Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 森林環境暨資源學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10210
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor邱祈榮(Chyi-Rong Chiou)
dc.contributor.authorShih-To Sunen
dc.contributor.author孫世鐸zh_TW
dc.date.accessioned2021-05-20T21:10:25Z-
dc.date.available2011-03-12
dc.date.available2021-05-20T21:10:25Z-
dc.date.copyright2011-03-12
dc.date.issued2011
dc.date.submitted2011-02-21
dc.identifier.citation行政院農委會林務局(2010),台灣現生天然植群圖集。林務局,台北市。419 頁。
宋永昌(2001),植被生態學。華東師範大學出版社,上海市。673頁。
林建融、林逸盈、林聖峰、謝長富、邱祈榮(2007),台灣植群多樣性先驅分析     -木本植物垂直分帶之探討。第五屆台灣植群多樣性研討會論文集:頁68-88。
謝長富、廖啟政、賴宜鈴(1996),墾丁國家公園熱帶雨林永久樣區之調查。保育研究報告第94 號。墾丁國家公園管理處。
蘇鴻傑(1992),台灣之植群:山地植群帶與地理氣候區,中央研究院植物研究
   所專刊:頁39-53。
Allen, M.R. & Ingram, W.J. (2002) Constraints on future changes in climate and the hydrologic cycle. Nature, 419, 224-+
Anic, I., Vukelic, J., Mikac, S., Baksic, D. & Ugarkovic, D. (2009) Effects of global climate change on the ecological niche of silver fir (Abies alba mill.) in Croatia. Sumarski List, 133, 135-144
Araujo, M. & Williams, P. (2000) Selecting areas for species persistence using occurrence data. Biological Conservation, 96, 331-345
Austin, M. (2007) Species distribution models and ecological theory: A critical assessment and some possible new approaches. Ecological Modelling, 200, 1-19
Bartlein, P.J., Whitlock, C. & Shafter, S.L. (1997) Future climate in the Yellowstone national park region and its potential impact on vegetation. Conservation Biology, 11, 782-792
Benito Garzon, M., Sanchez De Dios, R. & Sainz Ollero, H. (2008) Effects of climate change on the distribution of Iberian tree species. Applied Vegetation Science, 11, 169-178
Bennett, K.D. (1997) Evolution and ecology: The pace of life. Cambridge University Press, Cambridge, UK.
Berry, P.M., Dawson, T.P., Harrison, P.A., Pearson, R.G., 2002. Modelling potential
   impacts of climate change on the bioclimatic envelope of species in Britain
and Ireland. Global Ecology and Biogeography, 11, 453–462.
Breiman, L. (1996) Bagging predictors. Machine Learning, 24, 123-140
Breiman, L. (2001) Random forests. Machine Learning, 45, 5-32
Breiman, L., Friedman, J., Olshen, R. & Stone, C. (1984) Classification and regression trees. Wadsworth, Belmont (CA).
Broennimann, O., Thuiller, W., Hughes, G., Midgley, G.F., Alkemade, J.M.R., & Guisan, A. (2006) Do geographic distribution, niche property and life form explain plants' vulnerability to global change? Global Change Biology, 12, 1079-1093.
Cairns, D.M. (2001) A comparison of methods for predicting vegetation type. Plant Ecology, 156, 3-18
Camarero, J.J., Gutierrez, E. & Fortin, M.J. (2000) Spatial pattern of subalpine forest-alpine grassland ecotones in the Spanish Central Pyrenees. Forest Ecology and Management, 134, 1-16
Casalegno, S., Amatulli, G., Camia, A., Nelson, A. & Pekkarinen, A. (2010) Vulnerability of pinus cembra l. In the alps and the carpathian mountains under present and future climates. Forest Ecology and Management, 259, 750-761
Chatfield, C. (1995) Model uncertainty, data mining and statistical-inference. Journal of the Royal Statistical Society Series a-Statistics in Society, 158, 419-466
Chiou, C.R., Song, G.Z.M., Chien, J.H., Hsieh, C.F., Wang, J.C., Chen, M.Y., Liu, H.Y., Yeh, C.L., Hsia, Y.J. & Chen, T.Y. (2010) Altitudinal distribution patterns of plant species in Taiwan are mainly determined by the northeast monsoon rather than the heat retention mechanism of Massenerhebung. Botanical Studies, 51, 89-97
Collins, M., Tett, S. & Cooper, C. (2001) The internal climate variability of HADCM3, a version of the Hadley Centre coupled model without flux adjustments. Climate Dynamics 17, 61-68
Collinson, A.S. (1988) Introduction to world vegetation, second edn. Unwin Hyman Ltd., London, UK.
Congalton, R.G. (1991) A review of assessing the accuracy of classifications of remotely sensed data. Remote Sensing Environments 37, 35-46
Cox, C.B., Healey, I.N. & Moore, P.D. (1973) Biogeography: An ecological and evolutionary approach. Wiley, New York
Daniels, L.D. & Veblen, T.T. (2004) Spatiotemporal influences of climate on altitudinal treeline in northern Patagonia. Ecology, 85, 1284-1296
Davis, M.B. & Shaw, R.G. (2001) Range shifts and adaptive responses to Quaternary climate change. Science, 292, 673-679
Ewald, J. (2003) A critique for phytosociology. Journal of Vegetation Science, 14, 291-296
Fielding, A.H. (1999) How should accuracy be measured. Maching learning methods for ecological applications (ed. by A.H. Fielding), pp. 209-223. Kluwer Academic Publishers, Norwell, Massachusetts.
Gansert, D. (2004) Treelines of the Japanese alps - altitudinal distribution and species composition under contrasting winter climates. Flora, 199, 143-156
Germino, M.J., Smith, W.K. & Resor, A.C. (2002) Conifer seedling distribution and survival in an alpine-treeline ecotone. Plant Ecology, 162, 157-168
Gordon, H. & O'farrell, S. (1997) Transient climate change in the CSIRO coupled model with dynamic sea ice. Monthly Weather Review 125, 875-907
Grabherr, G., Gottfried, M. & Pauli, H. (1994) Climate effects on mountain plants. Nature, 369, 448-448
Guisan, A. & Zimmermann, N.E. (2000) Predictive habitat distribution models in ecology. Ecological Modelling, 135, 147-186
Hannah, L., Midgley, G.F. & Millar, D. (2002) Climate change-integrated conservation strategies. Global Ecology and Biogeography, 11, 485-495
Held, I.M. & Soden, B.J. (2006) Robust responses of the hydrological cycle to global warming. Journal of Climate, 19, 5686-5699
Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G. & Jarvis, A. (2005) Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25, 1965-1978
Hernandez, P.A., Graham, C.H., Master, L.L. & Albert, D.L. (2006) The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography, 29, 773-785
Hogg, E.H. & Schwarz, A.G. (1997) Regeneration of planted conifers across climatic moisture gradients on the Canadian prairies: Implications for distribution and climate change. Journal of Biogeography, 24, 527-534
Horikawa, M., Tsuyama, I., Matsui, T., Kominami, Y. & Tanaka, N. (2009) Assessing the potential impacts of climate change on the alpine habitat suitability of Japanese stone pine (Pinus pumila). Landscape Ecology, 24, 115-128
IPCC (2001) Climate change 2001: impacts, adaptation, and vulnerability. Contribution of working group II to the third assessment report of the Intergovernmental Panel on Climate Change (IPCC). Cambridge University Press, Cambridge
IPCC (2007) Climate change 2007: The physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press Edition, Cambridge, UK.
Iverson, L.R. & Prasad, A.M. (1998) Predicting abundance of 80 tree species following climate change in the eastern United States. Ecological Monographs, 68, 465-485
Iverson, L.R., Prasad, A.M., Matthews, S.N., Peters, M., 2007. Estimating potential
habitat for 134 eastern us tree species under six climate scenarios. Forest
Ecology and Management, 254, 390–406.
Jobbagy, E.G. & Jackson, R.B. (2000) Global controls of forest line elevation in the northern and southern hemispheres. Global Ecology and Biogeography, 9, 253-268
Kim, S.-J., Flato, G. & Boer, G. (2003) A coupled climate model simulation of the last glacial maximum. Part 2. Approach to equilibrium climate. Dynamics, 20, 635-661
Kira, T. (1977) A climatological interpretation of Japanese vegetation zones. Vegetation sceince and environmental protection (ed. by A. Miyawaki and R. Tuxen), pp. 21-30. Maruzen, Tokyo, JP.
Korner, C. (1998) A re-assessment of high elevation treeline positions and their explanation. Oecologia, 115, 445-459
Korner, C. & Paulsen, J. (2004) A world-wide study of high altitude treeline temperatures. Journal of Biogeography, 31, 713-732
Kozlowski, T.T. (1976) Water supply and leaf shedding. Water deficits and plant growth (ed. by T.T. Kozlowski), pp. 191-231. Academic Press, New York, US.
Lawrence, R.L., Wood, S.D. & Sheley, R.L. (2006) Mapping invasive plants using hyperspectral imagery and Breiman Cutler classifications (randomforest). Remote Sensing of Environment, 100, 356-362
Legendre, P. & Legendre, L. (1998) Numerical ecology. Elsevier Science B.V., Amsterdam.
Liaw, A. & Wiener, M. (2002) Classification and regression by randomforest. R news, 2/3, 18-22
Lin, K.C., Hamburg, S.P., Tang, S., Hsia, Y.J. & Lin, T.C. (2003) Typhoon effects on litterfall in a subtropical forest. Canadian Journal of Forest Research, 33, 2184-2192
Lin, M.L. & Jeng, F.S. (2000) Characteristics of hazards induced by extremely heavy rainfall in central Taiwan - typhoon Herb. Engineering Geology, 58, 191-207
Lin, S.H., Liu, C.M., Huang, W.C., Lin, S.S., Yen, T.H., Wang, H.R., Kuo, J.T. & Lee, Y.C. (2010) Developing a yearly warning index to assess the climatic impact on the water resources of Taiwan, a complex-terrain island. Journal of Hydrology, 390, 13-22
Lloyd, A.H. & Graumlich, L.J. (1997) Holocene dynamics of treeline forests in the Sierra Nevada. Ecology, 78, 1199-1210
Loehle, C. (2000) Forest ecotone response to climate change: Sensitivity to temperature response functional forms. Canadian Journal of Forest Research, 30, 1632-1645
Luckman, B. & Kavanagh, T. (2000) Impact of climate fluctuations on mountain environments in the Canadian Rockies. Ambio, 29, 371-380
Mabry, C.M., Hamburg, S.P., Lin, T.C., Horng, F.W., King, H.B. & Hsia, Y.J. (1998) Typhoon disturbance and stand-level damage patterns at a subtropical forest in Taiwan. Biotropica, 30, 238-250
Matsui, T., Takahashi, K., Tanaka, N., Hijioka, Y., Horikawa, M., Yagihashi, T. & Harasawa, H. (2009) Evaluation of habitat sustainability and vulnerability for beech (Fagus crenata) forests under 110 hypothetical climatic change scenarios in Japan. Applied Vegetation Science, 12, 328-339
Matsui, T., Yagihashi, T., Nakaya, T., Tanaka, N. & Taoda, H. (2004) Climatic controls on distribution of Fagus crenata forests in Japan. Journal of Vegetation Science, 15, 57-66
Meehl, G.A. & Coauthors (2007) Global climate projections. Climate change 2007: The physical science basis (ed. by S.E.A. Solomon), pp. 747-846. Cambridge University Press, Cambridge.
Meehl, G.A., Washington, W.M., Collins, W.D., Arblaster, J.M., Hu, A.X., Buja, L.E., Strand, W.G. & Teng, H.Y. (2005) How much more global warming and sea level rise? Science, 307, 1769-1772
Messaoud, Y., Bergeron, Y. & Leduc, A. (2007) Ecological factors explaining the location of the boundary between the mixedwood and coniferous bioclimatic zones in the boreal biome of Eastern North America. Global Ecology and Biogeography, 16, 90-102
Metzger, M., Schroter, D., Leemans, R., Cramer, W., 2008. A spatially explicit and quantitative vulnerability assessment of ecosystem service change in Europe. Regional Environmental Change 8, 91–107.
Millar, C.I., Westfall, R.D., Delany, D.L., King, J.C. & Graumlich, L.J. (2004) Response of subalpine conifers in the Sierra Nevada, California, USA, to 20th-century warming and decadal climate variability. Arctic Antarctic and Alpine Research, 36, 181-200
Moore, D.M., Lees, B.G. & Davey, S.M. (1991) A new method for predicting vegetation distributions using decision tree analysis in a geographic information-system. Environmental Management, 15, 59-71
Munoz, J. & Felicisimo, A.M. (2004) Comparison of statistical methods commonly used in predictive modelling. Journal of Vegetation Science, 15, 285-292
Noble, I.R. (1993) A model of the responses of ecotones to climate-change. Ecological Applications, 3, 396-403
Parmesan, C. (2006) Ecological and evolutionary responses to recent climate change. Annual Review of Ecology Evolution and Systematics, 37, 637-669
Pearson, R.G. & Dawson, T.P. (2003) Predicting the impacts of climate change on the distribution of species: Are bioclimate envelope models useful? Global Ecology and Biogeography, 12, 361-371
Pellatt, M.G., Smith, M.J., Mathewes, R.W., Walker, I.R. & Palmer, S.L. (2000) Holocene treeline and climate change in the subalpine zone near Stoyoma Mountain, Cascade Mountains Southwestern British Columbia, Canada. Arctic Antarctic and Alpine Research, 32, 73-83
Peters, D.P.C. (2002) Plant species dominance at a grassland-shrubland ecotone: An individual-based gap dynamics model of herbaceous and woody species. Ecological Modelling, 152, 5-32
Philips, S.J., Anderson, R.P., & Schapire, R.E. (2006) Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190, 231-259
Philips, S.J., Dudik, M., & Schapire, R.E. (2004) A maximum approach to species distribution modeling. In Proceedings of the Twenty-First International Conference on Machine Learning, pp.472-486. ACM press, New York.
Quantum GIS development team (2009) Quantum GIS geographic information system In. Open Source Geospatial Foundation Project.
Ripley, B. (2009) Tree. In, p. Classification and regression trees
Root, T.L., Price, J.T., Hall, K.R., Schneider, S.H., Rosenzweig, C. & Pounds, J.A. (2003) Fingerprints of global warming on wild animals and plants. Nature, 421, 57-60
Rupp, T.S., Starfield, A.M. & Chapin, F.S. (2000) A frame-based spatially explicit model of subarctic vegetation response to climatic change: Comparison with a point model. Landscape Ecology, 15, 383-400
Sakai, A. (1975) Freezing resistance of evergreen and deciduous broad-leaf trees in Japan with special reference to their distributions. Japanese Journal of Ecology, 25, 101-111 (In Japanese with English synopsis)
Sankey, T.T., Montagne, C., Graumlich, L., Lawrence, R. & Nielsen, J. (2006) Twentieth century forest-grassland ecotone shift in Montana under differing livestock grazing pressure. Forest Ecology and Management, 234, 282-292
Schrag, A.M., Bunn, A.G. & Graumlich, L.J. (2008) Influence of bioclimatic variables on tree-line conifer distribution in the greater Yellowstone ecosystem: Implications for species of conservation concern. Journal of Biogeography, 35, 698-710
Sing, T., Sander, O., Beerenwinkel, N. & Lengauer, T. (2009) ROCR. In, p. Visualizing the performance of scoring classifiers
Swets, J. (1988) Measuring the accuracy of diagnostic system. Science, 240, 1285-1293
Thuiller, W., Lavorel, S. & Araujo, M.B. (2005) Niche properties and geographical extent as predictors of species sensitivity to climate change. Global Ecology and Biogeography, 14, 347-357
Verbyla, D.L. (1987) Classification trees - a new discrimination tool. Canadian Journal of Forest Research-Revue Canadienne De Recherche Forestiere, 17, 1150-1152
Walther, G.R., Post, E., Convey, P., Menzel, A., Parmesan, C., Beebee, T.J.C., Fromentin, J.M., Hoegh-Guldberg, O. & Bairlein, F. (2002) Ecological responses to recent climate change. Nature, 416, 389-395
Wang, C.K. (1962) Some environmental conditions and responses of vegetation on Taiwan. Biological Bulletin of Tunghai University, 11: 1-19.
Wildi, O. (2010) Data analysis in vegetation ecology. John Wiley & Sons, New York.
Woodward, F.I. (1987) Climate and plant distribution. Cambridge University Press, Cambridge, UK.
Yagihashi, T., Matsui, T., Nakaya, T., Tanaka, N. & Taoda, H. (2007) Climatic determinants of the northern range limit of Fagus Crenata forests in Japan. Plant Species Biology, 22, 217-225
Yen, S. M. (2007) Modeling species distributions of three coniferous forest types in Taiwan. The Master Thesis of Department of Geography, National Taiwan University, Taipei.
Yu, F.C., Chen, T.C., Lin, M.L., Chen, C.Y. & Yu, W.H. (2006) Landslides and rainfall characteristics analysis in Taipei City during the typhoon Nari event. Natural
 Hazards Observer, 37, 153-167
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10210-
dc.description.abstract物種分布模式目前是廣泛應用於植物生態學的方法,但在台灣尚欠缺與傳統植群調查資料的整合。本研究嘗試整合模式預測、現生植群圖以及樣區調查資料,以評估物種潛在分布在氣候變遷下的變化,並藉現生棲地脆弱度評估的機制,篩選出適於長期生態監測的調查樣區。在比較基礎不同的模式�尺度不同的氣象資料組合的表現後,我們使用統計模式分類與迴歸樹(classification and regression tree, CART)與全球尺度的WORLDCLIM氣象資料,建立台灣冷杉
(Abies kawakamii)、台灣鐵杉(Tsuga chinensis var. formosana)及兩種檜木屬(Chamaecyparis)植物等數種台灣地區針葉林優勢樹種,在現生氣候下的分布模式,發現在四個氣候因子中熱量因子比水分因子更為重要。模式結果可以投影到兩種氣候變遷情境下三個不同時期,並與現生植群圖套疊,以評估物種現生棲地的可能位移與脆弱度,而脆弱度較高的調查樣區將可作為我們未來的監測對象。結果顯示各目標物種的潛在棲地會在每個時期間向上移動約兩百到三百公尺,同時會逐漸分化使交錯帶減縮。整體而言,氣候變遷對台灣冷杉的影響會大於對台灣鐵杉和檜木的影響,儘管台灣冷杉在交錯帶內仍能保有相當的競爭力。脆弱度評估顯示台灣北部對氣候變遷較為敏感,大部分的監測樣區也集中在此,顯示此區域的物種棲地遷移速率較高,同時也符合歷史文獻中提及植物物種與植群在此區域的海拔壓縮現象。
zh_TW
dc.description.abstractSpecies distribution modeling (SDM) is now widely applied in plant ecology but still lack of integration with traditional vegetation survey data in Taiwan. In this study, we try to integrate model prediction, current vegetation map, and survey plots data to evaluate the transition of species potential habitats under climate change. Moreover, we expect to find survey plots that would be appropriate for long term ecological monitoring based on the vulnerability evaluation on species current habitats. After comparing the performance of each set of different based models and climate datasets within different scale, we treat WORLDCLIM data which is within global scale to build the statistical model classification and regression tree (CART) on Abies kawakamii, Tsuga chinensis var. formosana, and two Chamaecyparis species which are dominance in coniferous forest in Taiwan under current climate. Four bioclimatic variables are treated in the model and we find that thermal factors are more important than moisture ones. The model results would be able to be projected into two different climate change scenarios within three periods, and combined with current vegetation map to evaluate the potential shift and vulnerability for each species and their ecotones. Moreover, survey plots that are vulnerable would be the long term monitoring targets. The results show that the potential habitats of each target species would shift upward about 200 to 300 m between each period, and their habitats would differentiate gradually, causing ecotones narrower. Generally speaking, the impact of climate change on Abies would be stronger than on Tsuga and Chamaecyparis, though Abies would have competitive force within ecotone areas in future. The vulnerability evaluation told that northern Taiwan is more sensitive to climate change, and most of monitoring plots would fall within, revealing the shifting speed of species under climate change in the part would be faster. The trend corresponds to the literatures that indicated the altitudinal depression of plant species and vegetation within the region.en
dc.description.provenanceMade available in DSpace on 2021-05-20T21:10:25Z (GMT). No. of bitstreams: 1
ntu-100-R97625026-1.pdf: 9373508 bytes, checksum: b97e371a33073538c1d37be18e6981a5 (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents摘要 i
Abstract ii
目錄 iv
圖目錄 v
表目錄 vii
壹、序言 1
貳、文獻回顧 3
一、氣候變遷衝擊評估 3
二、物種分布模式 7
三、針葉林與交錯帶 11
參、材料與方法 14
一、研究區域 14
二、資料抽取 14
(一)氣象資料 14
(二)物種資料 17
三、資料分析 17
(一)物種分布模式�氣象資料比較評估 17
(二)空間分布樣式分析 19
(三)脆弱度評估及監測樣區篩選 23
肆、結果 25
一、物種分布模式�氣象資料比較評估 25
二、空間分布樣式 28
三、脆弱度評估及監測樣區篩選 46
伍、討論 60
一、物種分布模式�氣象資料比較評估 60
二、空間分布樣式 62
三、脆弱度評估及監測樣區篩選 66
陸、結論 69
柒、參考文獻 70
dc.language.isozh-TW
dc.title應用物種分布模式於氣候變遷下監測樣區之篩選zh_TW
dc.titleApplying Species Distribution Modeling to Find Monitoring Plots under Climate Changeen
dc.typeThesis
dc.date.schoolyear99-1
dc.description.degree碩士
dc.contributor.oralexamcommittee邱清安(Ching-An Chiou),賴彥任(Yen-Jen Lai)
dc.subject.keyword物種分布模式,台灣冷杉,台灣鐵杉,檜木,分類迴歸樹,脆弱度,監測樣區,zh_TW
dc.subject.keywordspecies distribution modeling (SDM),Abies kawakamii,Tsuga chinensis var. formosana,Chamaecyparis,CART,vulnerability,monitoring plots,en
dc.relation.page78
dc.rights.note同意授權(全球公開)
dc.date.accepted2011-02-21
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept森林環境暨資源學研究所zh_TW
顯示於系所單位:森林環境暨資源學系

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf9.15 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved