor for centimeter-crack detection,” Opt. Lett. 30, pp370-372, 2005. [7] M. Tanaka. and K. Hotate, “Distributed fiber Brillouin strain sensing with 1-cm spatial resolution by correlation-based continuous-wave technique,” J. IEEEPhoto. Tech. Lett., vol. 14(2), pp. 179-181, 2002. [8] K. Hotate, “Correlation-based continuous-wave technique for optical fiber distributed strain measurement using Brillouin scattering,” Optical Fiber Sensors (OFS-17), TH-1, Bruges, pp. 62-67, 2005. [9] L. Byoungho. Review of the present status of optical fiber sensors. Optical Fiber Technology 9, 2003 pp. 57-79. [10] R. Fabien, Z. Lufan, B. Xiaoyi, C. Liang, H. Rong Feng,K. Heng Aik, Detection of buckling in steel pipeline and column by the distributed Brillouin sensor, Optical Fiber Technology 12 2006, pp.305–311. [11] Z. Wei, S. Bin,Z. Yu-Feng,L. Jie,Z. You-Qun. The strain field method for structural damage identification using Brillouin optical fiber sensing. Smart Mater. Struct. 16, 2007, 843-850. [12] B. Culshaw. 2004. Optical fiber sensor technologies: Opportunities and—perhaps—pitfalls. J. Lightwave Technol. 22(1):39–49. [13] C.-A.L., C.-C.,W. Wen-Hwa, 'A novel multiple random decrement method for modal parameter identification of cable-stayed bridge cables.' Proceeding of the 2nd International Operational Model Analysis Conference, Copenhagen, Denmark, May (2007) 1-2. [14] Y.B. Lin, Lin, T.K., Chen, J.C., Chiu, J.C. and Chang, K.C., 'On-line health monitoring and safety evaluating of the relocation of a research reactor using fiber Bragg grating sensors.' Smart Materials & Structures, 15 (2006) 1421-1428. [15] Y.B. Lin, Chen, J.C., Chang, K.C., Chern, J.C. and Lai, J.S., 'Real-time monitoring of local scour by using fiber Bragg grating sensors.' Smart Materials & Structures, 14 (2005) 664-670. [16] K.-C.C. Zheng-Kuan Lee. Yung-bin Lin, Cin-Hsiung Loh and Chien-Chou Chen, 'An innovative optic-fiber health monitoring system on the cables of a cable-stayed bridge.' Proceeding of the 18th KKCNN, Kaohsiung, Taiwan, Dec. (2005) 21-22. [17] Y.B. Lin, Chen, J.C., Chang, K.C., Chan, Y.W. and Wang, L.A., 'The utilization of fiber Bragg grating sensors to monitor high performance concrete at elevated temperature.' Smart Materials & Structures, 13 (2004) 784-790. [18] C. Wonseok, K. Donghoon, “Full-scale test of a concrete box girder using FBG sensing system.” Engineering Structures 30 (2008) 643–652 [19] J.S. Leng, R.A. Barnes, A. Hameed, D. Winter, “Structural NDE of concrete structures using protected EFPI and FBG sensors.” Sensors and Actuators A 126 (2006) 340–347. [20] E. Udd, 'Fiber optic smart structures and skins.” Proc. SPIE, 986. SPIE, Bellingham, WA (1989). [21] E. Udd, 'Fiber optic smart structures and skins II.” Proc. SPIE, 1170. SPIE, Bellingham, WA (1990). [22] E. Udd and R.O. Claus, 'Fiber optic smart structures and skins III.” Proc. SPIE, 1370. SPIE, Bellingham, WA (1991). [23] R.O.C.a.E. Udd, 'Fiber optic smart structures and skins IV.” Proc. SPIE, 1588. SPIE. Bellingham, WA (1992). [24] G. J. Knowles, 'Active materials and adaptive structures.” Proceedings of the ADPA/AIAA/ASME/SPIE Conference on Active Materials and Adaptive Structures. IOP Publishing, Blacksbury, VA (1991). [25] P.T.G.B. Culshaw, and A. McDonach, 'First European conference on smart structures and materials.” SPIE, 1777. SPIE, Bellingham, WA, May (1992). [26] R.O. Claus and R.S. Rogowski, 'Fiber optic smart structures and skins V.” Proc. SPIE, 1798. SPIE, Bellingham, WA (1993). [27] E. Udd, 'Embedded sensors make structures smart.” Laser Focus, May (1998) 138. [28] R. M. Measures, 'Smart structures in nerves of glass.” Prog. Aerosp. Sci. 26, 289 (1989). [29] R C Tennyson, A A Mufti, S Rizkalla, G Tadros and B Benmokrane, “Structural health monitoring of innovative bridges in Canada with fiber optic sensors.” Smart Materials and Structures, 2001. [30] L. Kin-tak, C. Chi-chiu, Z. Li-min, J. Wei, “Strain monitoring in composite-strengthened concrete structures using optical fibre sensors.” Composite Part B: Engineering. [31] Z. Yang, A. Farhad, “Embedded fiber optic sensor for characterization of interface strains in FRP composite.” Sensors & Actuators: A. Physical, 2002. [32] W. Kai Tai, K.Y. Leung, Applications of a distributed fiber optic crack sensor for concrete structures, Sensors and Actuators A 135 (2007) 458–464. [33] X. Bao, A. Brown, M. DeMerchant and J. Smith 1999 Characterization of the Brillouin-loss spectrum of single-mode fibers by use of very short (less than or equal 10 ns) pulses Opt. Lett. 24 510–3. [34] A. Timothy Hampshire, A. Hojjat, Monitoring the behavior of steel structures using distributed optical fiber sensors, Journal of Constructional Steel Research 53 (2000) 267–281. [35] B. Romeo, M. Aldo, Z. Luigi, curate high-resolution fiber-optic distributed strain measurements for structural health monitoring, Sensors and Actuators A 134 (2007) 389–395. [36] R.M. L,opeza, V.V. Spirina, S.V. Miridonov, M.G. Shlyagin, G. Beltr,an, E.A. Kuzin, Fiber optic distributed sensor for hydrocarbon leak localization based on transmission/reflection measurement, Optics & Laser Technology 34 (2002) 465–469. [37] Z. Lufan, A. Graham Ferrier, V. Shahraam Afshar, Y. Qinrong, C. Liang, and B. Xiaoyi, Distributed Brillouin scattering sensor for discrimination of wall-thinning defects in steel pipe under internal pressure, 2004 _ Vol. 43, No. 7 _ APPLIED OPTICS. [38] Z. Chunshu, B. Xiaoyi, F. Istemi Ozkan, M. Magdi, R. Fabien, D. Mei, D David i, Prediction of the pipe buckling by using broadening factor with distributed Brillouin fiber sensors, Optical Fiber Technology 14 (2008) 109–113. [39] G. Junqi, S. Bin, Z. Wei, Z. Hong. Monitoring the stress of the post-tensioning cable using fiber optic distributed strain sensor. Measurement 39, 2006, 420-428. [40] W. Kai Tai, K.Y. Christopher Leung. Applications of a distributed fiber optic crack sensor for concrete structures. Sensors and Actuators A 135, 2007, 458-464. [41] W. Kai Tai, Christopher K.Y. Leung. Fiber optic sensor for the monitoring of mixed mode cracks in structures. Sensors and Actuators A xxx, 2007. 1-11. [42] J. Paradiso; C Abler; K Hsiao; M. Reynolds The Magic Carpet: Physical Sensing for Immersive Environments, Extended Abstracts of CHI97, ACM Press: New York, 1997; pp. 277-278. [43] M. Addlesee; A. Jones; F. Livesey; F Samaria The ORL Active Floor, IEEE Personal Communications, vol. 4, no. 5, 1997; pp. 35-41. [44] R. Bose, A. Helal; Observing Walking Behavior of Humans Using Distributed Phenomenon Detection and Tracking Mechanisms, Applications and the Internet, 2008. SAINT 2008. International Symposium on, July 28 2008; pp.405-408. [45] J. Suutala; J. Roning, Combining classifiers with different footstep feature sets and multiple samples for person identification, IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 5, Philadelphia, 2005; pp. 357-360. [46] R. Sankar; K. Assegid; Q. Gang, R. Stjepan; B. David, Smart Sensing and Context, Springer Berlin, Heidelberg: Berlin, vol. 4793, 2007; pp. 46-61. [47] H. Morishita; R. Fukui; T. Sato, High resolution pressure sensor distributed floor for future human-robot symbiosis environments, IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 2, 2002; pp. 1246-1251. [48] T. Murakita; T. Ikeda; H. Ishiguro. Human tracking using floor sensors based on the Markov Monte Carlo method, Proceedings of 17th International Conference on Pattern Recognition, vol. 4, 2004; pp 917-920. [49] L. Middleton; A.A. Buss; A. Bazin; M.S. Nixon. A Floor Sensor System for Gait Recognition, 4th IEEE Workshop on Automatic Identification Advanced Technologies, 2005. [50] L. Wen-Hau, W. Chao-Lin, F. Li-Chen, Inhabitants tracking system in a cluttered home environment via floor load sensors, IEEE Transactions on Automation Science and Engineering, Volume: 5, 2008; pp10-20. [51] D. Inaudi, B. Glisic. Application of Distributed Fiber Optic Sensory SHM; SHMII-2’2005. [52] C. Antonio, G. Enrique, R Armando, M Alfredo. New distributed optical sensor for detection and localization of liquid leaks Part I. Experimental studies. Sensors and Actuators A 99, 2002, 229-235. [53] M. C.Maki, J. K. Weese; Fiber Optic Fence Sensor Development; IEEE AESS System Magazine, Feb. 2004. [54] H. Jin-Seok, K. Ju-Young, L. Jung-Ju, Tactile Sensors using the Distributed Optical Fiber Sensors, 3rd International Conference on Sensing Technology, 2008, Taiwan. [55] O. Hiroshige, N. Hiroshi, K Mitsuru and S. Akiyosh, Industrial Applications of the BOTDR Optical Fiber Strain Sensor, Optical Fiber Technology 7, 2001.pp. 45-64. [56] K. Hotate; T. Hasegawa; Measurement of Brillouin Gain Spectrum Distribution along an Optical Fiber using a Correlation-Based Technique--Proposal, Experiment and Simulation, IEICE TRANSACTIONS on Electronics, vol. E83-C, No.3, 2000; pp.405-412. [57] K. Hotate; M. Tanaka. Distributed fiber Brillouin strain sensing with 1-cm spatial resolution by correlation-based continuous-wave technique, IEEE Photo. Tech. Lett, vol.14, no.2, 2002; pp.179-181. [58] A.H.G. R. M. Jopson, and R. M. Derosier, IEEE Photon. Lett. 5, 663 (1993). [59] K. Hotate; T. Hasegawa; Measurement of Brillouin Gain Spectrum Distribution along an Optical Fiber using a Correlation-Based Technique--Proposal, Experiment and Simulation, IEICE TRANSACTIONS on Electronics, vol. E83-C, No.3, 2000; pp.405-412. [60] K. Hotate; M. Tanaka. Distributed fiber Brillouin strain sensing with 1-cm spatial resolution by correlation-based continuous-wave technique, IEEE Photo. Tech. Lett, vol.14, no.2, 2002; pp.179-181. [61] D. JP, 'Distributed optical fiber Raman temperature sensor using a semiconductor light source and detector.' Proceedings of the IEE Colloqium on Distributed Optical Fiber Sensors (1986). [62] K. Hotate;T. Hasegawa, Measurement of Brillouin Gain Spectrum Distribution along an Optical Fiber using a Correlation-Based Technique--Proposal, Experiment and Simulation, IEICE TRANSACTIONS on Electronics, vol. E83-C, No.3, 2000; pp.405-412. [63] K.H. T. Horiguchi, T. Kurashima, M. Tateda, Y. Koyamada, 'Development of a distributed sensing technique using Brillouin scattering.” J. Lightwave Technol., 13 (1995) 1296-1303. [64] M.T. K. Hotate, 'Distributed fiber Brillouin strain sensing with 1-cm spatial resolution by correlation-based continuous-wave technique.' [J]. IEEE Photo. Tech. Lett., 14(2) (2002) 179-181. [65] K. Hotate; T. Hasegawa, Measurement of Brillouin Gain Spectrum Distribution along an Optical Fiber using a Correlation-Based Technique--Proposal, Experiment and Simulation, IEICE TRANSACTIONS on Electronics, vol. E83-C, No.3, 2000; pp.405-412. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10351 | - |
| dc.description.abstract | 由於現代的建築物的規模及複雜度愈來愈高,也突顯結構安全監測的重要,對於這些大型複雜的結構物,很難去預期內部缺陷的產生,而傳統的應變規的量測只能對特定點,無法瞭解結構整體的狀況。近年來光纖感測技術廣泛地用於橋樑及公共建設的安全監測,而分布式光纖感測技術的應用也是其中重要之一。
本研究對改善布里淵分布式光纖感測系統的硬體及軟體的提出四個方法,以改善量測系統,第一個是強化半激發態布里淵散射,以改善布里淵增益光譜的品質、訊號的訊雜比及空間解析度,利用極化控制器控制光極化的狀態,使50公尺的量測範圍達到30公分以下的空間解析度。其次是藉由控制探針光的衰減值,可改善訊雜比值。另外利用快速的資料擷取卡及傳輸介面控制程式,有效提升量動態量測速度。利用光切換器將本系統成功同時用於鋼結構負載、管線安全監測及智慧型壓力地板等等多功用途上。 本量測系統性能提升後,用於壓力感應地板的動態量測實驗,證明其在保全及智慧型材料上的應用潛力。在型鋼簡支樑的實驗中,由光纖感測所量得應變值與應變規所得者誤差約4%。管線簿化是一般石化廠常見的問題,以一般傳統的感測器很難測出這種小面積的缺陷,分布式布里淵感測系統在本研究實驗中,證明具有量測壓力管線內局部缺陷的能力。在動態量測方面,我們以52Hz的FM頻率切換速度,完成軌道的1 Hz動能負載測試,證明其在軌道安全監測上的應用能力,對高鐵及鐵路等的安全應用價值上是可以預期的。未來,本研究技術可提供整體結構安全監測上。 | zh_TW |
| dc.description.abstract | Structural health monitoring has gained in importance due to the continued increase in the size and complexity of modern structures. For such complex structures, it is very difficult to predict where defects will form. And since traditional strain gauges can only measure forces at specific points, they cannot, in fact, be used to gauge the status of the whole structure. In recent years, optical fiber sensing techniques have become widely used to monitor bridges and public buildings. Distributed optical fiber sensing techniques have also been used in some cases.
In this study, four techniques—both hardware- and software-based—are presented to realize an improved Brillouin distributed optical fiber sensing system. The measuring system is improved. First, enhanced semi-stimulated Brillouin scattering (SSBS) can be used to improve the signal quality of the Brillouin gain spectrum (BGS), the signal-to-noise ratio, and thus the spatial resolution. In addition, the use of the polarization state control to detect polarization changes allows an extended test region of up to 50 m and a resolution of less than 30 cm. Second, by controlling the probe value of the attenuator, this system has an improved signal-to-noise ratio (SNR). Third, a high-speed data recording interface card, together with compatible software, can be used for fast and efficient dynamic measurement. Last, the use of an optical switch allows this system to be used in several different applications, for example, load measurement in steel structures, monitoring of the pressure pipelines, pressure-sensitive floors, etc. Experiments on the application of the improved system to a pressure-sensitive floor and for dynamic measurement clearly showed that this system can be used in security and intelligent material. In experiments using a simple supported beam, a mere 4% difference was found between measurements made by the optical fiber sensor and by strain gauges. In an experiment on a square pipe, this system accurately located cracks and measured the stress distribution. Wall thinning defects are usually localized and are difficult to be detected by traditional sensors that have a small coverage. A distributed fiber sensor based on the Brillouin sensing system was demonstrated to be able to measure the strain and detect the defect in a pipe accurately. Using fiber sensor stuck on a rail, we were able to measure 1 Hz sinusoidal dynamic strain with 52 Hz probe sweeping frequency. The correlation-based Brillouin sensor is promising as a distributed dynamic strain sensor for the applications of railway and high speed rail monitoring. Further, we propose methods to monitor structural integrity and the status of structure health. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-20T21:22:39Z (GMT). No. of bitstreams: 1 ntu-99-D90543003-1.pdf: 6117941 bytes, checksum: 4653c0b18ae4d81cec8f42b160610eea (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | 誌謝 i
摘要 ii Abstract iii Table of Contents v List of Figures vii List of Tables xi Chapter 1 Introduction 1 1-1 Motivation 1 1-2 Literature Review 1 1-2.1 Optical Fiber Sensors 1 1-2.2 Structural Health Monitoring 3 1-2.2.1 Steel Structural Health Monitoring 4 1-2.2.2 Identification of Wall Thickness Change in the Pressure Pipelines 5 1-2.3 Sensing Floor For an Intelligent Environment 6 1-2.4 Distributed Dynamic Strain Measurement 7 1-3 Content of each chapter 8 Chapter 2 Basic Theory and System Enhancement for Distributed Fiber Brillouin Scattering Measurement 12 2-1 Measuring System 12 2-1.1 Distributed Brillouin Fiber Sensor 12 2-1.2 Semi-Stimulated Brillouin Scattering (SSBS) 13 2-1.3 Instrumentation Setup 13 2-1.4 Spatial Resolution 14 2-1.5 Locating Methodology 15 2-1.6 Automatic Measurement 16 2-1.7 Strain Coefficient 17 Chapter 3 System Enhancement 28 3-1 Optimum Control 28 3-2 Enhanced Measurement Range and Spatial Resolution 28 3-2.1 Polarization State Control for Enhanced BGS 28 3-2.2 Suppression of Probe Gain Fluctuation Using Polarization Controller 29 3-3 Multifunctional Measurement System 30 3-4 Improvement of Measurement Speed 31 Chapter 4 Application of Distributed Semi-Stimulated Brillouin Scattering Measurement 41 4-1 Pressure-Sensitive Floor 41 4-1.1 Distributed Sensing System 41 4-1.2 Design of Pressure-Sensitive Floor 42 4-1.3 Sensing Methodology 42 4-1.4 Smart Floor Sensure: Experimental Results 44 4-1.4.1 Occupant Location Awareness 44 4-1.4.2 Occupant Mobility Awareness 45 4-1.4.3 Response of The Intelligent House 45 4-1.5 Discussion 46 4-2 Monitoring Steel Structures 47 4-2.1 Measurement of I-Beam Strain 47 4-2.1.1 Experimental Setup 47 4-2.1.2 Results 48 4-2.1.3 I-Beam Finite Element Simulation 49 4-2.2 Measurements on a Square Pipe with a Crack 50 4-2.2.1 Experimental Setup 50 4-2.2.2 Results 50 4-2.2.3 Discussion 51 4-3 Sensing Wall-Thinning Defects on the Pressured Pipe 52 4-3.1 Experimental Program 52 4-3.2 Experiment Results and Discussion 53 4-4 Dynamic Measurement of Steel Rail 54 4-4.1 Experiment Setup 55 4-4.2 Experiment Result 56 4-4.3 ANSYS Simulated Result 56 Chapter 5 Conclusions and Future Work 81 5-1 Conclusions 81 5-2 Future Work 83 References 84 | |
| dc.language.iso | en | |
| dc.title | 光纖分佈式感測技術於結構安全監測之多功應用研究 | zh_TW |
| dc.title | Research of Distributed Fiber Sensing Technology for
Multifunction Application in Structural Health Monitoring | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.coadvisor | 單秋成(Chow-Shing Shin) | |
| dc.contributor.oralexamcommittee | 王仲宇(Chung-Yue Wang),劉文豐(Wen-Fung Liu),廖顯奎(Shien-Kuei Liaw) | |
| dc.subject.keyword | 結構安全監測,光纖感測,分布式感測,壓力地板,動態量測, | zh_TW |
| dc.subject.keyword | Structure health monitoring,Fiber sensor,Distributed sensing,Pressure-sensing floor,Dynamic measurement, | en |
| dc.relation.page | 88 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2010-02-09 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 應用力學研究所 | zh_TW |
| 顯示於系所單位: | 應用力學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf | 5.97 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
