Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 森林環境暨資源學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10330
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor柯淳涵(Chun-Han Ko),林法勤(Far-Ching Lin)
dc.contributor.authorPin-Jui Chenen
dc.contributor.author陳品叡zh_TW
dc.date.accessioned2021-05-20T21:20:55Z-
dc.date.available2012-10-31
dc.date.available2021-05-20T21:20:55Z-
dc.date.copyright2010-10-31
dc.date.issued2010
dc.date.submitted2010-10-21
dc.identifier.citationAWPA (1994) Book of standards. American Wood Preservers’ Association, Woodstock, MD.
Cao, A., A. Carucci, T. Lai, P. L. Colla, and E. Tamburini (2007) Effect of biodegradable chelating agents on heavy metals phytoextraction with Mirabilis jalapa and on its associated bacteria. European Journal of Soil Biology 43: 200-206.
Chang, F. C., S. L. Lo, M. Y. Lee, C. H. Ko, J. D. Lin, S. C. Huang, and C. F. Wang (2007) Leachability of metals from sludge-based artificial lightweight aggregate. Journal of Hazardous Materials 146: 98-105.
Hingston, J. A., C. D.Collins, R. J. Murphy, and J. N. Lester (2001) Leaching of chromated copper arsenate wood preservatives: a review. Environmental Pollution 111: 53-66.
Holleman, A. F. and E. Wiberg (2001) Inorganic Chemistry. San Diego: Academic Press. ISBN 0-12-352651-5.
Ibach, R.E. (1999) Wood preservation (Ch14). Forest Products Laboratory. Wood handbook – Wood as an Engineering Material. Gen. Tech. Rep. FPL-GTR-113. U.S. Department of Agriculture, Forest Service, Forest Products Laboratory, Madison, WI.
Iida, K., J. Pierman, T. Tolaymat, T. Townsend, and C. Y. Wu (2004) Control of chromated copper arsenate wood incineration air emissions and ash leaching using sorbent technology. Journal of Environmental Engineering 1302: 184–192.
Jambeck, J.R., T. Townsend, and H. Solo-Gabriele (2006) Leaching of chromated copper arsenate (CCA)-treated wood in a simulated monofill and its potential impacts to landfill leachate. Journal of Hazardous Materials A 135: 21–31.
Kakitani, T., T. Hata, T. Kajimoto, and Y. Imamura (2006) Designing a purification process for chromium-, copper- and arsenic-contaminated wood. Waste Management 26: 453-458.
Kakitani, T., T. Hata, T. Kajimoto, and Y. Imamura (2004) Effect of pyrolysis on solvent extractability of toxic metals from chromated copper arsenate (CCA)-treated wood. Journal of Hazardous Materials 109: 53-57.
Kakitani, T., T. Hata, T. Kajimoto, H. Koyanaka, and Y. Imamura (2009) Characteristics of a bioxalate chelating extraction process for removal of chromium, copper and arsenic from treated wood. Journal of Environmental Management 90: 1918-1923.
Kartal, S. N. and C. Kose (2003) Remediation of CCA-C treated wood using chelating agents. Holz als Roh-und Werkstoff 61:382-387.
Kartal, S. N. (2003) Removal of copper, chromium, and arsenic from CCA-C treated wood by EDTA extraction. Waste Management 23: 537–546
Kartal, S.N. and S. T. Lebow (2001) Effect of compression wood on leaching and fixation of CCA-C treated red pine. Wood and Fiber Science 33: 182–192.
Kirchner and S. Barium (1957) (Ethylenediaminetetracetato) Cobalt(III) 4-Hydrate' Inorganic Syntheses. McGraw-Hill: New York 5: 186-188.
Kos, B. and D. Lestan (2003) Influence of a biodegradable ([S,S]-EDDS) and nondegradable (EDTA) chelate and hydrogel modified soil water sorption capacity on Pb phytoextraction and leaching. Plant and Soil 253: 403-411.
Lebow, S. T. and S. N. Kartal (1999) Fixation effects on the release of copper, chromium, and arsenic from CCA-C treated marine piles. In: Proceedings of 95th Annual Meeting of the American Wood Preservers’ Association (AWPA), 16–19 May. Ft. Lauderdale, Florida, Vol. 95: 168–174.
Moghaddam, A. H. and C. N. Mulligan (2008) Leaching of heavy metals from chromated copper arsenate (CCA) treated wood after disposal. Waste Management 28: 628-637.
Morrell, J.J. (1989) Copper tolerant fungi: A brief review on their effects and distribution. In: Proceedings of 84th Annual Meeting of the American Wood Preservers’ Association (AWPA), Vol. 84: 8–12.
Nowack, B. and J. M. VanBriesen (2005) Chelating agents in the environment (Ch1) Biogeochemistry of Chelating Agents. ACS divisions of Environmental Chemistry, Inc. and Geochemistry Inc. American Chemistry Society, Washington, DC
Pizzi, A. (1982) The chemistry and kinetic behaviour of Cu–Cr–As/B wood preservatives. II. Fixation of the Cu/Cr system on wood. III. Fixation of the Cr/As system on wood .IV. Fixation of CCA to wood. Journal of Polymer Science Chemistry Ed. 20: 707–724, 725–738, 739–764.
Shalat, S.L., H. M. Solo-Gabriele, L. E. Fleming, B. T. Buckley, K. Black, M. Jimenez, T. Shibatea, M. Durbin, J. Graygo, W. Stephan, and G. Van DeBogart (2006) A pilot sutdy of children’s exposure to CCAtreated wood from playground equipment. Science Total Environment 367: 80–88.
Solo-Gabriele, H., T. Townsend, B. Messick, and V. Calitu (2002) Characteristics of chromated copper arsenate-treated wood ash. Journal of Hazardous Materials B 89: 213–232.
Tandy, S., K. Bossart, R. Mueller, J. Ritschel, L. Hauser, R. Schulin, and B. Nowack (2004) Extraction of heavy metals from soils using biodegradable chelating agents. Environment Science Technology 38: 937-944.
Tessier, A., P. G. C. Campbell, and M. Bisson (1979) Sequential extraction procedure for the speciation of particulate trace metals. Analysis Chemistry 51: 844-851.
Tom, P. (2001) Good wood gone bad. Waste Age 32 (8): 36–51.
US Environmental Protection Agency (2006), Office of Solid Waste and Emergency Response. Municipal Solid Waste in the US (2005) Facts and Figures- Executive Summary, October 18, Washington, DC.
U.S. EPA (1996), Acid Digestion of Sediments, Sludges, and Soils, Test Methods for Evaluating Solid Waste (SW-846-Method 3050B). Washington, DC: U.S. Environmental Protection Agency
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10330-
dc.description.abstract鉻化砷酸銅(Chromated copper arsenate, CCA)是一種被廣泛使用的水溶性木材防腐藥劑,由鉻、砷及銅三種金屬氧化物混合而成。CCA防腐材廢棄物在焚燒或掩埋之後,容易釋放重金屬,因此CCA防腐材廢棄物若能先移除一部分重金屬,將能有效降低對環境的污染。CCA防腐材之處理有許多方法,其中水溶液萃取是最有效且被廣泛使用的方法之一。本研究使用CCA-C型防腐劑(含有氧化鉻47.5%,氧化銅18.5%,五氧化二砷34.0%)經滿胞法處理之南方松(Pinus taeda),螯合劑使用具生物可分解性之螯合劑:EDTA(Ethylenediaminetetracetic acid), EDDS(S, S-Ethylenediaminedisuccinic acid)及NTA(Nitrilotriacetic acid)等三種。萃取條件包括:溶液酸鹼值、濃度、萃取溫度與萃取時間。三種金屬均在酸性條件下(pH 2.0-4.0)的萃取效果最好,因此推論此三種螯合劑較適合於酸性條件下反應。螯合劑濃度結果顯示在濃度範圍為0.01至0.1 M時,0.1M可以達到最好的萃取效果。溫度之結果可發現在75oC時即可達到十分良好之重金屬移除效率。萃取時間可看出各金屬之萃取速度並不一致,鉻和砷為萃取速率較慢之重金屬,萃取時間對其結果影響較大;銅的萃取速率較快,5~6小時左右就可以移除93%。綜合以上最適條件,最好之移除效率分別為鉻53%-66%,銅84%-93%,砷55%-62%。固液比對EDDS-CCA化學藥劑比之指數函數結果可看出EDDS對於銅之螯合能力最佳,鉻次之,砷最弱;且固液比為10時萃取效果較好。序列萃取結果顯示未以EDDS萃取之CCA防腐材,85.6%之鉻存在於有機相分離部及殘餘相分離部;銅有49%存在於可交換分離部及殘餘相分離部。有機相分離部及殘餘相分離部則含有80.2%的砷。本研究顯示以生物可分解性較強之螯合劑EDDS與NTA,可有效去除CCA防腐材中之重金屬,且效果比一般經常使用之生物可分解性螯合劑EDTA更佳,除了可降低CCA防腐材廢棄物對於環境之污染,也能使此技術應用層面更廣。zh_TW
dc.description.abstractChromated copper arsenate (CCA) is the most widely used wood preservative. It is formulated with copper, chromium, and arsenic oxides. Better disposal methods of CCA treated wood waste would be needed to alleviate secondary pollution induced by waste land-filling or incineration.
There are many methods to remediate CCA treated wood waste. Aqueous extraction is the most one. In this study, the materials are southern pine (Pinus taeda) that is pressure-treated with CCA type C preservative (hexavalent chromium as CrO3, 47.5%; copper as CuO, 18.5%; arsenic as As2O5, 34.0%). Chelating agents are biodegradable chelating agents: ethylenediaminetetraacetic acid (EDTA), nitrilotriacetic acid (NTA) and [S, S]-Ethylenediaminedisuccinic acid (EDDS). This study investigates impact of various parameters including pH, chelating concentration, temperature, and chelating duration on chromium, copper, and arsenic extraction efficiencies. Results indicates that lower pH (pH 2.0-4.0) are more effective than higher pH (pH>6) for extraction of chromium, copper, and arsenic. By changing solution concentration from 0.01 to 0.1M, the optimal extraction efficiencies for three metals were obtained at 0.1 M. Optimal extraction temperature for CCA metals was 75oC. The results of duration of extraction presented the chelating rates of metals. There is great extraction efficiencies of copper between 5 and 6 hours extraction. Under these best conditions, the highest percentage removals of chromium, copper and arsenic are 53%-66%, 84%-93%, 55%-62%, respectively.
In the results of EDDS-CCA stoichiometric ratios, EDDS concentrations above unit stoichiometric requirement are required to remove CCA metals at optimal. And the extraction efficiencies are illustrated when solution to wood ratio is 10. The results of sequential extractions demonstrated that chromium was mainly existed in the organic and residual fractions (85.6%); copper is mainly existed in exchangeable and residual fractions (49%); arsenic is mainly existed in organic and residual fractions (80.2%).
This study indicates the extraction efficiencies for chromium, copper, and arsenic by EDTA, EDDS and NTA are satisfactory. Besides, EDDS and NTA are more biodegradable, and more effect in CCA treated wood remediation. In the near future, EDDS and NTA could be applied broadly to remove heavy metals from wastes.
en
dc.description.provenanceMade available in DSpace on 2021-05-20T21:20:55Z (GMT). No. of bitstreams: 1
ntu-99-R96625045-1.pdf: 1899685 bytes, checksum: a4a36de294370262674ba1c7aec0c078 (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents誌謝.......................................................i
摘要......................................................ii
Abstract.................................................iii
Index......................................................v
Figure index............................................viii
Table index...............................................xi
Chapter 1 Introduction.....................................1
Chapter 2 Literature review................................4
2.1 Chromated copper arsenate (CCA)........................4
2.2 Characterization of CCA treated wood...................7
2.3 Waste disposal of CCA treated wood....................11
2.4 Chelating agents......................................15
2.5 Condition of extraction.........................22
2.5.1 Effect of pH....................................22
2.5.2 Effect of chelating concentration...............24
2.5.3 Effect of temperature...........................26
2.5.4 Effect of chelating duration....................28
2.5.5 Liquid of ratio of liquid to solid..............29
Chapter 3 Materials and methods..........................32
3.1 Preparation of CCA treated wood.................32
3.2 Experiment......................................33
3.2.1 Chelating extraction............................34
3.2.2 The ratio of solution to CCA treated wood.......35
3.2.3 Sequential extraction...........................35
3.3 Analysis........................................38
3.3.1 Chelating extraction............................38
3.3.2 The ratio of solution to CCA treated wood.......38
3.3.3 Sequential extraction...........................38
3.3.4 Inductively coupled plasma atomic emission spectrometry.............................................38
Chapter 4 Results and discussion.........................40
4.1 Effect of pH....................................40
4.2 Effect of chelating extraction..................45
4.3 Effect of temperature...........................49
4.4 Effect of chelating duration....................52
4.5 EDDS-CCA stoichiometric ratios..................54
4.6 Influence of solid-phase speciation on extraction yield....................................................57
Chapter 5 Conclusion.....................................59
Reference................................................61
Figure index
Figure 1. Three types of CCA treated wood..................9
Figure 2. Options for disposing of or reusing CCA treated wood......................................................12
Figure 3. EDTA molecular structure........................19
Figure 4. EDTA coordinating an ion........................19
Figure 5. The structure of NTA (a), and metal-NTA complex (b).......................................................20
Figure 6. Effect of solution pH of copper, chromium and arsenic from CCA treated wood chips with 0.125 M oxalate at 75°C......................................................23
Figure 7. Percentage removal of elements from CCA treated chips and sawdust following EDTA extraction at various concentrations for 24 hr..................................25
Figure 8. Percentage of total copper, chromium and arsenic extracted from CCA treated blocks using 1% EDTA and deionized water...........................................26
Figure 9. Effect of extraction temperature on extractibilities of copper, chromium and arsenic from CCA treated wood chips with 0.125 M oxalate at pH 3.2.........27
Figure 10. Percentage of copper, chromium and arsenic released following 1% EDTA extraction of CCA treated chips and sawdust for varying extraction duration...............29
Figure 11. Effect of liquid to solid ratio on extractibilities of copper, chromium and arsenic from CCA treated wood chips with 0.125 M oxalate at pH 3.2 and 75°C.........................................................31
Figure 12. Flowchart of chelating extraction..............34
Figure 13. Flowchart of sequential extraction procedure...37
Figure 14. pH effects on chromium, copper, and arsenic extraction for CCA treated wood with 0.1 M chelating agents at 75oC(6 hr extraction period)...........................42
Figure 15. Solution concentration effects on chromium, copper, and arsenic extraction for CCA treated wood with chelating agents at 75oC and pH 4.0 (6 hr extraction period)...................................................46
Figure 16. Effect of temperature on extraction of chromium, copper, and arsenic from CCA treated wood with 0.1 M chelating agents and pH 4.0 (6 hr extraction period)......50
Figure 17. Effect of chelating duration of chromium, copper, and arsenic from CCA treated wood with 0.1 M chelating agents at 75oC and pH 4.0. (a) Cr extracted.....53
Figure 18. Stoichiometric ratios and solution to wood ratios effects on chromium, copper, and arsenic extraction for CCA treated wood at 75oC (6 hr extraction period without pH adjustment)....................................55
Figure19. Mobility of Cr, Cu, and As in CCA treated wood before and after extraction with EDDS given as percentage of heavy metals concentration.............................57
Table index
Table 1. Retention requirements for CCA treated wood......................................................10
Table 2. Tangible products from reused CCA treated wood categorized by method.....................................13
Table 3. Abbreviation and structure for metal complexation of the used chelating agents..............................16
Table 4. Extraction efficiency of three metals in the optimal pH condition......................................41
Table 5. The optimal extraction efficiency of concentration 0.01M to 0.1M.............................................48
dc.language.isoen
dc.title以螯合劑自鉻化砷酸銅防腐材萃取鉻、銅及砷zh_TW
dc.titleExtraction of Chromium, Copper, and Arsenic from CCA Treated Wood by Using Chelating Agentsen
dc.typeThesis
dc.date.schoolyear99-1
dc.description.degree碩士
dc.contributor.oralexamcommittee藍浩繁,張上鎮,陳孝行
dc.subject.keyword鉻化砷酸銅防腐材,金屬螯合劑,鉻化砷酸銅(CCA),序列萃取,zh_TW
dc.subject.keywordCCA treated wood, chelating agent,Chromated copper arsenate (CCA),sequential extraction,en
dc.relation.page65
dc.rights.note同意授權(全球公開)
dc.date.accepted2010-10-22
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept森林環境暨資源學研究所zh_TW
顯示於系所單位:森林環境暨資源學系

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf1.86 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved