Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 環境工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10278
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蔣本基(Pen-Chi Chiang)
dc.contributor.authorAn-Chia Chiuen
dc.contributor.author邱安家zh_TW
dc.date.accessioned2021-05-20T21:16:27Z-
dc.date.available2016-08-23
dc.date.available2021-05-20T21:16:27Z-
dc.date.copyright2011-08-23
dc.date.issued2011
dc.date.submitted2011-08-20
dc.identifier.citation[1] U. S. department of Commerce National Oceanic & Atmospheric Administration,
http://www.esrl.noaa.gov/gmd/ccgg/trends/
[2] Solomon S., Qin D., Manning M., Chen Z., Marquis M., Averyt, K.B., Tignor, M.,
Miller, H.L., Contribution of working group I to the Fourth Assessment Report of
the Intergovernmental Panel on Climate Change, IPCC Fourth Assessment Report
(AR4)
[3] Huijgen W.J.J., Witkamp, G.J., Comans, R.N.J., Mineral CO2 sequestration in
alkaline solid residues. Poster presented at the seventh international conference on
greenhouse gas control technologies(GHCT) in Vancouver, BC, Canada, 5-9
September 2004.
[4] Lackner K.S., Wendt C.H., Butt D.P., Joyce E. L., Sharp D. H., Carbon dioxide
disposal in carbonate minerals. Los Alamos National Laboratory, LA-UR-97-2094,
Los Alamos, NM, USA. 1995
[5] Huijgen W.J.J., Witkamp G.J., Comans R.N.J., Mineral CO2 sequestration by steel
slag carbonation, Environmental Science & Technology, Vol. 39, No. 24, 2005.
[6] Lackner K. S., Carbonate chemistry for sequestering fossil carbon. Annu. Rev.
Energy Environ. 2002. 27:193–232
[7] Metz B., Davidson O., de Coninck H., Loos M., Meyer L., IPCC Special report on
carbon dioxide capture and storage. Prepared by Working Group of the
Intergovernmental Panel on Climate Change, Cambridge University press,
Cambridge, 2005.
[8] Metzner A. B., Brown L. F., Mass transfer in foam, Ind. Engng Chem. 1956 48,
2040-2045.
[9] Biswas Kumar R., 1981, Mass transfer with chemical reaction in a foam bed
contactor. C&m. Engng Sci. 36, 1547-1556.
[10] Alper E., Wichtendahl B., Deckwer W.-D., Gas absorption mechanism in
catalytic slurry reactor, Chemical Engineering Science Vol 35, 217-222
[11] Ostergaard K., Gas-liquid-particle operations in chemical reaction engineering,
Chem. Eng. J., I, 1970, 71-133
[12] Fauth D. J., Soong Y., White C. M., Carbon sequestration utilizing industrial
solid residues, Fuel Chemistry Division Preprints 2002, 47(1), 37
[13] Huijgen W.J.J., Comans R.N.J., Carbon dioxide sequestration by mineral
carbonation Literature Review, Energy research Centre of the Netherlands 2003,
ECN-C--03-016
[14] Emery J. J., Slag utilization in pavemant construction, Extending aggregate
resources 1982, Stp 774
[15] Mahieux P.-Y., Aubert J.-E., Escadeillas G., Utilization of weathered basic
oxygen furnace slag in the production of hydraulic road binders, Construction and
Building Materials 23, 2009, 742–747
[16] Wang J. W., Integrated analysis of life cycle assessment with eco-efficiency –
case studies of Iron and Steel Products, 2005
[17] Seifritz W., CO2 disposal by means of silicates. Nature 1990, 345, 486.
[18] Lackner K. S., A guide to CO2 sequestration, Science, New Series, Vol. 300, No.
5626 (Jun. 13, 2003), pp. 1677-1678
[19] Montes-Hernandez G., Pérez-López R., Renard F., Nieto J.M., Charlet L.,
Mineral sequestration of CO2 by aqueous carbonation of coal combustion fly-ash.
J. Hazard. Mater. 2009, vol 161, 1347-1354.
[20] Huijgen W.J.J., Comans R.N.J., Carbon dioxide sequestration by mineral
carbonation Literature Review Update 2003-2004, Energy research Centre of the
Netherlands 2005, ECN-C--05-022
[21] Lekakh S.N., Rawlins C.H., Robertson D.G.C., Richards V.L., Peaslee K.D.,
2008. Kinetic of aqueous leaching and carbonization of steelmaking slag. Metall.
Mater. Trans. B 39B, 125-134.
[22] Guinée J.B., Gorrée M., Heijungs R., Huppes G., Kleijn R., De Koning A., van
Oers, L., Wegener Sleeswijk, A., Suh, S.,Udo de Haes, H.A., de Bruijn, H., van
Duin, R., Huijbregts, M.A.J., 2002. Life cycle assessment. An Operational Guide
to the ISO Standards. Centre of Environmental Science, Leiden University, Leiden,
The Netherlands.
[23] Hertwicha E. G., Aabergb M., Singha B., Strømman A. H., Life-cycle assessment
of carbon dioxide capture for enhanced oil recovery, Chinese Journal of Chemical
Engineering Volume 16, Issue 3, June 2008, Pages 343-353
[24] Odeh N. A., Cockerill T. T., Life cycle GHG assessment of fossil fuel power
plants with carbon capture and storage, Energy Policy 36 (2008) 367–380
[25] Viebahn P., Nitsch J., Fischedick M., Esken A., Schu wer D., Supersberger, N.,
Zuberbu¨ hler, U., Edenhofer, O., Comparison of carbon capture and storage with
renewable energy technologies regarding structural, economic, and ecological
aspects in Germany, international journal of greenhouse gas control 1 (2007) 121 –
133
[26] Koornneef1 J., Faaij A., Turkenburg W., Environmental Impact Assessment of
Carbon Capture & Storage in the Netherlands
[27] Dreybrodtj W., Laucknerl Zaihua, Svensson U., Buhmann. D., The kinetics of the
reaction CO2 + Hz0 + H + + HCO, as one of the rate limiting steps for the
dissolution of calcite in the system H,O-COz-CaC03, Geochimica et
Cosmochimica Acta, Vol. 60, No. IS, pp. 337553381, 1996
[28] Bowers, A.R., Robinson, R., Koussis, A.D., Estimation of BOD parameters by an
integral method, Environmental Technology Letters, Vol. 8, pp. 317-326, 1987
[29] Enick, R. M., Beckman, E. J., Shi, C., Xu, J., Remediation of metal-bearing
aqueous waste streams via direct carbonation, Energy & Fuels 2001, 15, 256-262
[30] Chang E. E., Chen C. H., Chen Y. H., Pan S. Y., Chiang P. C., Performance
evaluation for carbonation of steel-making slags in a slurry reactor, Journal of
Hazardous Materials 186 (2011) 558–564
[31] Chu H. W., CO2 sequestration by carbonation of akaline solid waste
[32] Huijgen W. J. J., Janwitkamp G., and Comans R. J., Mineral CO2 sequestration
by steel slag carbonation, Environ. Sci. Technol. 2005, 39, 9676-9682
[33] Satoshi Kodamaa, Taiki Nishimotob, Naoki Yamamotoa, Katsunori Yogoa,
Koichi Yamada, Development of a new pH-swing CO2 mineralization process with
a recyclableReaction solution, Energy 33 (2008) 776–784
[34] Eloneva S., Teir S. , Salminen J. , Fogelholm C.-J., Zevenhoven R. , Fixation of
CO2 by carbonating calcium derived from blast furnace slag, Energy 33 (2008)
1461– 1467
[35] Nyambura M. G. , Mugera G. W. , Felicia P. L., Gathura N. P., Carbonation of
brine impacted fractionated coal fly ash: implications for CO2 sequestration,
Journal of Environmental Management 92 (2011) 655e664
[36] Shih S. M., Ho C. S., Yuen-Sheng Song, and Jyh-Ping Lin, Kinetics of the
Reaction of Ca(OH)2 with CO2 at Low Temperature, Ind. Eng. Chem. Res. 1999,
38, 1316-1322
[37] Liu C. F., Shih S. M., Lin R. B., Kinetics of the reaction of Ca(OH)2/fly ash
sorbent with SO2 at low temperatures, Chemical Engineering Science 57 (2002)
93–104
[38] Abu-Eishah S. I., Anabtawi M.J.J., Isaac S.L., Upgrading of carbonaceous
phosphate rocks by direct carbonation with CO2–water solutions, Chemical
Engineering and Processing 43 (2004) 1085–1094
[39] Proctor D. M., Fehling K. A., Shay, Wittenborn E. C. J. L., Green J. J., Avent C.,
Bigham R. D., Connolly M., Lee B., Shepker T. O. and Zak M. A., Physical and
chemical characteristics of Blast Furnace, Basic oxygen furnace, and electric arc
furnace steel industry slags, Environ. Sci. Technol. 2000, 34, 1576-1582
[40] 林志忠, 公共工程使用再生材料落實節能減碳初步探討, 2010
[41] Uibu M., Uus M. and Kuusik R., CO2 mineral sequestration in oil-shale wastes
from Estonian power production, Journal of Environmental Management 90 (2009)
1253–1260
[42] Abanades J. C., Allam R., Lackner K. S., Meunier F., Rubin E., Sanchez J. C.,
Katsunori Yogo and Ron Zevenhoven, Mineral carbonation and industrial uses of
carbon dioxide
[43] Eloneva S., Teir S., Salminen J., Fogelholm C.-J., and Zevenhoven R., Steel
converter slag as a raw material for precipitation of pure calcium carbonate, Ind.
Eng. Chem. Res. 2008, 47, 7104–7111
[44] Cho J. S., Kim S. M., Chun H. D., Han G. W., Lee C. H., Carbon Dioxide capture
with accelerated carbonation of industrial combustion waste, International Journal
of Chemical Engineering and Applications, Vol. 2, No. 1, February 2011
[45] Zevenhoven R., Fagerlund J. and Songok J. K., CO2 mineral sequestration:
developments toward large-scale application, Greenhouse Gas Sci Technol.
1:48–57 (2011)
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10278-
dc.description.abstract本研究針對中鋼鹼性固體廢棄物搭配中鋼廢水進行溼式碳酸化進行二氧化碳封存。鹼性固體廢棄物選用中鋼轉爐石,其成分含有大量的氧化鈣;中鋼廢水則是選用冷軋製程所產生的廢水和廢水處理場處理過後的放流水。
用泥漿反應器針對各種不同的操作參數進行實驗。為了不再額外增加能源消耗,不另外再針對實驗進行升溫或升壓。操作參數包含反應時間、不同水樣比較、液固比、氣體流量和反應體積。
實驗結果發現,在常溫常壓下反應時間2 小時,氣體流量控制在1LPM 且粒徑小於44μm 時,相較於放流水和自然水等其他水樣,冷軋水擁有較佳的轉化率約為89.19%。其反應過後的產物接附著在轉爐石表,故其整個反應的動力模式可以用「表面反應模式」進行推估,且其具有良好的廻歸,其R2 值都可以達到0.90 以上。
以3E(環境、工程、經濟)三種不同面相,針對五種不同情境與本土數據結合,進行不同衝擊類別下的量化工作。評估結果發現,本研究對於二氧化碳封存具有較為正面的效應,每封存1 公斤二氧化碳產生2.48 公斤二氧化碳,相較於文獻已經大幅下降,是一個新的里程碑。因使用的能源少資源少,對於環境衝擊降到最低,最經濟。故本研究確為可行的二氧化碳的減量技術。
zh_TW
dc.description.abstractCO2 sequestration by basic oxygen slag in a slurry reactor containing metalworking wastewater was investigated in this study. There were two types of metalworking wastewater used in this study including effluent from metalworking wastewater treatment plant and cold-rolling wastewater.
The effect of operational conditions on the CO2 sequestration process were evaluated including the type of metalworking wastewater, reaction time, liquid to solid ratio and CO2 flow rate. The results indicated that basic oxygen slag in cold-rolling wastewater provided a better carbonation conversion approximate 89.18% at reaction time of 2 h, liquid to solid ratio of 20 and CO2 flow rate of 1
L/min. The developed surface coverage model for CO2 sequestration was used in this study to evaluate the carbonation conversion process. Although there were
insignificant differences between wastewater and tap water in carbonation conversion, reuse of metalworking wastewater as feedstock recycles the water resource and
reduces operational cost. It is a promising alternative for carbon sequestration.
On assessment aspect, the commercial value of CO2 sequestration technology by technical assessment was confirmed. LCA software, i.e., Umberto 5.5 is a useful tool
for environment analysis and quantifying the different environmental impact categories by combining international database, i.e., CML with interior statistics. The results indicate that the sequestration of aqueous carbonation by slurry reactor is more efficient than literature. Although it still has room to reduce CO2 emissions from experiment, this study is a feasible technique due to the highest conversion rate (89.18%) without extra consumption of energy and resources.
en
dc.description.provenanceMade available in DSpace on 2021-05-20T21:16:27Z (GMT). No. of bitstreams: 1
ntu-100-R98541102-1.pdf: 2440695 bytes, checksum: 8e0570a90a4dfc35b28c1dea251e7500 (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents謝誌......................... I
Abstract ................... II
中文摘要 ................... IV
Contents .................... V
Figure Captions .......... VIII
List of Tables ...............XV
Chapter 1 Introduction ............................. 1-1
1-1 Background ..................................... 1-1
1-2 Objectives ..................................... 1-5
Chapter 2 Literature Review ......... ...............2-1
2-1 Mineralization Carbonation ..................... 2-1
2-2 Suitable Feedstocks for Mineralization of Carbon Capture ............................................ 2-1
2-3 Characteristic of Cold-Rolling Waste Water...... 2-5
2-4 Principles of Mineral Carbonation Reaction ......2-5
2-4-1 Pre-treatment ................................ 2-10
2-4-1 Kinetics of Calcium Leaching ................. 2-12
2-4-3 Kinetic of Carbon Dioxide Dissolution ........ 2-14
2-4-4 Kinetic of Aqueous Carbonation ............... 2-15
2-5 Slurry Foam-bed Reactors ....................... 2-18
2-6 LCA on Carbon Sequestration .................... 2-18
2-6-1 LCA .......................................... 2-18
2-6-2 LCA of Energy System ......................... 2-22
2-6-3 LCA Software - Umberto 5.5 ................... 2-26
Chapter 3 Materials and Methods .................... 3-1
3-1 Research Flowchart ............................. 3-1
3-2 Materials ...................................... 3-2
3-2-1 Source of Agents ............................. 3-2
3-2-2 Procedure of Preparing Steelmaking Slags ..... 3-3
3-3 Physico-Chemical Analysis ...................... 3-6
3-3-1 Scanning Electron Microscope (SEM) ........... 3-6
3-3-2 X-Ray Diffractometry (XRD).................... 3-6
3-3-3 Composition Analysis ......................... 3-7
3-3-4 Thermogravimetric Analysis (TGA) ............. 3-7
3-4 Carbonation Experiment ......................... 3-9
3-4-1 Aqueous Carbonation Process by Fluidized Bed Reactor ............................................ 3-9
3-5 Technical Assessment ........................... 3-13
3-5-1 LCA .......................................... 3-13
3-5-2 3E Assessment ................................ 3-15
Chapter 4 Results and Discussion ................... 4-1
4-1 Physico-Chemical Characteristics of Steelmaking Slag and Wastewater ..................................... 4-1
4-1-1 Physical and chemical properties of steelmaking slag ............................................... 4-1
4-1-2 Composition of Steelmaking Wastewater ........ 4-7
4-2 Aqueous Carbonation Process .................... 4-9
4-2-1 Determination of CO2 conversion by the TGA method ............................................. 4-9
4-2-2 Aqueous Carbonation by Synthetic Water and Wastewater ......................................... 4-11
4-2-3 Variation of Cold-Rolling Wastewater ......... 4-15
4-2-4 Effect of Different Flow Rate, Liquid to Solid and Reaction volume Ratio by Cold-rolling Wastewater ... 4-17
4-2-5 Carbonation by Steelmaking slag .............. 4-21
4-3 Technical Assessment ......................................... 4-24
4-3-1 Kinetic Modeling of Aqueous Carbonation ...... 4-24
4-3-2 Determination of the optimum operation condition 4-35
4-4 Technical Assessment ........................... 4-37
4-4-1 Environmental Aspect ......................... 4-37
4-4-1-1 CO2 Budget Estimation ...................... 4-38
4-4-1-2 Data Collection ............................ 4-39
4-4-1-3 Environmental Impact Assessment ............ 4-44
4-4-2 Engineering assessment ....................... 4-49
4-3-3 Economic assessment ......................................... 4-52
Chapter 5 Conclusions and Recommendations .......... 5-1
5-1 Conclusions .....................................5-1
5-2 Recommendations ................................ 5-2
References
Appendix
dc.language.isoen
dc.title利用轉爐石與鋼鐵廢水在漿體反應槽中進行碳酸化反應zh_TW
dc.titleCarbonation of Basic Oxygen-Furnace Slag with Metalworking Wastewater in a Slurry Reactoren
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張怡怡(E-E Chang),黃金寶(Chin-Pao Huang),顧洋(Young Ku),曾迪華(Dyi-Hwa Tseng)
dc.subject.keyword二氧化碳封存,濕式碳酸化,流體化床,生命週期評估,zh_TW
dc.subject.keywordCO2 sequestration,slag,metalworking wastewater,surface coverage model,carbonation conversion,slurry reactor,LCA,en
dc.relation.page112
dc.rights.note同意授權(全球公開)
dc.date.accepted2011-08-20
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept環境工程學研究所zh_TW
顯示於系所單位:環境工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf2.38 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved