Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 植物科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10227
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鄭秋萍
dc.contributor.authorYun-Lu Laien
dc.contributor.author賴芸璐zh_TW
dc.date.accessioned2021-05-20T21:11:57Z-
dc.date.available2021-05-20T21:11:57Z-
dc.date.issued2011
dc.date.submitted2011-02-14
dc.identifier.citation陳巧燕。2009。未知功能 DUF28 protein 及色胺酸調控途徑在酵母菌氧化逆境反應之功能分析。國立台灣大學植物科學研究所碩士論文。
吳淑褓 (2005). 鐵硫簇的生物合成. Chemistry (The Chinese Chem. Soc., Taipei). 63, 141-148.
Abed N., Bickle M., Mari B., Schapira M., Sanjuan-España R., Sermesant K. R., Moncorgé O., Mouradian-Garcia S., Barbry P., Rudkin B. B., Fauvarque M. O., Michaud-Soret I., and Colas P. (2007). A Comparative analysis of perturbations caused by a gene knock-out, a dominant negative allele, and a set of peptide aptamers. Mol Cell Proteomics 6, 2110-2121.
Åberg A., Ferna′ndez-Va′zquez J., Cabrer-Panes J. D., Sa′nchez A., and C. Balsalobre (2009). Similar and divergent effects of ppGpp and DksA deficiencies on transcription in Escherichia coli. J Bacteriol 191, 3226–3236.
Abram D., and Koffler H. (1964). In vitro formation of flagella-like filaments and other structures from flagellin. J Mol Biol 9, 168-185.
Ahmer B. M. M. (2004). Cell-to-cell signalling in Escherichia coli and Salmonella enteric. Mol Microbiol 52, 933-945.
Allen R. G., and Tresini M. (2000). Oxidative stress and gene regulation. Free Radic Biol Med 28, 463-499.
Apel D., and Surette M. G. (2008). Bringing order to a complex molecular machine: The assembly of the bacterial flagella. Biochim Biophys Acta 1778, 1851-1858.
Atlung T., and Ingmer H. (1997). H-NS: a modulator of environmentally regulated gene expression. Mol Microbiol 24, 7-17.
Baba T., Ara T., Hasegawa M., Takai Y., Okumura Y., Baba M., Datsenko K. A., Tomita M., Wanner B. L., and Mori H. (2006). Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol doi:10.1038/msb4100050
Beinert H. (2000) Iron-sulfur proteins: ancient structures, still full of surprises. J Biol Inorg Chem 5, 2-15.
Bentley R., and Meganathan R. (1982). Biosynthesis of vitamin K (menaquinone) in bacteria. Microbiol Rev 46, 241-280.
Berg H. C. (2003). The rotary motore of bacterial flagella. Annu Rev Biochem 72, 19-54.
Bertin P., Terao E., Lee E. H., Lejeune P., Colson C., Danchin A., and Collatz E. (1994). The H-NS protein is involved in the biogenesis of flagella in Escherichia coli. J Bacteriol 176, 5537-5540.
Blanchard J. L., and Lynch M. (2000). Organellar genes:why do they end up in the nucleus? Trends Genet 16, 315-20.
Blattner F. R., Plunkett III G., Bloch C. A., Perna N. T., Burland V., Riley M., Collado-Vides J., Glasner J. D., Rode C. K., Mayhew G. F., Gregor J., Davis N. W., Kirkpatrick H. A., Goeden M. A., Rose D. J., Mau B., Shao Y. (1997). The complete genome sequence of Escherichia coli K-12. Science 277, 1453-1462.
Blair D.F. (1995). How bacteria sense and swim. Annu Rev Microbiol 49, 489-522.
Chen M., Xie K., Jiang F., Yi L., and Dalbey R.E. (2002). YidC, a newly defined evolutionarily conserved protein, mediates membrane protein assembly in bacteria. Biol Chem 383, 1565-1572.
Chilcott G. S, and Hughes K. T. (2000). Coupling of flagellar gene expression to flagellar assembly in Salmonella enterica Serovar Typhimurium and Escherichia coli. Microbiol Mol Bio Rev 64, 694-708.
Courcelle J., Khodursky A., Peter B., Brown P. O., and Hanawalt P. C. (2001). Comparative gene expression profiles following UV exposure in wild-type and SOS-deficient Escherichia coli. Genetics 158, 41-64.
Cox. M. M. (2003). The bacterial reca protein as amotor protein. Annu Rev Microbiol 57, 551–77.
Crosa J. H. (1989). Genetics and molecular biology of siderophore-mediated iron transport in bacteria. Microbiol Rev 53, 517-530.
Datsenko K.A., and Wanner B. L. (2000). One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97, 6640-6645.
De Feyter R., Yang Y., and Gabriel D.W. (1992). Gene-for-genes interactions between cotton R genes and Xanthomonas campestris pv. malvacearum avr genes. Mol Plant Microbe Interact 6, 225-237.
Demple B., Halbrook J., and Linn S. (1983). Escherichia coli xth mutants are hypersensitive to hydrogen peroxide. J Bacteriol 153, 1079-1082.
DiDonato L. N., Sullivan S. A., Methe′ B. A., Nevin K. P., England R., and Lovley D. R. (2006). Role of RelGsu in stress response and Fe(III) reduction in Geobacter sulfurreducens. J Bacteriol 188, 8469–8478.
Dimmitt K., and Simon M. (1971). Purification and thermal stability of intact Bacillus subtilis flagella. J Bacteriol 105, 369-375.
Domka J., Lee J., and Wood T. K. (2006). YliH (BssR) and YceP (BssS) regulate Escherichia coli K-12 biofilm formation by influencing cell signaling. Appl Environ Microbiol 72, 2449-2459.
Eisenstark, A. (1989). Bacterial genes involved in response to near-ultraviolet radiation. Adv Genet 26, 99-147.
Fridovich I. (1989). Superoxide dismutases. J Biol Chem 264, 7761-7764.
Fujita N., Mori H., Yura T., and Ishihama A. (1994). Systematic sequencing of the Escherichia coli genome: analysis of the 2.4-4.1 min (110,917-193,643 bp) region. Nucleic Acids Res 22, 1637-1639.
Funes S., Kauff F., van der Sluis E. O., Ott M., and Herrmann J.M. (2011). Evolution of YidC/Oxa1/Alb3 insertases: three independent gene duplications followed by functional specialization in bacteria, mitochondria and chloroplasts. Biol Chem (in press).
Fux C.A., Shirtliff M., Stoodley P., and Costerton J.W. (2005). Can laboratory reference strains mirror ‘real-world’ pathogenesis? Trends Microbiol 13, 58-63.
Gadgil M., Kapur V., and Hu W. S. (2005). Transcriptional Response of Escherichia coli to Temperature Shift. Biotechnol Prog 21, 689-699.
Gardner, P., and Fridovich I. (1991). Superoxide sensitivity of the Escherichia coli 6-phosphogluconate dehydratase. J Biol Chem 266, 1478-1483.
Greenberg J. T., Monach P., Chou J. H., Josephy P. D., and Demple B. (1990). Positive control of a global antioxidant defense regulon activated by superoxide-generating agents in Escherichia coli. Proc Natl Acad Sci U S A 87, 6181-85.
Gómez-Gómez J. M., Manfredi C., Alonso J. C., and Blázquez J. (2007). A novel role for RecA under non-stress: promotion of swarming motility in Escherichia coli K-12. BMC Biol 28, 5-14.
Hagieara D., Yamashino T., and Mrzumo T. (2004). A genome-wide view of the Escherichia coli BasS-BasR two-component system implicated in iron-responses. Biosci Biotechnol Biochem 68, 1758-1767.
Halliwell B., and Gutteridge J. M. C. (1984). Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem J 219, 1-14.
Hanahan D. (1983). Studies on transformation of Escherichia coli with plasmids. J Mol Biol. 166, 557-80.
Helmann J. D., Wu M. F. W., Gaballa A., Kobel P. A., Morshedi M. M., Fawcett P., and Paddon C. (2003). The global transcriptional response of Bacillus subtilis to peroxide stress is coordinated by three transcription factors. J Bacteriol 185, 243-253.
Henle E. S., Han Z., Tang N., Rai P., Luo Y., and Linn S. (1999). Sequence-specific DNA cleavage by Fe2+-mediated Fenton reactions has possible biological implications. J Biol Chem 274, 962-971.
Hommais F., Krin E., Laurent-Winter C., Soutourina O., Malpertuy A., Le Caer J. P., Danchin1 A., and Bertin P. (2001). Large-scale monitoring of pleiotropic regulation of gene expression by the prokaryotic nucleoid-associated protein, H-NS. Mol Microbiol 40, 20-36.
Hudault S, Guignot J, Servin A. L. (2001). Escherichia coli strains colonising the gastrointestinal tract protect germfree mice against Salmonella typhimurium infection. Gut 49, 47-55.
Imlay J. A., Chin S. M., Linn S. (1988). Toxic DNA Damage by Hydrogen Peroxide through the Fenton Reaction in vivo and in vitro. Science 240, 640-642.
Imlay J. A. (2008). Cellular defenses against superoxide and hydrogen peroxide. Annu Rev Biochem 77, 755-76.
Ishii A., Oshima T., Sato T., Nakasone K., H. Mori, and Kato C. (2005). Analysis of hydrostatic pressure effects on transcription in Escherichia coli by DNA microarray procedure. Extremophiles 9, 65-73.
Jacquamet L., Aberdam D., Adrait A., Hazemann J. L., Latour J. M., and Michaud-Soret I. (1998). X-ray Absorption Spectroscopy of a New Zinc Site in the Fur Protein from Escherichia coli. Biochemistry 37, 2564-2571.
Jeong K. S., Xie Y., Hiasa H., and Khodursky A. B. (2006). Analysis of pleiotropic transcriptional profiles: a case study of DNA gyrase inhibition. PLoS Genet 2, e152 1464-1476.
Kaldalu N., Mei R., and Lewis K. (2004). Killing by ampicillin and ofloxacin induces overlapping changes in Escherichia coli transcription profile. Antimicrob Agents Chemother 48, 890-896.
Kehres D. G., Zaharik M. L., Finlay B. B., and Maguire M. E. (2000). The NRAMP proteins of Salmonella typhimurium and Escherichia coli are selective manganese transporters involved in the response to reactive oxygen. Mol Microbiol 36,1085-1100.
Kiley P. J., and Beinert H. (2003). The role of Fe–S proteins in sensing and regulation in bacteria. Curr Opin Microbiol 6,181–185.
Kitagawa M., Ara T., Arifuzzaman M., Ioka-Nakamichi T., Inamoto E., Toyonaga H., and Mori H. (2005). Complete set of ORF clones of Escherichia coli ASKA library unique resources for biological research. DNA Res 12, 291-299.
Ko M., and Park C. (2000). Two novel flagellar components and H-NS are involved in the motor function of Escherichia coli. J Mol Biol 303, 371-382.
Kohanski M. A., Dwyer D. J., Hayete B., Lawrence C. A., and Collins J. J. (2007). A common mechanism of cellular death induced by bactericidal antibiotics. Cell 130, 797-810.
Korshunov S., and Imlay J.A. (2010).Two sources of endogenous hydrogen peroxide in Escherichia coli. Mol Microbiol 75, 1389-401.
Krin E., Danchin A., and Soutourina O. (2010). RcsB plays a central role in H-NS-dependent regulation of motility and acid stress resistance in Escherichia coli. Res Microbiol 161, 363-371.
Lange R., and Hengge-Aronis R. (1991). Identification of a central regulator of stationary-phase gene expression in Escherichia coli. Mol Microbiol 5, 49-59.
Lee J. H., Yeo W. S., and Roe J. H. (2004). Induction of the sufA operon encoding Fe-S assembly proteins by superoxide generators and hydrogen peroxide: involvement of OxyR, IHF and an unidentified oxidant-responsive factor. Mol Microbiol 51, 1745–1755.
Liang H., Li L., Dong Z., Surette M. G., and Duan K. (2008). The YebC family protein PA0964 negatively regulates the Pseudomonas aeruginosa quinolone signal system and pyocyanin production. J Bacteriol 190, 6217-6227.
Loewen P. C., and Triggs B. L. (1984). Genetic mapping of katF, a locus that with katE affects the synthesis of a second catalase species in Escherichia coli. J Bacterinl. 160, 668-675.
Macnab R. M. (2004). Type III flagellar protein export and flagellar assembly. Biochim Biophys Acta 1694, 207–217.
Magnusson L. U., Farewell A., and Nyström T. (2005). ppGpp: a global regulator in Escherichia coli. Trends Microbiol 13, 236-242.
Merrikh H., Ferrazzoli A. E., and Lovett S. T. (2009). Growth Phase and (p)ppGpp Control of IraD, a Regulator of RpoS Stability, in Escherichia coli. J Bacteriol 191, 7436-7446
Minamino T., Imada K., and Namba K. (2008). Molecular motors of the bacterial flagella. Curr Opin Struct Biol 18, 693–701.
Miller J. (1972). Experiments in molecular genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York
Mukhopadhyay P., Zheng M., Bedzyk L. A., LaRossa R. A., and Storz G. (2004). Prominent roles of the NorR and Fur regulators in the Escherichia coli transcriptional response to reactive nitrogen species. Proc Natl Acad Sci U S A 101, 745-750.
Nishino K., Honda T., and Yamaguchi A. (2005). Genome-wide analyses of Escherichia coli gene expression responsive to the BaeSR two-component regulatory system. J. Bacteriol 187, 1763-1772.
Olsvik Ø., Wasteson Y., Lund A., and Homes E. (1991). Pathogenic Escherichia coil found in food. Int J Food Microbiol 12, 103-114.
Peter B. J., Arsuaga J., Breier A. M., Khodursky A. B.,Brown P. O., and Cozzarelli N. R. (2004). Genomic transcriptional response to loss of chromosomal supercoiling in Escherichia coli.Genome Biol 5, R87.
Pham P., Rangarajan S., Woodgate R., and Goodman M. F. (2001). Roles of DNA polymerases V and II in SOS-induced error-prone and error-free repair in Escherichia coli. Proc Natl Acad Sci U S A 98, 8350–8354.
Pomposiello P. J., Bennik M. H., and Demple B. (2001). Genome-wide transcriptional profiling of the Escherichia coli responses to superoxide stress and sodium salicylate. J Bacteriol 183, 3890-3902.
Pomposiello P.J., and Demple B. (2001). Redox-operated genetic switches: the SoxR and OxyR transcription factors. Trends Biotechnol 19,109-114.
Prüß B. M., Besemann C., Denton A., and Wolfe A. J. (2006). A complex transcription network controls the early stages of biofilm development by Escherichia coli. J Bacteriol 88, 3731-3739.
Sabate R., de Groot N. S., and Ventura S. (2010). Protein folding and aggregation in bacteria. Cell Mol Life Sci 67, 2695-2715.
Sabina J., Dover N., Templeton L.J., Smulski D. R., Söll D., and LaRossa R. A. (2003). Interfering with different steps of protein synthesis explored by transcriptional profiling of Escherichia coli K-12. J Bacteriol 185, 6158-6170.
Sagan L. (1967). On the Origin of Mitosing Cells. J. Theoret. Biol. 14, 225-274.
Sambrook J. Fritsch E.F., and Maniatis T. (1989). Molecular cloning: a laboratory manual, Ed 2nd ed. Cold Spring Harbor Laboratory Press, New York, NY, U.S.A.
Sangurdekar D. P., Srienc F., and Khodursky A. B. (2006). A classification based framework for quantitative description of large-scale microarray data. Genome Biol 7, R32.
Sak B. D., Eisenstark A., and Touati D. (1989). Exonuclease III and the catalasehydroperoxidase II in Escherichia coli are both regulated by the katF gene product. Proc Natl Acad Sci U S A 86, 3271-3275.
Schoenhals G. J., and Macnab R. M. (1996). Physiological and biochemical analyses of FlgH, a lipoprotein forming the outer membrane L ring of the flagellar basal body of Salmonella typhimurium. J Bacteriol 178, 4200–4207.
Shaw K. J., Miller N., Liu X., Lerner D., Wan J., Bittner A., and Morrow B. J. (2003). Comparison of the changes in global gene expression of Escherichia coli induced by four bactericidal agents. J Mol Microbiol Biotechnol 5, 105-122.
Shin D. H., Yokota H., Kim R., and Kim S. H. (2002). Crystal structure of conserved hypothetical protein Aq1575 from Aquifex aeolicus. Proc Natl Acad Sci U S A 99, 7980-7985.
Silverman M., and Simon M. (1977). Bacterial flagella. Annu Rev Microbiol 31, 397-419.
Storz G., and Imlay J. A. (1999). Oxidative stress. Curr Opin Microbiol 2, 188-l 94.
Storz G., Tartaglia L. A., FARR S. B., and Ames B. N. (1990). Bacterial defenses against oxidative stress. Trends Genet 6, 363-368.
Soutourina O. A., and Bertin P. N. (2003). Regulation cascade of flagellar expression in Gram-negative bacteria. FEMS Microbiol Rev 27, 505-523.
Takahashi Y., and Tokumoto U. (2002). A third bacterial system for the assembly of iron-sulfur clusters with homologs in archaea and plastids. J Biol Chem 277, 28380-28383.
Terashima H., Kojima S., and Homma M. (2008). Flagellar motility in bacteria: structure and function of flagellar motor. Int Rev Cell Mol Biol 270, 39-85.
Thormann K. M., and Paulick A. (2010). Tuning the flagellar motor. Microbiology 156, 1275-1283.
Touati D. (2000). Iron and oxidative stress in bacteria. Arch Biochem Biophys 373, 1-6.
Tsaneva I. R.,and Weiss B. (1990). soxR, a locus governing a superoxide response regulon in Escherichia coli K-12. J Bacteriol 172, 4197-4205.
Ueno T., Oosawa K., and Aizawa S. (1992). M ring, S ring and proximal rod of the flagellar basal body of Salmonella typhimurium are composed of subunits of a single protein, FliF. J Mol Biol 227, 672–677.
Walters M., and Sperandio V. (2006). Quorum sensing in Escherichia coli and Salmonella. Int J Med Microbiol 296, 125-131.
Weraarpachai W., Antonicka H., Sasarman1 F., Seeger J., Schrank B., Kolesar J. E., H. Lochmüller, Chevrette M., Kaufman B. A., Horvath R.and Shoubridge E. A. (2009). Mutation in TACO1, encoding a translational activator of COX I, results in cytochrome c oxidase deficiency and late-onset Leigh syndrome. Nat Genet 41, 833-837.
Wick L. M., and Egli T. (2004). Molecular components of physiological stress responses in Escherichia coli. Adv Biochem Engin / Biotechnol 89, 1-45.
Yi Y., Ma Y., Gao F., Mao X., Peng H., Feng Y., Fan Z., Wang G., Guo G., Yan J., Zeng H., Zou Q., and Gao G. F. (2010). Crystal structure of EHEC intimin: insights into the complementarity between EPEC and EHEC. PLoS One 5, e15285.
Zeth K., and Thein M. (2010). Porins in prokaryotes and eukaryotes: common themes and variations. Biochem J 431, 13-22.
Zheng M., Wang X., Templeton L. J., Smulski d. R., Larossa R. A., and Storz G. (2001). DNA microarray-mediated transcriptional profiling of the Escherichia coli response to hydrogen peroxide. J Bacteriol 183, 4562-4570.
Zheng M., and Storz G. (2000). Redox sensing by prokaryotic transcription factors. Biochem Pharmacol 59, 1-6.
Ziętkiewicz S., and Liberek K. (2010). Dispose to the pole—protein aggregation control in bacteria. EMBO J 29, 869-870.
Zimmer D. P., Soupene E., Lee H. L., Wendisch V. F., Khodursky A. B., Peter B. J., Bender R. A., and Kustu S. (2000). Nitrogen regulatory protein C-controlled genes of Escherichia coli: Scavenging as a defense against nitrogen limitation. Proc Natl Acad Sci U S A 97, 14674-14679.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10227-
dc.description.abstract除了在細菌之外, DUF28 蛋白質家族廣泛存在各物種,但對其功能所知甚少,僅知此蛋白在 Pseudomonas aeruginosa 中參與 swarming 泳動性與調節菌量感應反應 (quorum sensing),在哺乳類動物中則扮演 COX I 的轉譯活化子 (translation activator) 的角色。本研究發現部分細菌具有兩個 DUF28 蛋白質,十分特別,故針對大腸桿菌之兩個 DUF28 蛋白 YeeN 及 YebC 進行功能分析,尤著重在氧化逆境反應之功能。序列發現在不同菌種的胺基酸序列相似度不盡相同,推測此蛋白質保有相似的立體結構。突變株特性分析結果顯示 ΔyeeN 及 ΔyebC 之泳動能力都有明顯增加,但唯有 ΔyeeN 抵抗 paraquat 氧化逆境的耐受度有明顯增加,互補實驗亦進一步證實這些結果;此外, YeeN 量的累積與逆境因子易造成此蛋白質在細胞質中呈點狀分布,而 YebC 除在生長死亡期會有段狀分佈的情況外,大多均勻分佈;啟動子分析結果顯示, yeeN 具有自己的啟動子且會受氧化逆境的抑制,而 yebC 啟動子則在細胞生長後期才具活性且不會受到氧化逆境的影響。進一步分析可能調節 yeeN 表現量之上游基因發現, recA 在氧化逆境下可調節 yeeN ; relA 在正常情況下可正向調控 yeeN ,但並未直接參與 yeeN 在氧化逆境條件之調控; hns 於生長後期會抑制 yeeN ,並可能參與 yeeN 負調控鞭毛合成相關基因之功能。綜合以上結果可知,大腸桿菌中 YeeN 與 YebC 皆可調節細菌之泳動力,但目前確認 YeeN 也同時參與氧化逆境反應,本研究首次報導兩個同為 DUF28 蛋白質家族成員之基因,彼此功能有同也有異。zh_TW
dc.description.abstractDUF28 protein family ubiquitously exists in all organisms, except Archaea; however, information on their function is very limited. Previous studies demonstrated that DUF28 is involved in Pseudomonas aeruginosa swarming motility and quorum sensing, and functions as a translational activator of COX I in mammals. Interestingly, this study revealed the existence of two DUF28 homologs in some eubacteria. The aim of this study was to investigate functions of the two E. coli DUF28 proteins, namely YeeN and YebC, particularly their function in oxidative stress responses. Sequence comparisons revealed that bacterial DUF28 proteins shared low similarity, implying these proteins may preserve conserved tertiary structure. Null mutants ΔyeeN and ΔyebC both displayed increased swarming and swimming activities, while only ΔyeeN conferred increased tolerance to paraquat. Complementation assays further confirmed functions of these two proteins in motility and paraquat tolerance. Promoter analysis demonstrated that yeeN has its own promoter that can be repressed by oxidative stress. yebC promoter functioned only later growth phase and was not regulated by the test oxidative stress treatments. Protein localization analysis showed that accumulation and stress conditions could lead to polar distribution of YeeN in cytosol, while YebC uniformly distributed in cytosol and became polar distribution in a fragmented manner only at the death growth phase. Furthermore, by investigating the putative regulatory genes that may be involved in yeeN regulation, this study showed that recA could regulate yeeN under oxidative stress treatment. relA could upregulate yeeN expression under normal condition, but may not be involved in yeeN regulation under oxidative stress. On the other hand, hns could downregulate yeeN expression in late growth phase, and may regulate yeeN in flagella biosynthesis. Taken together, these results indicate that YeeN and YebC both function in bacterial motility, while YeeN also plays an important role in oxidative stress responses. This study is the first to uncover common as well as distinct functions of two bacterial DUF28 proteins.en
dc.description.provenanceMade available in DSpace on 2021-05-20T21:11:57Z (GMT). No. of bitstreams: 1
ntu-100-R97b42011-1.pdf: 3266188 bytes, checksum: 7b069b6ff33e28184933aebee0a8b7a0 (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents口試委員會審定書 i
謝誌 ii
中文摘要 iii
Abstract iv
常用名詞之縮寫與全名對照表 vi
目次 vii
表目次 x
圖目次 xi
附錄目次 xii
第一章 前言 1
I. 大腸桿菌 1
II. 氧化逆境 1
III. 活性氧化物質 (reactive oxygen species, ROS) 的生合成及來源 2
IV. 大腸桿菌氧化逆境調控機制 3
1. OxyR Regulon 3
2. SoxRS Regulon 4
3. KatF (RpoS) Regulon 5
V. 鐵與鐵硫錯化合物對於氧化逆境調節之影響 5
VI. 大腸桿菌之泳動能力與鞭毛構造 6
VII. 大腸桿菌鞭毛的生合成及調控機制 8
VIII. DUF28 ( Domain of Unknown Function 28 ) 蛋白家族與相關研究 9
IX. 研究目標 10
第二章 材料與方法 11
I. 供試菌株、質體及菌株培養條件 11
II. 大腸桿菌野生株與突變株生物特性分析 11
1. 生長曲線分析 11
2. 生物膜形成分析 (biofilm formation assay) 11
3. 泳動能力測定 ( swimming and swarming motility ) 12
4. 逆境反應分析 12
III. YeeN 及 YebC 蛋白質分析 12
1. DUF28 蛋白質於大腸桿菌中表現位置之分析 12
2. western blotting 13
IV. 構築互補質體及 Promoter fusion lacZ 質體 14
1. 萃取大腸桿菌 genomic DNA 14
2. 聚合酶連鎖反應 (polymerase chain reaction, PCR) 15
3. 限制酶消化酵素水解及膠體純化 15
4. 載體與目標片段接合 15
5. 大腸桿菌熱休克轉型作用 16
6. 萃取大腸桿菌質體 DNA 16
7. 製備大腸桿菌電穿孔勝任細胞 16
8. 大腸桿菌電穿孔轉型作用 17
V. 大腸桿菌 RNA 樣本置備 17
1. 收取大腸桿菌 RNA 樣本 17
2. 大腸桿菌 RNA 萃取 17
3. 1% 甲醛電泳膠體置備 18
4. 反轉錄酶反應 18
5. 即時定量聚合酶連鎖反應 19
VI. yeeN 及 yebC 啟動子活性分析 19
VI. 生物統計分析 ( Statistic analysis ) 20
第三章 結果 21
I. 生物資訊功能性分析 21
1. DUF28 蛋白質在不同物種間之演化樹分析與蛋白質 domain 分析 21
2. 不同菌種間 DUF28 同源性蛋白質及演化樹之分析與胺基酸序列之比較 21
3. 大腸桿菌 yeeN 及 yebC 基因於微陣列資料庫中基因表現 22
II. 大腸桿菌突變株 ΔyeeN 及 ΔyebC 之生物特性分析 23
1. 生長曲線、生物膜形成及泳動能力測定 23
2. 逆境耐受性測試及相關基因表現 23
III. 驗證 yeeN 及 yebC 基因功能 24
1. 互補株之分析 24
IV. YeeN 及 YebC 蛋白質表現位置之觀察 25
1. YeeN 蛋白質表現位置及分布情形 25
2. YebC 蛋白質表現位置及分布情形 26
V. yeeN 、 yebC 之 operon 組成與調控 27
1. yeeN 之 operon 組成與調控 27
2. yebC 之 operon 組成與調控 28
VI. 上游可能參與調控 yeeN 或 yebC 基因表現之突變株特性分析 29
1. 泳動能力分析 (swimming motility) 29
2. 氧化逆境測試 (paraquat) 29
3. yeeN 之啟動子在不同突變株中受 paraquat 處理後其表現情形 30
第四章 討論 31
I. DUF28 蛋白質廣泛存在於各物種中,且立體結構十分相似 31
II. yeeN 與 yebC 在調節泳動能力上具有相似的功能 32
III. yeeN 參與大腸桿菌氧化逆境的調控 33
IV. yeeN 可能不參與抗生素逆境之調節 35
V. yebC 可能參與逆境之調節 35
VI. yebC 與 yeeN 是否參與quorum sensing 之調節 36
VII. 參與泳動力及氧化逆境調節之上游基因特性分析 37
VIII. recA 在氧化逆境下可能參於調節 yeeN 基因 38
IX. relA於正常環境中正向調控 yeeN,但在氧化逆境下並無直接參與調節 yeeN 38
X. 在鞭毛生合成過程中 hns 基因可能參與調節 yeeN 39
XI. 結語 40
第五章 未來展望 41
參考文獻 42
dc.language.isozh-TW
dc.title大腸桿菌DUF28蛋白質在氧化逆境反應之功能研究zh_TW
dc.titleFunctional study of Escherichia coli DUF28 proteins in oxidative stress responseen
dc.typeThesis
dc.date.schoolyear99-1
dc.description.degree碩士
dc.contributor.oralexamcommittee陳文盛,葉開溫,葉國楨,林乃君
dc.subject.keyword大腸桿菌,DUF28蛋白,yeeN,yebC,氧化逆境,泳動力,zh_TW
dc.subject.keywordEscherichia coli,DUF28 protein,yeeN,yebC,oxidative stress,motility,en
dc.relation.page93
dc.rights.note同意授權(全球公開)
dc.date.accepted2011-02-15
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept植物科學研究所zh_TW
顯示於系所單位:植物科學研究所

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf3.19 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved