Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 藥理學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10217
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor邱麗珠
dc.contributor.authorYan-Yu Liaoen
dc.contributor.author廖彥昱zh_TW
dc.date.accessioned2021-05-20T21:11:05Z-
dc.date.available2012-03-03
dc.date.available2021-05-20T21:11:05Z-
dc.date.copyright2011-03-03
dc.date.issued2011
dc.date.submitted2011-02-16
dc.identifier.citationAmbo, A., Hamazaki, N., Yamada, Y., Nakata, E., Sasaki, Y., 2001. Structure-activity studies on nociceptin analogues: ORL1 receptor binding and biological activity of cyclic disulfide-containing analogues of nociceptin peptides. J. Med. Chem. 44, 4015-4018.
Anton, B., Fein, J., To, T., Li, X., Silberstein, L., Evans, C.J., 1996. Immunohistochemical localization of ORL-1 in the central nervous system of the rat. J. Comp. Neurol. 368, 229-251.
Arduin, M., Spagnolo, B., Calo, G., Guerrini, R., Carra, G., Fischetti, C., Trapella, C., Marzola, E., McDonald, J., Lambert, D.G., Regoli, D., Salvadori, S., 2007. Synthesis and biological activity of nociceptin/orphanin FQ analogues substituted in position 7 or 11 with Calpha,alpha-dialkylated amino acids. Bioorg. Med. Chem. 15, 4434-4443.
Barnes, T.A., Lambert, D.G., 2004. Editorial III: Nociceptin/orphanin FQ peptide-receptor system: are we any nearer the clinic? Br. J. Anaesth. 93, 626-628.
Beitz, A.J., 1985. The midbrain periaqueductal gray in the rat. I. Nuclear volume, cell number, density, orientation, and regional subdivisions. J. Comp. Neurol. 237, 445-459.
Beitz, A.J., Shepard, R.D., 1985. The midbrain periaqueductal gray in the rat. II. A Golgi analysis. J. Comp. Neurol. 237, 460-475.
Berthele, A., Platzer, S., Dworzak, D., Schadrack, J., Mahal, B., Buttner, A., Assmus, H.P., Wurster, K., Zieglgansberger, W., Conrad, B., Tolle, T.R., 2003. [3H]-nociceptin ligand-binding and nociceptin opioid receptor mrna expression in the human brain. Neuroscience 121, 629-640.
Bignan, G.C., Battista, K., Connolly, P.J., Orsini, M.J., Liu, J., Middleton, S.A., Reitz, A.B., 2006. 3-(4-Piperidinyl)indoles and 3-(4-piperidinyl)pyrrolo-[2,3-b]pyridines as ligands for the ORL-1 receptor. Bioorg. Med. Chem. Lett. 16, 3524-3528.
Bigoni, R., Calo', G., Rizzi, A., Okawa, H., Regoli, D., Smart, D., Lambert, D.G., 2002. Effects of naloxone benzoylhydrazone on native and recombinant nociceptin/orphanin FQ receptors. Can. J. Physiol. Pharmacol. 80, 407-412.
Bigoni, R., Rizzi, A., Rizzi, D., Becker, J.A., Kieffer, B.L., Simonin, F., Regoli, D., Calo', G., 2000. In vitro pharmacological profile of peptide III-BTD: a novel ligand for nociceptin/orphanin FQ and opioid receptors. Life Sci. 68, 233-239.
Bojnik, E., Babos, F., Fischetti, C., Magyar, A., Camarda, V., Borsodi, A., Bajusz, S., Calo', G., Benyhe, S., 2010. Comparative biochemical and pharmacological characterization of a novel, NOP receptor selective hexapeptide, Ac-RYYRIR-ol. Brain Res. Bull. 81, 477-483.
Boom, A., Mollereau, C., Meunier, J.C., Vassart, G., Parmentier, M., Vanderhaeghen, J.J., Schiffmann, S.N., 1999. Distribution of the nociceptin and nocistatin precursor transcript in the mouse central nervous system. Neuroscience 91, 991-1007.
Burmeister, M.A., Ansonoff, M.A., Pintar, J.E., Kapusta, D.R., 2008. Nociceptin/orphanin FQ (N/OFQ)-evoked bradycardia, hypotension, and diuresis are absent in N/OFQ peptide (NOP) receptor knockout mice. J. Pharmacol. Exp. Ther. 326, 897-904.
Calo', G., Bigoni, R., Rizzi, A., Guerrini, R., Salvadori, S., Regoli, D., 2000a. Nociceptin/orphanin FQ receptor ligands. Peptides 21, 935-947.
Calo', G., Guerrini, R., Bigoni, R., Rizzi, A., Marzola, G., Okawa, H., Bianchi, C., Lambert, D.G., Salvadori, S., Regoli, D., 2000b. Characterization of [Nphe1]nociceptin(1-13)NH2, a new selective nociceptin receptor antagonist. Br. J. Pharmacol. 129, 1183-1193.
Calo', G., Guerrini, R., Rizzi, A., Salvadori, S., Burmeister, M., Kapusta, D., Lambert, D.G., Regoli, D., 2005. UFP-101. a peptide antagonist selective for the Nociceptin/orphanin FQ receptor. CNS Drug Reviews 11, 97-112.
Calo', G., Guerrini, R., Rizzi, A., Salvadori, S., Regoli, D., 2000c. Pharmacology of nociceptin and its receptor: a novel therapeutic target. Br. J. Pharmacol. 129, 1261-1283.
Calo', G., Rizzi, A., Rizzi, D., Bigoni, R., Guerrini, R., Marzola, G., Marti, M., McDonald, J., Morari, M., Lambert, D.G., Salvadori, S., Regoli, D., 2002. [Nphe1,Arg14,Lys15]nociceptin-NH2, a novel potent and selective antagonist of the nociceptin/orphanin FQ receptor. Br. J. Pharmacol. 136, 303-311.
Camarda, V., Fischetti, C., Anzellotti, N., Molinari, P., Ambrosio, C., Kostenis, E., Regoli, D., Trapella, C., Guerrini, R., Severo, S., Calo, G., 2009. Pharmacological profile of NOP receptors coupled with calcium signaling via the chimeric protein G alpha qi5. Naunyn. Schmiedebergs Arch. Pharmacol. 379, 599-607.
Carra, G., Rizzi, A., Guerrini, R., Barnes, T.A., McDonald, J., Hebbes, C.P., Mela, F., Kenigs, V.A., Marzola, G., Rizzi, D., Gavioli, E., Zucchini, S., Regoli, D., Morari, M., Salvadori, S., Rowbotham, D.J., Lambert, D.G., Kapusta, D.R., Calo', G., 2005. [(pF)Phe4,Arg14,Lys15]N/OFQ-NH2 (UFP-102), a highly potent and selective agonist of the nociceptin/orphanin FQ receptor. J. Pharmacol. Exp. Ther. 312, 1114-1123.
Chen, Z., Goehring, R.R., Valenzano, K.J., Kyle, D.J., 2004. Design and synthesis of novel small molecule N/OFQ receptor antagonists. Bioorg. Med. Chem. Lett. 14, 1347-1351.
Chieng, B., Christie, M.J., 1994. Inhibition by opioids acting on mu-receptors of GABAergic and glutamatergic postsynaptic potentials in single rat periaqueductal gray neurones in vitro. Br. J. Pharmacol. 113, 303-309.
Chiou, L.C., 2000. Pharmacological characterization of the nociceptin receptor, ORL1. Insight from the inward rectifier activation in the periaqueductal gray. J. Biomed. Sci. 7, 232-240.
Chiou, L.C., 2001. Differential antagonism by naloxone benzoylhydrazone of the activation of inward rectifying K+ channels by nociceptin and a mu-opioid in rat periaqueductal grey slices. Naunyn. Schmiedebergs Arch. Pharmacol. 363, 583-589.
Chiou, L.C., Chuang, K.C., Wichmann, J., Adam, G., 2004. Ro 64-6198 [(1S,3aS)-8-(2,3,3a,4,5,6-Hexahydro-1H-phenalen-1-yl)-1-phenyl-1,3,8-triaza-spiro[4.5]decan-4-one] acts differently from nociceptin/orphanin FQ in rat periaqueductal gray slices. J. Pharmacol. Exp. Ther. 311, 645-651.
Chiou, L.C., Fan, S.H., 2002. CompB (J-113397), selectively and competitively antagonizes nociceptin activation of inwardly rectifying K+ channels in rat periaqueductal gray slices. Neuropharmacology 42, 987-992.
Chiou, L.C., Fan, S.H., Guerrini, R., Calo', G., 2002. [Nphe1]N/OFQ-(1-13)-NH2 is a competitive and selective antagonist at nociceptin/orphanin FQ receptors mediating K+ channel activation in rat periaqueductal gray slices. Neuropharmacology 42, 246-252.
Chiou, L.C., Liao, Y.Y., Fan, P.C., Kuo, P.H., Riemer, C.R., Prinssen, E.P., 2007. Nociceptin/orpahnin FQ peptide receptors: pharmacology and clinical implications. Curr Drug Targets 8, 117-135.
Chiou, L.C., Liao, Y.Y., Guerrini, R., Calo', G., 2005. [Nphe1,Arg14,Lys15]N/OFQ-NH2 is a competitive antagonist of NOP receptors in the periaqueductal gray. Eur. J. Pharmacol. 515, 47-53.
Ciccocioppo, R., Biondini, M., Antonelli, L., Wichmann, J., Jenck, F., Massi, M., 2002. Reversal of stress- and CRF-induced anorexia in rats by the synthetic nociceptin/orphanin FQ receptor agonist, Ro 64-6198. Psychopharmacology (Berl). 161, 113-119.
Darland, T., Heinricher, M.M., Grandy, D.K., 1998. Orphanin FQ/nociceptin: a role in pain and analgesia, but so much more. Trends Neurosci. 21, 215-221.
Dautzenberg, F.M., Wichmann, J., Higelin, J., Py-Lang, G., Kratzeisen, C., Malherbe, P., Kilpatrick, G.J., Jenck, F., 2001. Pharmacological characterization of the novel nonpeptide orphanin FQ/nociceptin receptor agonist Ro 64-6198: rapid and reversible desensitization of the ORL1 receptor in vitro and lack of tolerance in vivo. J. Pharmacol. Exp. Ther. 298, 812-819.
Dayan, L.A., Kenigs, V.A., Jenck, F., Wichmann, J., Kapusta, D.R., 2001. Central injection of Ro 64-6198, synthetic ORL-1 agonist, produces profound nociceptin-like effects on kidney function and feeding but not cardiovascular function. FASEB J. 15, A1143.
Dooley, C.T., Houghten, R.A., 1996. Orphanin FQ: receptor binding and analog structure activity relationships in rat brain. Life Sci. 59, PL23-29.
Dooley, C.T., Spaeth, C.G., Berzetei-Gurske, I.P., Craymer, K., Adapa, I.D., Brandt, S.R., Houghten, R.A., Toll, L., 1997. Binding and in vitro activities of peptides with high affinity for the nociceptin/orphanin FQ receptor, ORL1. J. Pharmacol. Exp. Ther. 283, 735-741.
Economidou, D., Fedeli, A., Fardon, R.M., Weiss, F., Massi, M., Ciccocioppo, R., 2006a. Effect of novel nociceptin/orphanin FQ-NOP receptor ligands on ethanol drinking in alcohol-preferring msP rats. Peptides 27, 3299-3306.
Economidou, D., Policani, F., Angellotti, T., Massi, M., Terada, T., Ciccocioppo, R., 2006b. Effect of novel NOP receptor ligands on food intake in rats. Peptides 27, 775-783.
Erlander, M.G., Tillakaratne, N.J., Feldblum, S., Patel, N., Tobin, A.J., 1991. Two genes encode distinct glutamate decarboxylases. Neuron 7, 91-100.
Faber, E.S., Chambers, J.P., Evans, R.H., Henderson, G., 1996. Depression of glutamatergic transmission by nociceptin in the neonatal rat hemisected spinal cord preparation in vitro. Br. J. Pharmacol. 119, 189-190.
Fischetti, C., Camarda, V., Rizzi, A., Pela, M., Trapella, C., Guerrini, R., McDonald, J., Lambert, D.G., Salvadori, S., Regoli, D., Calo, G., 2009. Pharmacological characterization of the nociceptin/orphanin FQ receptor non peptide antagonist Compound 24. Eur. J. Pharmacol. 614, 50-57.
Fischetti, C., Pela, M., Camarda, V., Rizzi, A., Trapella, C., McDonald, J., Regoli, D., Salvadori, S., Guerrini, R., Lambert, D.G., Calo', G., 2008. Pharmacological characterization of the nociceptin/orphanin FQ receptor antagonist Comp. 24 (1-benzyl-N-[3-[spiroisobenzofuran-1(3H),4'-peperidin-1-yl]propyl]pyrrolidine-2-carboxamide). European Opioid Conference-European Neuropeptide Club 2008 Joint Meeting, Program, P.59 Ferrara, Italy.
Florin, S., Leroux-Nicollet, I., Meunier, J.C., Costentin, J., 1997. Autoradiographic localization of [3H]nociceptin binding sites from telencephalic to mesencephalic regions of the mouse brain. Neurosci. Lett. 230, 33-36.
Gehlert, D.R., Gackenheimer, S.L., Shaw, J.L., 2006. Distribution of nociceptin and Ro64-6198 activated [35S]-GTPgammaS binding in the rat brain. Neuropeptides 40, 95-105.
Goeldner, C., Reiss, D., Wichmann, J., Kieffer, B.L., Ouagazzal, A.M., 2009. Activation of nociceptin opioid peptide (NOP) receptor impairs contextual fear learning in mice through glutamatergic mechanisms. Neurobiol. Learn. Mem. 91, 393-401.
Goeldner, C., Reiss, D., Wichmann, J., Meziane, H., Kieffer, B.L., Ouagazzal, A.M., 2008. Nociceptin receptor impairs recognition memory via interaction with NMDA receptor-dependent mitogen-activated protein kinase/extracellular signal-regulated kinase signaling in the hippocampus. J. Neurosci. 28, 2190-2198.
Goto, Y., Arai-Otsuki, S., Tachibana, Y., Ichikawa, D., Ozaki, S., Takahashi, H., Iwasawa, Y., Okamoto, O., Okuda, S., Ohta, H., Sagara, T., 2006. Identification of a novel spiropiperidine opioid receptor-like 1 antagonist class by a focused library approach featuring 3D-pharmacophore similarity. J. Med. Chem. 49, 847-849.
Grisel, J.E., Mogil, J.S., Belknap, J.K., Grandy, D.K., 1996. Orphanin FQ acts as a supraspinal, but not a spinal, anti-opioid peptide. Neuroreport 7, 2125-2129.
Guerrini, R., Calo', G., Rizzi, A., Bigoni, R., Bianchi, C., Salvadori, S., Regoli, D., 1998. A new selective antagonist of the nociceptin receptor. Br. J. Pharmacol. 123, 163-165.
Guerrini, R., Calo, G., Rizzi, A., Bianchi, C., Lazarus, L.H., Salvadori, S., Temussi, P.A., Regoli, D., 1997. Address and message sequences for the nociceptin receptor: a structure-activity study of nociceptin-(1-13)-peptide amide. J. Med. Chem. 40, 1789-1793.
Gunduz, O., Sipos, F., Spagnolo, B., Kocsis, L., Magyar, A., Orosz, G., Borsodi, A., Calo, G., Benyhe, S., 2006. In vitro binding and functional studies of Ac-RYYRIK-ol and its derivatives, novel partial agonists of the nociceptin/orphanin F/Q receptor. Neurosignals 15, 91-101.
Hashimoto, Y., Calo', G., Guerrini, R., Smith, G., Lambert, D.G., 2000. Antagonistic effects of [Nphe1]nociceptin(1-13)NH2 on nociceptin receptor mediated inhibition of cAMP formation in Chinese hamster ovary cells stably expressing the recombinant human nociceptin receptor. Neurosci. Lett. 278, 109-112.
Hawkinson, J.E., Acosta-Burruel, M., Espitia, S.A., 2000. Opioid activity profiles indicate similarities between the nociceptin/orphanin FQ and opioid receptors. Eur. J. Pharmacol. 389, 107-114.
Hayashi, S., Nakata, E., Morita, A., Mizuno, K., Yamamura, K., Kato, A., Ohashi, K., 2010. Discovery of {1-[4-(2-{hexahydropyrrolo[3,4-c]pyrrol-2(1H)-yl}-1H -benzimidazol-1-yl)pip eridin-1-yl]cyclooctyl}methanol, systemically potent novel non-peptide agonist of nociceptin/orphanin FQ receptor as analgesic for the treatment of neuropathic pain: design, synthesis, and structure-activity relationships. Bioorg. Med. Chem. 18, 7675-7699.
Higgins, G.A., Kew, J.N., Richards, J.G., Takeshima, H., Jenck, F., Adam, G., Wichmann, J., Kemp, J.A., Grottick, A.J., 2002. A combined pharmacological and genetic approach to investigate the role of orphanin FQ in learning and memory. Eur. J. Neurosci. 15, 911-922.
Hirao, A., Imai, A., Sugie, Y., Tamura, T., Shimokawa, H., Toide, K., 2008a. Pharmacological properties of a novel nociceptin/orphanin FQ receptor agonist, 2-(3,5-dimethylpiperazin-1-yl)-1-[1-(1-methylcyclooctyl)piperidin-4-yl]-1H -benzimidazole, with anxiolytic potential. Eur. J. Pharmacol. 579, 189-195.
Hirao, A., Imai, A., Sugie, Y., Yamada, Y., Hayashi, S., Toide, K., 2008b. Pharmacological characterization of the newly synthesized nociceptin/orphanin FQ-receptor agonist 1-[1-(1-methylcyclooctyl)-4-piperidinyl]-2-[(3R)-3-piperidinyl] -1H-benzimidazole as an anxiolytic agent. J Pharmacol Sci 106, 361-368.
Hohmann, A.G., Suplita, R.L., Bolton, N.M., Neely, M.H., Fegley, D., Mangieri, R., Krey, J.F., Walker, J.M., Holmes, P.V., Crystal, J.D., Duranti, A., Tontini, A., Mor, M., Tarzia, G., Piomelli, D., 2005. An endocannabinoid mechanism for stress-induced analgesia. Nature 435, 1108-1112.
Ikeda, K., Kobayashi, K., Kobayashi, T., Ichikawa, T., Kumanishi, T., Kishida, H., Yano, R., Manabe, T., 1997. Functional coupling of the nociceptin/orphanin FQ receptor with the G-protein-activated K+ (GIRK) channel. Brain Res. Mol. Brain Res. 45, 117-126.
Inoue, M., Kawashima, T., Takeshima, H., Calo', G., Inoue, A., Nakata, Y., Ueda, H., 2003. In vivo pain-inhibitory role of nociceptin/orphanin FQ in spinal cord. J. Pharmacol. Exp. Ther. 305, 495-501.
Jenck, F., Wichmann, J., Dautzenberg, F.M., Moreau, J.L., Ouagazzal, A.M., Martin, J.R., Lundstrom, K., Cesura, A.M., Poli, S.M., Roever, S., Kolczewski, S., Adam, G., Kilpatrick, G., 2000. A synthetic agonist at the orphanin FQ/nociceptin receptor ORL1: anxiolytic profile in the rat. Proc. Natl. Acad. Sci. U. S. A. 97, 4938-4943.
Kapusta, D.R., Thorkildsen, C., Kenigs, V.A., Meier, E., Vinge, M.M., Quist, C., Petersen, J.S., 2005. Pharmacodynamic Characterization of ZP120, a Novel Functionally Selective NOP Receptor Partial Agonist with Sodium-Potassium-Sparing Aquaretic Activity. J. Pharmacol. Exp. Ther. 314, 652-660.
Kest, B., Hopkins, E., Palmese, C.A., Chen, Z.P., Mogil, J.S., Pintar, J.E., 2001. Morphine tolerance and dependence in nociceptin/orphanin FQ transgenic knock-out mice. Neuroscience 104, 217-222.
King, M.A., Rossi, G.C., Chang, A.H., Williams, L., Pasternak, G.W., 1997. Spinal analgesic activity of orphanin FQ/nociceptin and its fragments. Neurosci. Lett. 223, 113-116.
Kitayama, M., McDonald, J., Barnes, T.A., Calo, G., Guerrini, R., Rowbotham, D.J., Lambert, D.G., 2007. In vitro pharmacological characterisation of a novel cyclic nociceptin/orphanin FQ analogue c[Cys(7,10)]N/OFQ(1-13)NH (2). Naunyn. Schmiedebergs Arch. Pharmacol. 375, 369-376.
Ko, M.C., Wei, H., Woods, J.H., Kennedy, R.T., 2006. Effects of intrathecally administered nociceptin/orphanin FQ in monkeys: behavioral and mass spectrometric studies. J. Pharmacol. Exp. Ther. 318, 1257-1264.
Kobayashi, K., Uchiyama, M., Ito, H., Takahashi, H., Yoshizumi, T., Sakoh, H., Nagatomi, Y., Asai, M., Miyazoe, H., Tsujita, T., Hirayama, M., Ozaki, S., Tani, T., Ishii, Y., Ohta, H., Okamoto, O., 2009. Discovery of novel arylpyrazole series as potent and selective opioid receptor-like 1 (ORL1) antagonists. Bioorg. Med. Chem. Lett. 19, 3627-3631.
Koizumi, M., Sakoori, K., Midorikawa, N., Murphy, N.P., 2004. The NOP (ORL1) receptor antagonist Compound B stimulates mesolimbic dopamine release and is rewarding in mice by a non-NOP-receptor-mediated mechanism. Br. J. Pharmacol. 143, 53-62.
Kolczewski, S., Adam, G., Cesura, A.M., Jenck, F., Hennig, M., Oberhauser, T., Poli, S.M., Rossler, F., Rover, S., Wichmann, J., Dautzenberg, F.M., 2003. Novel hexahydrospiro[piperidine-4,1'-pyrrolo[3,4-c]pyrroles]: highly selective small-molecule nociceptin/orphanin FQ receptor agonists. J. Med. Chem. 46, 255-264.
Koster, A., Montkowski, A., Schulz, S., Stube, E.M., Knaudt, K., Jenck, F., Moreau, J.L., Nothacker, H.P., Civelli, O., Reinscheid, R.K., 1999. Targeted disruption of the orphanin FQ/nociceptin gene increases stress susceptibility and impairs stress adaptation in mice. Proc. Natl. Acad. Sci. U. S. A. 96, 10444-10449.
Kotlinska, J., Dylag, T., Rafalski, P., Talarek, S., Kosior, M., Silberring, J., 2004. Influence of nociceptin(1-17) fragments and its tyrosine-substituted derivative on morphine-withdrawal signs in rats. Neuropeptides 38, 277-282.
Kotlinska, J., Rafalski, P., Talarek, S., Dylag, T., Rolka, K., Wichmann, J., Silberring, J., 2005. Is the nociceptin (NOP) receptor involved in attenuation of the expression of sensitization to morphine-induced hyperlocomotion in mice? Behav. Pharmacol. 16, 101-106.
Kuzmin, A., Kreek, M.J., Bakalkin, G., Liljequist, S., 2007. The nociceptin/orphanin FQ receptor agonist Ro 64-6198 reduces alcohol self-administration and prevents relapse-like alcohol drinking. Neuropsychopharmacology 32, 902-910.
Kuzmin, A., Madjid, N., Johansson, B., Terenius, L., Ogren, S.O., 2009. The nociceptin system and hippocampal cognition in mice: a pharmacological and genetic analysis. Brain Res. 1305 Suppl, S7-19.
Kuzmin, A., Sandin, J., Terenius, L., Ogren, S.O., 2003. Acquisition, expression, and reinstatement of ethanol-induced conditioned place preference in mice: effects of opioid receptor-like 1 receptor agonists and naloxone. J. Pharmacol. Exp. Ther. 304, 310-318.
Kuzmin, A., Sandin, J., Terenius, L., Ogren, S.O., 2004. Evidence in locomotion test for the functional heterogeneity of ORL-1 receptors. Br. J. Pharmacol. 141, 132-140.
Lambert, D.G., 2008. The nociceptin/orphanin FQ receptor: a target with broad therapeutic potential. Nat Rev Drug Discov 7, 694-710.
Le Pen, G., Wichmann, J., Moreau, J.L., Jenck, F., 2002. The orphanin receptor agonist Ro 64-6198 does not induce place conditioning in rats. Neuroreport 13, 451-454.
Leith, J.L., Wilson, A.W., Donaldson, L.F., Lumb, B.M., 2007. Cyclooxygenase-1-derived prostaglandins in the periaqueductal gray differentially control C- versus A-fiber-evoked spinal nociception. J. Neurosci. 27, 11296-11305.
Letchworth, S.R., Mathis, J.P., Rossi, G.C., Bodnar, R.J., Pasternak, G.W., 2000. Autoradiographic localization of 125I[Tyr14]orphanin FQ/nociceptin and 125I[Tyr10]orphanin FQ/nociceptin(1-11) binding sites in rat brain. J. Comp. Neurol. 423, 319-329.
Liao, Y.Y., Teng, S.F., Lin, L.C., Kolczewski, S., Prinssen, E.P., Lee, L.J., Ho, I.K., Chiou, L.C., 2010. Functional heterogeneity of nociceptin/orphanin FQ receptors revealed by (+)-5a Compound and Ro 64-6198 in rat periaqueductal grey slices. Int J Neuropsychopharmacol, 1-13.
Liao, Y.Y., Trapella, C., Chiou, L.C., 2009. 1-Benzyl-N-[3-[spiroisobenzofuran -1(3H),4'-piperidin-1-yl]propyl]pyrrolidine-2-carboxamide (Compound 24) antagonizes NOP receptor-mediated potassium channel activation in rat periaqueductal gray slices. Eur. J. Pharmacol. 606, 84-89.
Majumdar, S., Mathis, J.P., Ansonoff, M., Burgman, M., Pintar, J.E., Pasternak, G.W., 2009. Binding of 125I-Y10-OFQ/N (1-11) in ORL1 knock out mice. INRC2009. International Narcotics Research Confernece Program & Abstracts, Portland, Oregon, USA, p. 111.
Mason, S.L., Ho, M., Nicholson, J., McKnight, A.T., 2001. In vitro characterization of Ac-RYYRWK-NH2, Ac-RYYRIK-NH2 and [Phe1y(CH2-NH)Gly2] nociceptin(1-13)NH2 at rat native and recombinant ORL(1) receptors. Neuropeptides 35, 244-256.
Mathis, J.P., Goldberg, I.E., Letchworth, S.R., Ryan-Moro, J.P., Pasternak, G.W., 1999. Identification of a high-affinity orphanin FQ/nociceptin(1-11) binding site in mouse brain. Synapse 34, 181-186.
Mathis, J.P., Goldberg, I.E., Rossi, G.C., Leventhal, L., Pasternak, G.W., 1998. Antinociceptive analogs of orphanin FQ/nociceptin(1-11). Life Sci. 63, PL 161-166.
Mathis, J.P., Ryan-Moro, J., Chang, A., Hom, J.S., Scheinberg, D.A., Pasternak, G.W., 1997. Biochemical evidence for orphanin FQ/nociceptin receptor heterogeneity in mouse brain. Biochem. Biophys. Res. Commun. 230, 462-465.
McLeod, R.L., Bolser, D.C., Jia, Y., Parra, L.E., Mutter, J.C., Wang, X., Tulshian, D.B., Egan, R.W., Hey, J.A., 2002. Antitussive effect of nociceptin/orphanin FQ in experimental cough models. Pulm. Pharmacol. Ther. 15, 213-216.
McLeod, R.L., Tulshian, D.B., Bolser, D.C., Varty, G.B., Baptista, M., Fernandez, X., Parra, L.E., Zimmer, J.C., Erickson, C.H., Ho, G.D., Jia, Y., Ng, F.W., Korfmacher, W., Xu, X., Veals, J., Smith-Torhan, A., Wainhaus, S., Fawzi, A.B., Austin, T.M., van Heek, M., Hey, J.A., 2010. Pharmacological profile of the NOP agonist and cough suppressing agent SCH 486757 (8-[Bis(2-Chlorophenyl)Methyl]-3-(2 -Pyrimidinyl)-8-Azabicyclo[3.2.1]Octan- 3-Ol) in preclinical models. Eur. J. Pharmacol. 630, 112-120.
McLeod, R.L., Tulshian, D.B., Ho, G.D., Fernandez, X., Bolser, D.C., Parra, L.E., Zimmer, J.C., Erickson, C.H., Fawzi, A.B., Jayappa, H., Lehr, C., Erskine, J., Smith-Torhan, A., Zhang, H., Hey, J.A., 2009. Effect of a novel NOP receptor agonist (SCH 225288) on guinea pig irritant-evoked, feline mechanically induced and canine infectious tracheobronchitis cough. Pharmacology 84, 153-161.
Mei, J., Pasternak, G.W., 2007. Modulation of brainstem opiate analgesia in the rat by sigma 1 receptors: a microinjection study. J. Pharmacol. Exp. Ther. 322, 1278-1285.
Meunier, J.C., Mollereau, C., Toll, L., Suaudeau, C., Moisand, C., Alvinerie, P., Butour, J.L., Guillemot, J.C., Ferrara, P., Monsarrat, B., Mazarguil, H., Vassart, G., Parmentier, M., Costentin, J., 1995. Isolation and structure of the endogenous agonist of opioid receptor-like ORL1 receptor. Nature 377, 532-535.
Mizoguchi, H., Hung, K.C., Leitermann, R., Narita, M., Nagase, H., Suzuki, T., Tseng, L.F., 2003. Blockade of mu-opioid receptor-mediated G-protein activation and antinociception by TRK-820 in mice. Eur. J. Pharmacol. 461, 35-39.
Mogil, J.S., Grisel, J.E., Reinscheid, R.K., Civelli, O., Belknap, J.K., Grandy, D.K., 1996. Orphanin FQ is a functional anti-opioid peptide. Neuroscience 75, 333-337.
Mogil, J.S., Pasternak, G.W., 2001. The molecular and behavioral pharmacology of the orphanin FQ/nociceptin peptide and receptor family. Pharmacol. Rev. 53, 381-415.
Mollereau, C., Parmentier, M., Mailleux, P., Butour, J.L., Moisand, C., Chalon, P., Caput, D., Vassart, G., Meunier, J.C., 1994. ORL1, a novel member of the opioid receptor family. Cloning, functional expression and localization. FEBS Lett. 341, 33-38.
Morgan, M.M., Grisel, J.E., Robbins, C.S., Grandy, D.K., 1997. Antinociception mediated by the periaqueductal gray is attenuated by orphanin FQ. Neuroreport 8, 3431-3434.
Mugnaini, E., Oertel, W.H., 1985. An atlas of the distribution of GABAergic neurons and terminals in the rat CNS as revealed by GAD immunohistochemistry. Handbook of Chemical Neuroanatomy 4, 436-608.
NC-IUPHAR, 2004. IUPHAR Receptor Database: Opioid receptors. http://www.iuphar-db.org/iuphar-rd/.
Neal, C.R., Jr., Mansour, A., Reinscheid, R., Nothacker, H.P., Civelli, O., Akil, H., Watson, S.J., Jr. 4, 1999a. Opioid receptor-like (ORL1) receptor distribution in the rat central nervous system: comparison of ORL1 receptor mRNA expression with 125I-[14Tyr]-orphanin FQ binding. J. Comp. Neurol. 412, 563-605.
Neal, C.R., Jr., Mansour, A., Reinscheid, R., Nothacker, H.P., Civelli, O., Watson, S.J., Jr. 4, 1999b. Localization of orphanin FQ (nociceptin) peptide and messenger RNA in the central nervous system of the rat. J. Comp. Neurol. 406, 503-547.
Nishi, M., Houtani, T., Noda, Y., Mamiya, T., Sato, K., Doi, T., Kuno, J., Takeshima, H., Nukada, T., Nabeshima, T., Yamashita, T., Noda, T., Sugimoto, T., 1997. Unrestrained nociceptive response and disregulation of hearing ability in mice lacking the nociceptin/orphaninFQ receptor. EMBO J. 16, 1858-1864.
Noda, Y., Mamiya, T., Nabeshima, T., Nishi, M., Higashioka, M., Takeshima, H., 1998. Loss of antinociception induced by naloxone benzoylhydrazone in nociceptin receptor-knockout mice. J. Biol. Chem. 273, 18047-18051.
Nothacker, H.P., Reinscheid, R.K., Mansour, A., Henningsen, R.A., Ardati, A., Monsma, F.J., Jr., Watson, S.J., Civelli, O., 1996. Primary structure and tissue distribution of the orphanin FQ precursor. Proc. Natl. Acad. Sci. U. S. A. 93, 8677-8682.
Obara, I., Przewlocki, R., Przewlocka, B., 2005. Spinal and local peripheral antiallodynic activity of Ro64-6198 in neuropathic pain in the rat. Pain 116, 17-25.
Okada, K., Sujaku, T., Chuman, Y., Nakashima, R., Nose, T., Costa, T., Yamada, Y., Yokoyama, M., Nagahisa, A., Shimohigashi, Y., 2000. Highly potent nociceptin analog containing the Arg-Lys triple repeat. Biochem. Biophys. Res. Commun. 278, 493-498.
Okamoto, O., Kobayashi, K., Kawamoto, H., Ito, S., Satoh, A., Kato, T., Yamamoto, I., Mizutani, S., Hashimoto, M., Shimizu, A., Sakoh, H., Nagatomi, Y., Iwasawa, Y., Takahashi, H., Ishii, Y., Ozaki, S., Ohta, H., 2008. Identification of novel benzimidazole series of potent and selective ORL1 antagonists. Bioorg. Med. Chem. Lett. 18, 3278-3281.
Okano, M., Mito, J., Maruyama, Y., Masuda, H., Niwa, T., Nakagawa, S., Nakamura, Y., Matsuura, A., 2009. Discovery and structure-activity relationships of 4-aminoquinazoline derivatives, a novel class of opioid receptor like-1 (ORL1) antagonists. Bioorg. Med. Chem. 17, 119-132.
Okuda, S., Tanaka, T., Miyaji, M., Nishino, M., Iguchi, T., Ozaki, S., Kawamoto, H., Ito, Y., Iwasawa, Y., Ohta, H., 2000. Pharmacological profiles of J-113397, a novel nociceptin(orphanin FQ) antagonist in pain regualtion., Soc. Neurosci. Abs., New Orleans, U. S. A., p. Prog. No. 453.413.
Ozaki, S., Kawamoto, H., Itoh, Y., Miyaji, M., Azuma, T., Ichikawa, D., Nambu, H., Iguchi, T., Iwasawa, Y., Ohta, H.-. 2000a. In vitro and in vivo pharmacological characterization of J-113397, a potent and selective non-peptidyl ORL1 receptor antagonist. Eur. J. Pharmacol. 402, 45-53.
Ozaki, S., Kawamoto, H., Itoh, Y., Miyaji, M., Iwasawa, Y., Ohta, H., 2000b. A potent and highly selective nonpeptidyl nociceptin/orphanin FQ receptor (ORL1) antagonist: J-113397. Eur. J. Pharmacol. 387, R17-18.
Peluso, J., LaForge, K.S., Matthes, H.W., Kreek, M.J., Kieffer, B.L., Gaveriaux-Ruff, C., 1998. Distribution of nociceptin/orphanin FQ receptor transcript in human central nervous system and immune cells. J. Neuroimmunol. 81, 184-192.
Peng, Y.L., Chang, M., Dong, S.L., Li, W., Han, R.W., Fu, G.X., Chen, Q., Wang, R., 2006. Novel potent agonist [(pF)Phe4,Aib7,Aib11,Arg14,Lys15]N/OFQ-NH2 and antagonist [Nphe1,(pF)Phe4,Aib7,Aib11,Arg14,Lys15]N/OFQ-NH2 of nociceptin /orphanin FQ receptor. Regul. Pept. 134, 75-81.
Pillot, C., Heron, A., Cochois, V., Tardivel-Lacombe, J., Ligneau, X., Schwartz, J.C., Arrang, J.M., 2002. A detailed mapping of the histamine H(3) receptor and its gene transcripts in rat brain. Neuroscience 114, 173-193.
Podlesnik, C.A., Ko, M.C., Winger, G., Wichmann, J., Prinssen, E.P., Woods, J.H., 2011. The effects of nociceptin/orphanin FQ receptor agonist Ro 64-6198 and diazepam on antinociception and remifentanil self-administration in rhesus monkeys. Psychopharmacology (Berl). 213, 53-60.
Reichling, D.B., Basbaum, A.I., 1990. Contribution of brainstem GABAergic circuitry to descending antinociceptive controls: I. GABA-immunoreactive projection neurons in the periaqueductal gray and nucleus raphe magnus. J. Comp. Neurol. 302, 370-377.
Reinscheid, R.K., Ardati, A., Monsma, F.J., Jr., Civelli, O., 1996. Structure-activity relationship studies on the novel neuropeptide orphanin FQ. J. Biol. Chem. 271, 14163-14168.
Reinscheid, R.K., Nothacker, H.P., Bourson, A., Ardati, A., Henningsen, R.A., Bunzow, J.R., Grandy, D.K., Langen, H., Monsma, F.J., Civelli, O., 1995. Orphanin FQ: a neuropeptide that activates an opioid like G protein-coupled receptor. Science 270, 792-794.
Reiss, D., Wichmann, J., Tekeshima, H., Kieffer, B.L., Ouagazzal, A.M., 2008. Effects of nociceptin/orphanin FQ receptor (NOP) agonist, Ro64-6198, on reactivity to acute pain in mice: comparison to morphine. Eur. J. Pharmacol. 579, 141-148.
Rizzi, A., Rizzi, D., Marzola, G., Regoli, D., Larsen, B.D., Petersen, J.S., Calo', G., 2002a. Pharmacological characterization of the novel nociceptin/orphanin FQ receptor ligand, ZP120: in vitro and in vivo studies in mice. Br. J. Pharmacol. 137, 369-374.
Rizzi, D., Bigoni, R., Rizzi, A., Jenck, F., Wichmann, J., Guerrini, R., Regoli, D., Calo', G., 2001. Effects of Ro 64-6198 in nociceptin/orphanin FQ-sensitive isolated tissues. Naunyn. Schmiedebergs Arch. Pharmacol. 363, 551-555.
Rizzi, D., Rizzi, A., Bigoni, R., Camarda, V., Marzola, G., Guerrini, R., De Risi, C., Regoli, D., Calo', G., 2002b. [Arg14,Lys15]nociceptin, a highly potent agonist of the nociceptin/orphanin FQ receptor: in vitro and in vivo studies. J. Pharmacol. Exp. Ther. 300, 57-63.
Rossi, G.C., Leventhal, L., Bolan, E., Pasternak, G.W., 1997. Pharmacological characterization of orphanin FQ/nociceptin and its fragments. J. Pharmacol. Exp. Ther. 282, 858-865.
Sakurada, T., Komatsu, T., Moriyama, T., Sasaki, M., Sanai, K., Orito, T., Sakurada, C., Sakurada, S., 2005. Effects of intraplantar injections of nociceptin and its N-terminal fragments on nociceptive and desensitized responses induced by capsaicin in mice. Peptides 26, 2505-2512.
Sanada, M., Zheng, F., Huth, T., Alzheimer, C., 2007. Cholinergic modulation of periaqueductal grey neurons: does it contribute to epileptogenesis after organophosphorus nerve agent intoxication? Toxicology 233, 199-208.
Seki, T., Awamura, S., Kimura, C., Ide, S., Sakano, K., Minami, M., Nagase, H., Satoh, M., 1999. Pharmacological properties of TRK-820 on cloned mu-, delta- and kappa-opioid receptors and nociceptin receptor. Eur. J. Pharmacol. 376, 159-167.
Shinkai, H., Ito, T., Iida, T., Kitao, Y., Yamada, H., Uchida, I., 2000. 4-Aminoquinolines: novel nociceptin antagonists with analgesic activity. J. Med. Chem. 43, 4667-4677.
Spagnolo, B., Carra, G., Fantin, M., Fischetti, C., Hebbes, C., McDonald, J., Barnes, T.A., Rizzi, A., Trapella, C., Fanton, G., Morari, M., Lambert, D.G., Regoli, D., Calo, G., 2007. Pharmacological characterization of the nociceptin/orphanin FQ receptor antagonist SB-612111 [(-)-cis-1-methyl-7-[[4-(2,6-dichlorophenyl)piperidin-1-yl] methyl]-6,7,8,9-tetrahydro-5H-benzocyclohepten-5-ol]: in vitro studies. J. Pharmacol. Exp. Ther. 321, 961-967.
Sugimoto, Y., Shimizu, A., Kato, T., Satoh, A., Ozaki, S., Ohta, H., Okamoto, O., 2006. Design, synthesis, and biological evaluation of indole derivatives as novel nociceptin/orphanin FQ (N/OFQ) receptor antagonists. Bioorg. Med. Chem. Lett. 16, 3569-3573.
Teshima, K., Minoguchi, M., Tounai, S., Ashimori, A., Eguchi, J., Allen, C.N., Shibata, S., 2005. Nonphotic entrainment of the circadian body temperature rhythm by the selective ORL1 receptor agonist W-212393 in rats. Br. J. Pharmacol. 146, 33-40.
Thomsen, C., Hohlweg, R., 2000. (8-Naphthalen-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10217-
dc.description.abstract在1994年,一種新的鴉片受體被發現,因其結構相似於傳統鴉片受體,但卻對傳統鴉片受體致效劑缺乏親和力,同時也未發現其內生性致效劑,所以一開始被稱為類鴉片孤兒受體(opioid receptor like 1, ORL1)。它的內生性致效劑在一年後被發現並命名為nociceptin或orphanin FQ,在2002年國際藥理學聯合會以其內生性致效劑之名正式將此受體命名為NOP受體(nociceptin/orphanin FQ peptide receptor)。研究顯示此N/OFQ-NOP受體系統與許多神經及精神疾病有關,如疼痛、焦慮、憂鬱、非自主運動、成癮、發作及痴呆等。
從NOP受體基因剪接變異體(splicing variants)被發現及一些受體結合和功能性研究顯示有NOP受體異質性(heterogeneity)的存在。我們之前發現Ro 64-6198這個NOP受體致效劑在中腦環導水管灰質腹側區(ventrolateral PAG)只能活化一部份的NOP受體,而在本研究中,我們發現另一個新的非胜肽NOP受體結合劑(+)-5a Compound ((3aS,6aR)-1-(cis-4-Isopropylcyclohexyl)-5'-methyl-2'–phenylhexahydro spiro[piperidine-4,1'-pyrrolo[3,4-c]pyrrole])在相同的標本也只能活化一部份NOP受體,這些可被(+)-5a Compound活化的NOP受體與Ro 64-6198所活化的NOP受體是屬於同一群,(+)-5a Compound (0.1-30 microM)能濃度相依的透過NOP受體活化35%所記錄神經細胞的G蛋白偶合向內整流鉀離子通道(GIRK channels),其IC50為605 nM,效價(potency)及所能引發反應的最大效力(efficacy)分別為N/OFQ的1/12倍及47%,對(+)-5a Compound-insensitive的細胞,給予Ro 64-6198同樣也無法引發反應,但在這些細胞中N/OFQ則可有效的活化G蛋白偶合向內整流鉀離子通道,另外在(+)-5a Compound-sensitive的細胞,給予Ro 64-6198則反應程度並無差異,從免疫螢光染色的實驗顯示(+)-5a Compound-sensitive的細胞主要是GABAergic,此外,(+)-5a Compound-sensitive的細胞在型態上,其神經分支比(+)-5a Compound-insensitive的細胞來得複雜。
N/OFQ(1-11)是具藥理活性的N/OFQ代謝產物,從放射線標定的研究中,125I-[Tyr10]N/OFQ(1-11)及 125I-[Tyr14]N/OFQ這兩個NOP受體的放射線結合劑在鼠腦中有不同的分布,其中125I-[Tyr10]N/OFQ(1-11)的結合位置可能是125I-[Tyr14]N/OFQ所顯現出兩種不同親和力結合處中的高親和力結合處,基於這個發現,我們於是做了在環導水管灰質區對Ro 64-6198/(+)-5a Compound有反應的NOP受體就是125I-[Tyr10]N/OFQ(1-11)這個結合位置的假設,因此,我們藉由測試[Tyr10]N/OFQ(1-11)能否區別(+)-5a Compound-sensitive及-insensitive細胞來驗證這個假設。在紀錄的環導水管灰質腹側區細胞中,[Tyr10]N/OFQ(1-11)在濃度3-300 microM時能引發向內整流性鉀離子電流,其EC50為9.0 microM,比N/OFQ弱了173倍,而效力(efficacy)則與N/OFQ相似,[Tyr10]N/OFQ(1-11)顯露了與(+)-5a Compound不同的藥理特性,它不管在(+)-5a Compound-sensitive或-insensitive細胞中都有作用,這些結果顯示 [Tyr10]N/OFQ(1-11)是一個效力比N/OFQ差的NOP受體全效致效劑,而且在環導水管灰質腹側區細胞中,[Tyr10]N/OFQ(1-11)無法顯露出NOP受體功能異質性。
為了闡明NOP受體多樣性的可能,發展及鑑定新的NOP受體拮抗劑是很重要的。因此在本研究中,我們也在中腦環導水管灰質腹側區細胞中測試Compound 24 (1-Benzyl-N-[3-[spiroisobenzofuran-1(3H),4’-piperidin-1-yl]propyl]pyrrolidine-2 -carboxamide)及SB-612111 ((-)-cis-1- Methyl-7-[[4-(2,6- dichlorophenyl)piperidin-1 -yl]methyl]-6,7,8,9-tetrahydro-5H-benzocyclohepten-5-ol)這兩個新發展的NOP受體拮抗劑是否具有能顯露出NOP受體功能異質性的特性,然而在我們所紀錄到可被N/OFQ所活化的全部細胞,N/OFQ的作用都會被Compound 24及SB-612111所拮抗,因此這兩種NOP受體拮抗劑並無法顯露NOP受體功能異質性。Compound 24 (0.3-10 microM)能濃度相依的抑制N/OFQ所誘導出的向內整流鉀離子電流,其IC50為2.6 microM,Compound 24在環導水管灰質腹側區神經細胞的抑制效價比在小鼠輸精管標本及表現人類NOP受體的培養細胞所得到的效價還差,而且在相同的環導水管灰質區標本,Compound 24的作用比另一個胜肽類NOP受體拮抗劑UFP-101還要慢,當Compound 24濃度高達10 microM時對NOP受體並不具有內在致效劑的活性,不過只要Compound 24的濃度高於3 microM時也會抑制mu鴉片受體致效劑DAMGO(D-Ala2, N-Me-Phe4, Gly5-ol]-enkephalin)所誘導出的向內整流鉀離子電流。而SB-612111也能濃度相依的拮抗N/OFQ所引發的向內整流鉀離子電流,從濃度反應曲線估出其IC50值為87.7 nM,而且SB-612111就算濃度高到1 microM並不會產生內在致效劑活性,也不會影響mu鴉片受體致效劑DAMGO所引發的向內整流鉀離子電流。
總結,在環導水管灰質腹側區(+)-5a Compound與Ro 64-6198一樣都只活化一部份的NOP受體,而這些對(+)-5a Compound有反應的神經細胞大多屬於GABAergic,而且對(+)-5a Compound有反應及無反應的細胞,兩者在細胞型態上並不相同,這些結果進一步支持在中腦環導水管灰質區的NOP受體有功能異質性的存在。不過[Tyr10]N/OFQ(1-11)在藥理特性上與(+)-5a Compound並不相同,而且利用[Tyr10]N/OFQ(1-11)以及Compound 24與SB-612111這兩個新的NOP受體拮抗劑也無法觀察到NOP受體功能異質性的現象。此外,在Compound 24與SB-612111的定量性研究上,證明Compound 24是一個效價普通且選擇性亦非理想的NOP受體拮抗劑,另一方面,SB-612111則是一個有效且具選擇性,同時又具非胜肽類優勢的NOP受體拮抗劑,它可說是能用來探究內生性N/OFQ生理角色最好的NOP受體拮抗劑。
zh_TW
dc.description.abstractIn 1994, a novel opioid receptor family, opioid receptor like 1 (ORL1) orphan receptors, was identified to be structurally similar to classical opioid receptors, but insensitive to traditional opioids. Its endogenous ligand was later identified to be a heptadecapeptide and termed nociceptin or orphanin FQ. This receptor was consensusly renamed after its endogenous ligand as nociceptin/orphanin FQ (N/OFQ) peptide (NOP) receptor in IUPHAR2002. The N/OFQ-NOP receptor system was implicated in several neurological and psychological disorders, such as pain, anxiety, depression, involuntary movement, addiction, seizure and dementia.
Heterogeneity of NOP receptors has been proposed based on the findings of splicing variants and from binding and functional studies. We have previously reported that Ro 64-6198, a NOP receptor agonist, activated a subset, but not all, of N/OFQ-sensitive NOP receptors in midbrain ventrolateral periaqueductal gray (vlPAG). In this study, we found that a new non-peptide ligand of NOP receptors, (+)-5a Compound ((3aS,6aR)-1-(cis-4-Isopropylcyclohexyl)-5'-methyl-2'-phenylhexahydrospiro[piperidine -4,1'-pyrrolo[3,4-c]pyrrole]), also activated a subset of NOP receptors as the same subset affected by Ro 64-6198 in vlPAG neurons. (+)-5a Compound (0.1-30 microM) concentration-dependently activated G-protein-coupled inwardly rectifying potassium (GIRK) channels through the NOP receptors in about 35% of the recorded vlPAG neurons. (+)-5a Compound (EC50: 605 nM) was less potent (1/12) and efficacious (47%) than N/OFQ. In (+)-5a Compound-insensitive neurons, Ro 64-6198 was also ineffective, and vice versa, but N/OFQ was effective in activating GIRK channels through NOP receptors. In (+)-5a Compound-sensitive neurons, (+)-5a Compound precluded the effect of Ro 64-6198. Immunofluorecent and morphometric studies showed that most of the (+)-5a Compound-sensitive neurons were multipolar with intensive dendritic arborization and immunoreactive to glutamic acid decarboxylase-67.
N/OFQ(1-11) is a pharmacologically active metabolite of N/OFQ. The distribution of its radioligand, 125I-[Tyr10]N/OFQ(1-11), resembled the high affinity, but not all, binding sites of 125I-[Tyr14]N/OFQ in rodent brains. Based on this finding we hypothesize that the Ro 64-6198/(+)-5a Compound-sensitive NOP receptor in the PAG is the binding site of 125I-[Tyr10]N/OFQ(1-11). Here, we validated this hypothesis by examining if [Tyr10]N/OFQ(1-11) can differentiate (+)-5a Compound-sensitive and -insensitive vlPAG neurons. [Tyr10]N/OFQ(1-11), like N/OFQ, induced GIRK current through NOP receptors in the vlPAG neurons. It was 173 times less potent (EC50: 9.0 microM) but equi-efficacious, as compared with N/OFQ. [Tyr10]N/OFQ(1-11) displayed different pharmacological profiles as (+)-5a Compound. It was effective in both (+)-5a Compound-sensitive and -insensitive neurons. These results suggest that [Tyr10]N/OFQ(1-11) is an NOP full agonist and less potent than N/OFQ. The functional heterogeneity of NOP receptors, therefore, can not be revealed by [Tyr10]N/OFQ(1-11) in vlPAG neurons.
To clarify the possible diversity of NOP receptors, it is important to develop and characterize novel NOP receptor antagonists. In this study, we also examined if two newly developed NOP receptor antagonists, 1-Benzyl-N-[3-[spiroisobenzofuran -1(3H),4’-piperidin-1-yl]propyl]pyrrolidine-2-carboxamide (Compound 24) and (-)-cis-1-Methyl-7-[[4-(2,6-dichlorophenyl)piperidin-1-yl]methyl]-6,7,8,9-tetrahydro-5H-benzocyclohepten-5-ol (SB-612111), can reveal the heterogeneity of NOP receptors in vlPAG slices. Both Compound 24 and SB-612111 antagonized the effect of N/OFQ in all the recorded neurons. Therefore, the heterogeneity of NOP receptors can not be revealed by these two antagonists. However, we further quantitatively characterized their interactions with N/OFQ in vlPAG slices. Compound 24, at 0.3-10 microM, attenuated N/OFQ-induced GIRK current concentration-dependently. The antagonistic potency of Compound 24 in vlPAG neurons (IC50: 2.6 + 0.6 microM) was, however, lower than that obtained in mouse vas deferens preparations or expressed human NOP receptors. The action kinetic of Compound 24 was slower than UFP-101, a peptide antagonist, in the same preparations. Compound 24 had no intrinsic agonistic activity at NOP receptors at concentrations up to 10 microM. However, at concentrations higher than 3 microM, it also attenuated the GIRK current induced by DAMGO ([D-Ala2, N-Me-Phe4, Gly5-ol]-enkephalin), a mu-opioid receptor agonist. As for SB-612111, it also concentration-dependently antagonized N/OFQ-induced GIRK current in vlPAG neurons. The IC50 value of SB-612111 estimated from concentration-response curve is 87.7+1.2 nM. SB-612111 had no intrinsic agonistic activity and did not affect the GIRK current induced by DAMGO when tested at concentrations of up to 1 microM.
In conclusion, (+)-5a Compound activates a subset of NOP receptors, similar to the Ro 64-6198-sensitive subset, in vlPAG neurons which are mostly GABAergic. Moreover, (+)-5a Compound-sensitive or -insensitive neurons are morphologically distinct. These results further support the presence of functional heterogeneity of NOP receptors in the PAG. However, the pharmacological profiles of [Tyr10]N/OFQ(1-11) are unlike that of (+)-5a Compound and the functional heterogeneity of NOP receptors can not be revealed by either [Tyr10]N/OFQ(1-11) or new NOP receptor antagonists, Compound 24 and SB-612111. Quantitative studies of Compound 24 and SB-612111 in the vlPAG showed that Compound 24 acts as a competitive NOP receptor antagonist but its potency and selectivity are moderate. On the other hand, SB-612111 is a pure, potent and selective antagonist of NOP receptors with the merits of non-peptide nature, high potency, and selectivity. SB-612111 is the best NOP receptor antagonist available for exploring the functional roles of endogenous N/OFQ.
en
dc.description.provenanceMade available in DSpace on 2021-05-20T21:11:05Z (GMT). No. of bitstreams: 1
ntu-100-D93443001-1.pdf: 2905699 bytes, checksum: f63c854c82e0ce743e9ee850af2c4d78 (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents口試委員審定書 ...........................................I
誌謝 ....................................................II
中文摘要 ...............................................III
英文摘要 ................................................IV
Abbreviation ............................................1
Introduction ............................................2
1. N/OFQ and NOP receptor ...............................2
2. NOP receptor ligands .................................3
2.1. NOP receptor agonist ...............................4
2.1.1. Peptide NOP receptor agonist .....................4
2.1.2. Non-peptide NOP receptor agonist .................5
2.1.2.1. Ro 64-6198 .....................................7
2.1.2.2. (+)-5a Compound ................................8
2.2. NOP receptor antagonist ............................9
2.2.1. Peptide NOP receptor antagonist ..................9
2.2.2. Non-peptide NOP receptor antagonist ..............10
2.2.2.1. Compound 24 ....................................12
2.2.2.2. SB-612111 ......................................13
3. Physiological or pathological roles of endogenous N/OFQ ...................................................14
4. Pain .................................................15
4.1. Ascending pain pathway .............................16
4.2. Descending inhibition pain pathway .................16
4.3. Effects of N/OFQ on pain ...........................17
4.3.1. Supraspinal pain regulation of N/OFQ .............17
4.3.2. Spinal pain regulation of N/OFQ ..................19
5. Periaqueductal gray (PAG) ............................20
5.1. Roles of N/OFQ in the PAG ..........................21
6. Heterogeneity of NOP receptors .......................22
6.1. Splicing variants of NOP receptors .................22
6.2. Binding studies with 125I-[Tyr14]N/OFQ .............23
6.3. Autoradiographic studies with 125I-[Tyr10]N/OFQ(1-11) and 125I-[Tyr14]N/OFQ ...................................23
6.4. Functional heterogeneity of NOP receptor revealed from the results of Ro 64-6198 ...............................24
Aim of study ............................................26
Materials and methods ...................................29
1. Brain slice preparations .............................29
2. Electrophysiological recordings ......................29
3. Quantitative analysis of NOP receptor ligands ........30
3.1. NOP receptor agonists ..............................30
3.2. NOP receptor antagonists ...........................32
4. Immunofluorescence staining ..........................33
5. Morphometric analysis ................................34
6. Chemicals ............................................35
7. Statistics ...........................................36
Results ................................................37
1. Functional heterogeneity of NOP receptors revealed by (+)-5a Compound .. .......................................37
1.1. (+)-5a Compound activated GIRK channels in vlPAG neurons .................................................37
1.2. (+)-5a Compound was less potent and less efficacious than N/OFQ ..............................................37
1.3. (+)-5a Compound activated GIRK channels in about half of the recorded neurons .................................38
1.4. The effect of (+)-5a Compound was antagonized by NOP, but not opioid or M2 muscarinic, receptor antagonists ...39
1.5. N/OFQ activated GIRK channels via NOP receptors in (+)-5a Compound-insensitive vlPAG neurons ...................40
1.6. (+)-5a Compound-insensitive neurons were also insensitive to Ro 64-6198, and vice versa ...............41
1.7. (+)-5a Compound precluded the effect of Ro 64-6198..42
1.8. N/OFQ further enhanced GIRK current in (+)-5a Compound-sensitive neurons .......................................42
1.9. Most of the (+)-5a Compound-sensitive neurons were GABAergic ...............................................43
2. Quantitative study of [Tyr10]NC(1-11) in vlPAG .......45
2.1. [Tyr10]N/OFQ(1-11) activated inwardly rectifying potassium channels ......................................45
2.2. [Tyr10]N/OFQ(1-11) was similar efficacious, but less potent than , N/OFQ .....................................45
2.3. The effect of [Tyr10]N/OFQ(1-11) was antagonized by UFP-101 but not naloxone ................................46
2.4. [Tyr10]N/OFQ(1-11) further enhanced GIRK current in (+)-5a Compound-sensitive neurons .......................47
2.5. [Tyr10]N/OFQ(1-11) induced GIRK currents in (+)-5a Compound-insensitive neurons ............................48
2.6. [Tyr10]N/OFQ(1-11) precludes the effect of N/OFQ ...49
3. Quantitative study of Compound 24 in vlPAG ...........49
3.1. N/OFQ activated GIRK channels in vlPAG neurons .....49
3.2. Compound 24 antagonized the effect of N/OFQ concentration -dependently .............................50
3.3. Compound 24 reduced DAMGO-induced GIRK current at higher concentrations ...................................51
3.4. Compound 24 had no effect on membrane current per se.52
4. Quantitative study of SB-612111 in vlPAG .............53
4.1. SB-612111 antagonized the effect of N/OFQ in a concentration -dependently manner .......................53
4.2. SB-612111 did not affect the membrane current per se ......................................................53
4.3. SB-612111 did not affect DAMGO-induced GIRK current.54
Discussion ..............................................56
1. Functional heterogeneity of NOP receptors ............56
1.1. Functional heterogeneity of NOP receptors revealed by (+)-5a Compound and Ro 64-6198 ..........................56
1.1.1. (+)-5a Compound, like Ro 64-6198, is less potent and efficacious than N/OFQ in the vlPAG .....................56
1.1.2. (+)-5a Compound activates GIRK channels through NOP, but not opioid-, σ-, H3-histamine or M2-muscarinic, receptors ...............................................57
1.1.3. (+)-5a Compound activates a subset but not all of NOP receptors in vlPAG neurons...........................58
1.1.4. (+)-5a Compound and Ro 64-6198 activate subset of NOP receptors in vlPAG neurons ..........................59
1.1.5. A majority of the (+)-5a Compound-sensitive neurons are GABAergic ...........................................59
1.2. Functional heterogeneity of NOP receptors can not be revealed by [Tyr10]N/OFQ(1-11) ..........................60
1.2.1. [Tyr10]N/OFQ(1-11) activates GIRK mediated by NOP but not MOP receptors ...................................60
1.2.2. [Tyr10]N/OFQ(1-11) is a full agonist of NOP receptor and less potent than N/OFQ ..............................61
1.2.3. [Tyr10]N/OFQ(1-11) affects both (+)-5a Compound-sensitive and -insensitive vlPAG neurons ................62
1.3. NOP receptor heterogeneity can not be differentiated by NOP receptor antagonist ..............................63
1.4. Heterogeneity of NOP receptors .....................64
2. Pharmacological characterization of two NOP receptor antagonists, Compound 24 and SB-612111, in vlPAG neurons.67
2.1. Compound 24 possessed moderate antagonist potency at native NOP receptors in PAG .............................67
2.2. Compound 24 exhibiting moderate selectivity ........67
2.3. SB-612111 with potent antagonist activity at NOP receptor ................................................68
2.4. SB-612111 is devoid of intrinsic activity ..........69
2.5. SB-612111 displaying highly selectivity for NOP receptors ...............................................70
2.6. Development of NOP receptor antagonists.............70
Conclusion ..............................................72
References ..............................................73
Bibliography ............................................93
Tables and Figures ......................................94
dc.language.isoen
dc.title以藥理學方法在大鼠中腦環導水管灰質腦切片研究Nociceptin/Orphanin FQ受體之功能異質性zh_TW
dc.titleA Study on the Functional Heterogeneity of Nociceptin/Orphanin FQ Receptors in Rat Periaqueductal Gray Slices by Pharmacological Approachen
dc.typeThesis
dc.date.schoolyear99-1
dc.description.degree博士
dc.contributor.oralexamcommittee何英剛,簡伯武,陶寶綠,黃玲玲,李立仁
dc.subject.keywordNOP受體,環導水管灰質區,G蛋白偶合向內整流鉀離子通道,鴉片受體,異質性,zh_TW
dc.subject.keywordNociceptin/orphanin FQ Receptor,Periaqueductal Gray,Potassium channel,(+)-5a Compound,[Tyr10]N/OFQ(1-11),Compound 24,SB-612111,en
dc.relation.page131
dc.rights.note同意授權(全球公開)
dc.date.accepted2011-02-16
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept藥理學研究所zh_TW
顯示於系所單位:藥理學科所

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf2.84 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved