Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10185
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
---|---|---|
dc.contributor.advisor | 王根樹(Gen-Shuh Wang) | |
dc.contributor.author | Huei-Wen Chen | en |
dc.contributor.author | 陳慧雯 | zh_TW |
dc.date.accessioned | 2021-05-20T21:08:16Z | - |
dc.date.available | 2014-10-03 | |
dc.date.available | 2021-05-20T21:08:16Z | - |
dc.date.copyright | 2011-10-03 | |
dc.date.issued | 2011 | |
dc.date.submitted | 2011-05-25 | |
dc.identifier.citation | Andrzejewski, P., Nawrocki, J., 2007. N-nitrosodimethylamine formation during treatment with strong oxidants of dimethylamine containing water. Water Science and Technology 56, 125-131.
Asami, M., Oya, M., Kosaka, K., 2009. A nationwide survey of NDMA in raw and drinking water in Japan. Sci. Total Environ. 407, 3540-3545. Bandy, J., Shemer, H., Linden, K.G., 2009. Impact of Lamp Choice and H2O2 Dose on Photodegradation of Nitrobenzene. Environ. Eng. Sci. 26, 973-980. Beltran, F.J., Garcia-Araya, J.F., Frades, J., Alvarez, P., Gimeno, O., 1999. Effects of single and combined ozonation with hydrogen peroxide or UV radiation on the chemical degradation and biodegradability of debittering table olive industrial wastewaters. Water Res. 33, 723-732. Bielski, B.H.J., Cabelli, D.E., Arudi, R.L., Ross, A.B., 1985. Rwactivity of HO2/O-2 radicals in aqueous-solution. J. Phys. Chem. Ref. Data 14, 1041-1100. Buchanan, W., Roddick, F., Porter, N., 2006. Formation of hazardous by-products resulting from the irradiation of natural organic matter: Comparison between UV and VUV irradiation. Chemosphere 63, 1130-1141. Buxton, G.V., Greenstock, C.L., Helman, W.P., Ross, A.B., 1988. Critical review of rate constants for reactions of hydrated electrons, hydrogen-atoms and hydroxyl radicals (.OH/.O-) in aqueous -solution. J. Phys. Chem. Ref. Data 17, 513-886. California Department of Public Health : NDMA and other Nitrosamines (2009) http://www.cdph.ca.gov/certlic/drinkingwater/Pages/NDMA.aspx Cantor, K.P., Hoover, R., Mason, T.J., McCabe, L.J., 1978. Associations of cancer mortality with halomethanes in drinking-water. J. Natl. Cancer Inst. 61, 979-985. Cha, W., Fox, P., Nalinakumari, B., 2006. High-performance liquid chromatography with fluorescence detection for aqueous analysis of nanogram-level N-nitrosodimethylamine. Anal. Chim. Acta 566, 109-116. Chang, E.E., Chiang, P.C., Chao, S.H., Lin, Y.L., 2006. Relationship between chlorine consumption and chlorination by-products formation for model compounds. Chemosphere 64, 1196-1203. Chang, H.H., Tung, H.H., Chao, C.C., Wang, G.S., 2010. Occurrence of haloacetic acids (HAAs) and trihalomethanes (THMs) in drinking water of Taiwan. Environ. Monit. Assess. 162, 237-250. Charrois, J.W.A., Arend, M.W., Froese, K.L., Hrudey, S.E., 2004. Detecting N-nitrosamines in drinking water at nanogram per liter levels using ammonia positive chemical ionization. Environ. Sci. Technol. 38, 4835-4841. Charrois, J.W.A., Boyd, J.M., Froese, K.L., Hrudey, S.E., 2007. Occurrence of N-nitrosamines in Alberta public drinking-water distribution systems. J. Environ. Eng. Sci. 6, 103-114. Chen, Z., Valentine, R.L., 2007. Formation of N-nitrosodimethylamine (NDMA) from humic substances in natural water. Environ. Sci. Technol. 41, 6059-6065. Choi, J.H., Valentine, R.L., 2002. Formation of N-nitrosodimethylamine (NDMA) from reaction of monochloramine: a new disinfection by-product. Water Res. 36, 817-824. Clarke, N., Knowles, G., 1982. High-purity water using H2O2 and UV-radiation. Effluent & Water Treatment Journal 22, 335-&. Cook, R.L., Langford, C.H., 1998. Structural characterization of a fulvic acid and a humic acid using solid state ramp-CP-MAS C-13 nuclear magnetic resonance. Environ. Sci. Technol. 32, 719-725. Dodds, L., King, W.D., 2001. Relation between trihalomethane compounds and birth defects. Occupational and Environmental Medicine 58, 443-446. Dore, M., Delaat, J., Merlet, N., Goichon, J., 1982. Reactivity of halogens with aqueous micropollutants - A mechanism for the formation of trihalomethanes. J. Am. Water Work Assoc. 74, 103-107. Dotson, A.D., Keen, V.S., Metz, D., Linden, K.G., 2010. UV/H2O2 treatment of drinking water increases post-chlorination DBP formation. Water Res. 44, 3703-3713. Dwyer, J., Kavanagh, L., Lant, P., 2008. The degradation of dissolved organic nitrogen associated with melanoidin using a UV/H2O2 AOP. Chemosphere 71, 1745-1753. Einschlag, F.S.G., Felice, J.I., Triszcz, J.M., 2009. Kinetics of nitrobenzene and 4-nitrophenol degradation by UV irradiation in the presence of nitrate and nitrite ions. Photochem. Photobiol. Sci. 8, 953-960. Gerecke, A.C., Sedlak, D.L., 2003. Precursors of N-mitrosodimethylamine in natural waters. Environ. Sci. Technol. 37, 1331-1336. Glaze, W.H., Kang, J.W., Chapin, D.H., 1987. The chemistry of water-treatment processes involing ozone, hydrogen-peroxide and ultraviolet-radiation. Ozone-Sci. Eng. 9, 335-352. Guo, L.D., Lehner, J.K., White, D.M., Garland, D.S., 2003. Heterogeneity of natural organic matter from the Chena River, Alaska. Water Res. 37, 1015-1022. Hinckley, A.F., Bachand, A.M., Reif, J.S., 2005. Late pregnancy exposures to disinfection by-products and growth-related birth outcomes. Environ. Health Perspect. 113, 1808-1813. Hong, H.C., Wong, M.H., Liang, Y., 2009. Amino Acids as Precursors of Trihalomethane and Haloacetic Acid Formation During Chlorination. Archives of Environmental Contamination and Toxicology 56, 638-645. Hua, G.H., Reckhow, D.A., Kim, J., 2006. Effect of bromide and iodide ions on the formation and speciation of disinfection byproducts during chlorination. Environ. Sci. Technol. 40, 3050-3056. Hung, H.-W., Lin, T.-F., Chiu, C.-H., Chang, Y.-C., Hsieh, T.-Y., 2010. Trace Analysis of N-Nitrosamines in Water Using Solid-Phase Microextraction Coupled with Gas Chromatograph–Tandem Mass Spectrometry. Water, Air, & Soil Pollution 213, 459-469. Jacangelo, J.G., Demarco, J., Owen, D.M., Randtke, S.J., 1995. Selected processes for removing NOM: An overview. American Water Works Association Journal 87, 64-77. Johnson, P.D., Dawson, B.V., Goldberg, S.J., 1998. Cardiac teratogenicity of trichloroethylene metabolites. Journal of the American College of Cardiology 32, 540-545. Kawaguchi, H., 1992. Photooxidation of phenol in aqueous-solution in the presence of hydrogen-peroxide. Chemosphere 24, 1707-1712. Kemmy, F.A., Fry, J.C., Breach, R.A., 1989. Development and operational implementation of a modified and simplified method for determination of assimilable organic-cardon (AOC) in drinking-water. Water Science and Technology 21, 155-159. Kemper, J.M., Walse, S.S., Mitch, W.A., 2010. Quaternary Amines As Nitrosamine Precursors: A Role for Consumer Products? Environ. Sci. Technol. 44, 1224-1231. Kim, I., Yamashita, N., Tanaka, H., 2009. Photodegradation of pharmaceuticals and personal care products during UV and UV/H2O2 treatments. Chemosphere 77, 518-525. Kim, J., Clevenger, T.E., 2007. Prediction of N-nitrosodimethylamine (NDMA) formation as a disinfection by-product. J. Hazard. Mater. 145, 270-276. King, W.D., Dodds, L., Allen, A.C., Armson, B.A., Fell, D., Nimrod, C., 2005. Haloacetic acids in drinking water and risk for stillbirth. Occupational and Environmental Medicine 62, 124-127. Kormann, C., Bahnemann, D.W., Hoffmann, M.R., 1991. Photolysis of chloroform and other organic-molecules in aqueous TIO2 suspensions. Environ. Sci. Technol. 25, 494-500. Kosaka, K., Fukui, K., Asami, M., Akiba, M., 2010. Source of N-nitrosodimethylamine in river waters of the upper Tone River basin in Japan. Water Science and Technology 62, 2550-2557. Krasner, S.W., Weinberg, H.S., Richardson, S.D., Pastor, S.J., Chinn, R., Sclimenti, M.J., Onstad, G.D., Thruston, A.D., 2006. Occurrence of a new generation of disinfection byproducts. Environ. Sci. Technol. 40, 7175-7185. Krauss, M., Longree, P., Dorusch, F., Ort, C., Hollender, J., 2009. Occurrence and removal of N-nitrosamines in wastewater treatment plants. Water Res. 43, 4381-4391. Kruithof, J.C., Kamp, P.C., Martijn, B.J., 2007. UV/H2O2 treatment: A practical solution for organic contaminant control and primary disinfection. Ozone-Sci. Eng. 29, 273-280. Ku, Y., Wang, L.S., Shen, Y.S., 1998. Decomposition of EDTA in aqueous solution by UV/H2O2 process. J. Hazard. Mater. 60, 41-55. Lee, C., Lee, Y., Schmidt, C., Yoon, J., Von Gunten, U., 2008. Oxidation of suspected N-nitrosodimethylamine (NDMA) precursors by ferrate (VI): Kinetics and effect on the NDMA formation potential of natural waters. Water Res. 42, 433-441. Lee, C., Schmidt, C., Yoon, J., von Gunten, U., 2007a. Oxidation of N-nitrosodimethylamine (NDMA) precursors with ozone and chlorine dioxide: Kinetics and effect on NDMA formation potential. Environ. Sci. Technol. 41, 2056-2063. Lee, J., Choi, W.Y., Yoon, J., 2005. Photocatalytic degradation of N-mitrosodimethylamine: Mechanism, product distrihution, and TiO2 surface modification. Environ. Sci. Technol. 39, 6800-6807. Lee, W., Westerhoff, P., Croue, J.P., 2007b. Dissolved organic nitrogen as a precursor for chloroform, dichloroacetonitrile, N-Nitrosodimethylamine, and trichloronitromethane. Environ. Sci. Technol. 41, 5485-5490. Lee, W., Westerhoff, P., Esparza-Soto, M., 2006. Occurrence and removal of dissolved organic nitrogen in US water treatment plants. J. Am. Water Work Assoc. 98, 102-+. Leenheer, J.A., A., D., P., W., 2007. Dissolved organic nitrogen fractionation. Annals of Environmental Science 1, 45-46. Legrini, O., Oliveros, E., Braun, A.M., 1993. Photochemical processes for water-treatment. Chem. Rev. 93, 671-698. Li, J.W., Yu, Z.B., Cai, X.P., Gao, M., Chao, F.H., 1996. Trihalomethanes formation in water treated with chlorine dioxide. Water Res. 30, 2371-2376. Liang, L., Singer, P.C., 2003. Factors influencing the formation and relative distribution of haloacetic acids and trihalomethanes in drinking water. Environ. Sci. Technol. 37, 2920-2928. Malcolm, R.L., Maccarthy, P., 1986. Limitations in the use of commercial humic acids in water and soil research. Environ. Sci. Technol. 20, 904-911. Marhaba, T.F., Van, D., 2000. The variation of mass and disinfection by-product formation potential of dissolved organic matter fractions along a conventional surface water treatment plant. J. Hazard. Mater. 74, 133-147. Mitch, W.A., Gerecke, A.C., Sedlak, D.L., 2003a. A N-nitrosodimethylamine (NDMA) precursor analysis for chlorination of water and wastewater. Water Res. 37, 3733-3741. Mitch, W.A., Sedlak, D.L., 2002. Formation of N-nitrosodimethylamine (NDMA) from dimethylamine during chlorination. Environ. Sci. Technol. 36, 588-595. Mitch, W.A., Sharp, J.O., Trussell, R.R., Valentine, R.L., Alvarez-Cohen, L., Sedlak, D.L., 2003b. N-nitrosodimethylamine (NDMA) as a drinking water contaminant: A review. Environ. Eng. Sci. 20, 389-404. Mumma, R.O., Raupach, D.C., Waldman, J.P., Tong, S.S.C., Jacobs, M.L., Babish, J.G., Hotchkiss, J.H., Wszolek, P.C., Gutenman, W.H., Bache, C.A., Lisk, D.J., 1984. National survey of elements and other constituents in municipal sewage sludges. Archives of Environmental Contamination and Toxicology 13, 75-83. Munter, R., 2001. Advanced oxidation processes - Current status and prospects. Proc. Estonian Acad. Sci. Chem 50, 59. Najm, I., Trussell, R.R., 2001. NDMA formation in water and wastewater. American Water Works Association Journal 93, 92-99. Oya, M., Kosaka, K., Asami, M., Kunikane, S., 2008. Formation of N-nitrosodimethylamine (NDMA) by ozonation of dyes and related compounds. Chemosphere 73, 1724-1730. Padhye, L., Tezel, U., Mitch, W.A., Pavlostathis, S.G., Huang, C.H., 2009. Occurrence and Fate of Nitrosamines and Their Precursors in Municipal Sludge and Anaerobic Digestion Systems. Environ. Sci. Technol. 43, 3087-3093. Park, S.H., Wei, S., Mizaikoff, B., Taylor, A.E., Favero, C., Huang, C.H., 2009. Degradation of Amine-Based Water Treatment Polymers during Chloramination as N-Nitrosodimethylamine (NDMA) Precursors. Environ. Sci. Technol. 43, 1360-1366. Parrish, J.M., Austin, E.W., Stevens, D.K., Kinder, D.H., Bull, R.J., 1996. Haloacetate-induced oxidative damage to DNA in the liver of male B6C3F1 mice. Toxicology 110, 103-111. Payton, G.R., 1990, Oxidative Treatment Methods for Removal of Organic Compounds from Drinking Water Supplies. In significance and Treatment of Volatile Organic Compounds in Water Supplies; Ram, N.M, Christman, R.F., Cantor K.P., Eds; Lewis Publ.; Chelsea, MI, 313-362 Pereira, M.E., McGlynn, C.A., 1997. Special relationships instead of female dominance for redfronted lemurs, Eulemur fulvus rufus. American Journal of Primatology 43, 239-258. Plumlee, M.H., Lopez-Mesas, M., Heidlberger, A., Ishida, K.P., Reinhard, M., 2008. N-nitrosodimethylamine (NDMA) removal by reverse osmosis and UV treatment and analysis via LC-MS/MS. Water Res. 42, 347-355. Plummer, J.D., Edzwald, J.K., 2001. Effect of ozone on algae as precursors for trihalomethane and haloacetic acid production. Environ. Sci. Technol. 35, 3661-3668. Poon, C.S., Huang, Q., Fung, P.C., 1999. Degradation kinetics of cuprophenyl yellow RL by UV/H2O2/ultrasonication (US) process in aqueous solution. Chemosphere 38, 1005-1014. Raksit, A., Johri, S., 2001. Determination of N-nitrosodimethylamine in environmental aqueous samples by isotope-dilution GC/MS-SIM. J. AOAC Int. 84, 1413-1419. Rodriguez, E., Peche, R., Merino, J.M., Camarero, L.M., 2007. Decoloring of aqueous solutions of indigocarmine dye in an acid medium by H2O2/UV advanced oxidation. Environ. Eng. Sci. 24, 363-371. Rook, J.J., 1974. Formation of haloforms during chlorination of natural water. Water treatment and examination 23, 234-243. Rosenfeldt, E.J., Linden, K.G., 2004. Degradation of endocrine disrupting chemicals bisphenol A, ethinyl estradiol, and estradiol during UV photolysis and advanced oxidation processes. Environ. Sci. Technol. 38, 5476-5483. Schmidt, C.K., Brauch, H.J., 2008. N,N-dimethosulfamide as precursor for N-nitrosodimethylamine (NDMA) formation upon ozonation and its fate during drinking water treatment. Environ. Sci. Technol. 42, 6340-6346. Schreiber, I.M., Mitch, W.A., 2005. Influence of the order of reagent addition on NDMA formation during chloramination. Environ. Sci. Technol. 39, 3811-3818. Schreiber, I.M., Mitch, W.A., 2006. Nitrosamine formation pathway revisited: The importance of chloramine speciation and dissolved oxygen. Environ. Sci. Technol. 40, 6007-6014. Sedlak, D.L., Deeb, R.A., Hawley, E.L., Mitch, W.A., Durbin, T.D., Mowbray, S., Carr, S., 2005. Sources and fate of nitrosodimethylamine and its precursors in municipal wastewater treatment plants. Water Environ. Res. 77, 32-39. Singer, P.C., 1999. Humic substances as precursors for potentially harmful disinfection by-products. Water Science and Technology 40, 25-30. Sohn, J., Amy, G., Yoon, Y., 2007. Process-train profiles of NOM through a drinking water treatment plant. American Water Works Association Journal 99, 145-153. Sundstorm, D.W., Klei, H.E., Nalette, T.A., Reidy, D.J., Weir, B.A., 1986. Destruction of Halogenated Aliphatics by Ultraviolet Catalyzed Oxidation with Hydrogen Peroxide. Hazardous Waste and Hazardous Materials 3, 101-110. Sutherland, J., Adams, C., Kekobad, J., 2004. Treatment of MTBE by air stripping, carbon adsorption, and advanced oxidation: technical and economic comparison for five groundwaters. Water Res. 38, 193-205. Thurman, E.M., Malcolm, R.L., 1981. Preparative isolationof aquatic humic substances. Environ. Sci. Technol. 15, 463-466. Toor, R., Mohseni, M., 2007. UV-H2O2 based AOP and its integration with biological activated carbon treatment for DBP reduction in drinking water. Chemosphere 66, 2087-2095. Tseng, J.M., Huang, C.P., 1991. Removal of Chlorophenols from Water by Photocatalytic Oxidation. Water Science Technology 23, 377-387. Von Sonntag, C., 2008. Advanced oxidation processes: Mechanistic aspects. Water Science and Technology, pp. 1015-1021. Wang, G.S., Hsieh, S.T., Hong, C.S., 2000. Destruction of humic acid in water by UV light - Catalyzed oxidation with hydrogen peroxide. Water Res. 34, 3882-3887. Wang, G.S., Huang, P.L., 2006. The roles of bromide and precursor structures on DBP formation and species distribution. In: Amy, G., Annachhatre, A., Arvin, E., Chen, J., Cho, J. (Eds.). Water Science and Technology: Water Supply, pp. 27-33. Wang, G.S., Liao, C.H., Wu, F.J., 2001. Photodegradation of humic acids in the presence of hydrogen peroxide. Chemosphere 42, 379-387. Wang, H., Zhang, H., Zhao, X., 2003. Determination of the total nitrogen in wastewater with 2,6-dimethylphenol by spectrophotometry. Chemical analysis and measurement 12, 20-21. Wert, E.C., Rosario-Ortiz, F.L., Drury, D.D., Snyder, S.A., 2007. Formation of oxidation byproducts from ozonation of wastewater. Water Res. 41, 1481-1490. Westerhoff, P., Mash, H., 2002. Dissolved organic nitrogen in drinking water supplies: a review. Journal of Water Supply Research and Technology-Aqua 51, 415-448. WHO : Background document for the development of WHO Guildelines for Drinking-Water Quality - Monochloracetic acid in drinking-water http://www.who.int/entity/water_sanitation_health/dwq/en/ WHO : Background document for the development of WHO Guildelines for Drinking-Water Quality - Bromoacetic acid in drinking-water http://www.who.int/entity/water_sanitation_health/dwq/en/ Wolfe, R.L., Ward, N.R., Olson, B.H., 1984. Inorganic chloramines as drinking-water disinfectants - A review. J. Am. Water Work Assoc. 76, 74-88. Yang, C.Y., Chiu, H.F., Cheng, M.F., Tsai, S.S., 1998. Chlorination of drinking water and cancer mortality in Taiwan. Environmental Research 78, 1-6. Zhao, Z.Y., Gu, J.D., Fan, X.J., Li, H.B., 2006. Molecular size distribution of dissolved organic matter in water of the Pearl River and trihalomethane formation characteristics with chlorine and chlorine dioxide treatments. J. Hazard. Mater. 134, 60-66. 王韻捷,2010,消毒副產物於淨水流程中之生成與宿命研究,國立臺灣大學環境衛生研究所 羅仕麟,2010,前氧化處理對兩種亞硝基胺前質生成N-亞硝基二甲胺之影響研究,國立臺灣大學環境衛生研究所 蔣本基、張怡怡、林財富、王根樹,2010,新興污染物監測、評估、處理及風險評估之研究(2/4),經濟部水利署 張鎮南、辛汎峰、梁淑婷、方國權,1999,以臭氧氧化及薄膜法降低消毒副產物之探討,東海科學月刊第一卷:79-101 陳慧雯,2000,以UV/H2O2程序處理水中有機物之研究,國立臺灣大學環境衛生研究所 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10185 | - |
dc.description.abstract | 水中有機物質之組成可能因來源、有機質濃度、分子量大小、結構、官能基組成以及消毒劑不同而對消毒副產物的形成產生影響。湖庫的優氧化、工業及生活污水的污染使原水水質惡化,自來水淨水場加氯處理後除了造成傳統含碳消毒副產物濃度上升外,具有較高健康風險的新興消毒副產物種如含氮消毒副產物也可在飲用水中發現,形成飲用水處理的一大挑戰。紫外光結合過氧化氫程序(UV/H2O2)藉由產生高氧化力的氫氧自由基,配合適當的操作條件設計可使有機物完全礦化,達成目標有機物質的去除及消毒副產物生成潛能(disinfection byproducts formation potential, DBPFP)降低的目的。
本研究採用UV/H2O2進行飲用水中有機物之氧化處理,探討原水中有機物組成、UV/H2O2程序對於消毒副產物前質之降解以及對消毒副產物生成之影響。研究選取不同來源有機物做為前質代表,分別以天然水體添加不同比例經生物處理家庭污水上層液之人工原水及以六種含不同分子結構含氮有機前質配置之水溶液為實驗對象,並藉由氧化產物有機物濃度監測、三鹵甲烷生成潛能(trihalomethanes formation potential, THMFP)、含鹵乙酸生成潛能(haloacetic acid formation potential, HAAFP)、含氮消毒副產物N-亞硝基二甲基胺生成潛能(N-nitrosodimethylamine formation potential, NDMAFP)之消長以評估UV/H2O2處理程序對有機物降解及消毒副產物控制之功效。 研究結果顯示以UV/H2O2程序處理受家庭污水污染之原水或天然有機前質之處理及降低消毒副產物之目標均可收到一定成效。但在水中可以重力沈降去除的顆粒性有機物質濃度過高時會影響氫氧自由基之氧化效率,在氧化不完全時將因粒狀有機前質被降解為粒徑小於0.45 µm之物質而使非氣提性溶解有機碳(non-pergeable dissolved organic carbon, NPDOC)、THMFP及HAAFP之濃度提高;溶解性有機氮(dissolved organic nitrogen, DON)的降解亦因粒狀有機物質的存在,降低氫氧自由基的氧化效果而無法達到良好成效。UV/H2O2處理程序中THMFP與HAAFP的變化趨勢顯示氫氧自由基同時扮演氧化有機物及消毒副產物前質反應之角色,在有機物氧化不完全時會增加其需氯量,造成含碳消毒副產物(C-DBPs)的增加。氫氧自由基的氧化作用同時增加處理後水中有機物質的親水性,導致HAAFP及含溴物種比例的增加。在天然水體添加10%廢水之氧化試驗中,經UV/H2O2處理NDMA前質降解反應主要發生在0 至30分鐘之間,約可降低50%的NDMAFP(由66 ng/L下降至34 ng/L),30 – 60分鐘間變化極微,顯示經過UV/H2O2程序後仍有部分NDMA前質無法被降解。 以目標含氮有機物所配置之水樣經過高壓(HP)及低壓(LP)UV/H2O2氧化處理後,依其不同結構及氮取代位置而呈現相異的NPDOC及DON降解趨勢。結構複雜的diltiazem及atrazine降解效率較低,分子末端具有胺基結構或含氮苯環者較容易被分解而產生氨氮,但位於分子中心的氮結構則較難以被UV/H2O2處理所降解。以LPUV/H2O2進行氧化處理時,由於少了高能量紫外光的直接氧化作用,僅能藉較低濃度的氫氧自由基的間接氧化目標有機物,使得其有機物的降解效率較HPUV/H2O2為低。以Dimethylamino propyl methacrylamide (DMAPMA)及diltiazm為例,在受到不同強度之UV/H2O2處理後其DBPFP隨氧化時間增加而呈現相異的變化趨勢,依DBPFP之變化趨勢顯示其氧化效率為DMAPMA優於diltiazem,而 HPUV處理效率又高於LPUV處理。前質分子結構末端具有三級胺官能基的有機物易與氯胺反應形成NDMA,且不完全的氧化會提高處理後水樣之NDMAFP,需提供充足的氧化劑或延長反應時間才可有效將有機物礦化及DBPFP降低,由氧化處理中間產物DMA的增加更可印證此趨勢。以目標含氮有機物所配置水樣進行之批次實驗顯示以DON推估NDMAFP雖有良好的相關性,但應用於實際水體時由於其有機物組成歧異性較大,單純以DON或DMA濃度推估NDMAFP可能會導致偏差。 | zh_TW |
dc.description.abstract | The presence of various organic contaminants in water sources is of concern due to their direct threats to human health and potential to react with disinfectants to form carcinogenic byproducts including trihalomathanes, haloacetic acids and nitrosoamines in water disinfection process. Ultraviolet light coupled with hydrogen peroxide (UV/H2O2) is a powerful water treatment technology by forming highly reactive hydroxyl radicals. This study examined the relationships between organic matter compositions and disinfection by-product formation potential (DBPFP) by two major aspects. First, laboratory synthetic water with various compositions of organic carbon and nitrogen were treated with UV/H2O2 to evaluate its degradation efficacy. Second, both high-pressure and low-pressure ultraviolet light were applied to evaluate its efficacy for degradation of six selected nitrogenous organic compounds. After UV/H2O2 oxidations, corresponding disinfection byproducts (DBPs) formation potentials were measured.
In laboratory synthetic water, it was found that carbon containing precursors were relatively easier to mineralize by UV/H2O2 treatment than the nitrogen containing compounds. UV/H2O2 processes successfully reduced the precursors of trihalomethanes (THMs) and haloacetic acids (HAAs); however, the treatment efficiency was lower for N-nitrosodimethylamine (NDMA) precursors. It was also observed that the degree of precursor removal was reduced when raw water was contaminated by domestic wastewater effluents. In comparison to untreated water, UV/H2O2 treated water produced a higher ratio of HAAs than THMs after chlorination. This suggests that a higher fraction of hydrophilic compounds was obtained after UV/H2O2 treatment. Raw water impaired by wastewater effluent also altered the formation and species distribution of DBPs, since higher ratio of HAAs and brominated DBPs were observed. With higher oxidation power and simpler molecular structure, target compounds resulted in better reduction of organic matters and DBP formation potentials (DBPFPs). However, insufficient contact time and oxidant doses could lead to a rise of DBPFPs in the early stages of UV/H2O2 reactions. A greater percentage removal was achieved for organic carbon than organic nitrogen after UV/H2O2 treatment, especially for complex compounds such as diltiazem. During the UV/H2O2 treatment, the intermediate products include tertiary amine, dimethyl amine (DMA) or DMA-like structures, which are N-nitrosodimethylamine (NDMA) precursors after disinfection. Furthermore, it was observed that using dissolved organic nitrogen and DMA to predict NDMA formation potential could lead to biased conclusions because of the complex nature of nitrogenous matters in aqueous environments. | en |
dc.description.provenance | Made available in DSpace on 2021-05-20T21:08:16Z (GMT). No. of bitstreams: 1 ntu-100-D93844004-1.pdf: 2269482 bytes, checksum: 0a0a21fab077ee82e154bf16f8647010 (MD5) Previous issue date: 2011 | en |
dc.description.tableofcontents | 中文摘要 i
Abstract iii 目 錄 v 圖 目 錄 viii 第一章 前言 1 1.1 研究背景 1 1.2 研究目的 2 第二章 文獻回顧 3 2.1 水中有機物組成 3 2.1.1 有機碳與有機氮 3 2.1.2 水中有機物在淨水程序處理後之變化 4 2.2 水中含碳消毒副產物 5 2.3 影響THMs及HAAs生成之因素 7 2.4 含氮消毒副產物 - NDMA 10 2.4.1 NDMA生成之機制 11 2.4.2 NDMA在環境中的流布 13 2.4.3 控制NDMA的策略 14 2.5 UV/H2O2之運用 15 2.5.1 UV/H2O2之作用機制 16 2.5.2 影響氧化效率之因素 17 2.5.3 UV/H2O2在水處理中之應用 19 第三章 研究方法 21 3.1 實驗流程 21 3.2 實驗設備 24 3.2.1 UV/H2O2設備 24 3.3 實驗水樣來源 27 3.4 THMFP、HAAFP及NDMAFP試驗 30 3.5 樣品分析 31 3.5.1 非氣提性溶解有機碳 31 3.5.2 溶解性有機氮及無機氮類 31 3.5.3 H2O2濃度測量 36 3.5.4 濁度 36 3.5.5 pH 36 3.5.6 三鹵甲烷(THMs) 36 3.5.7 含鹵乙酸(HAAs) 38 3.5.8 NDMA 40 第四章 結果與討論 44 4.1 以UV/H2O2處理受不同來源有機物污染之原水 44 4.1.1 不同來源有機物之NPDOC變化 46 4.1.2 不同來源有機物之DON變化 49 4.1.3 不同來源有機物之含氮物種變化 52 4.1.4 家庭污水中大粒徑有機物質對含氮物種濃度變化之影響 57 4.1.5 不同來源有機物之THMFP變化 60 4.1.6添加不同來源有機物模擬原水經UV/H2O2處理後HAAFP之變化 64 4.1.7 水中溴離子濃度的影響 67 4.1.8 UV/H2O2處理對模擬原水THMFP與HAAFP生成比例之影響 71 4.1.9 廢水以UV/H2O2程序處理後NDMAFP變化 74 4.2原水中大粒徑有機物經UV/H2O2處理對消毒副產物生成效應之評估 77 4.2.1經UV/H2O2處理後不同粒徑有機物之NPDOC及TOC變化 77 4.2.2不同粒徑有機物經UV/H2O2處理後之HAAFP變化 82 4.3含氮有機前質受UV/H2O2程序處理之效率與消毒副產物生成特性 84 4.3.1含氮有機前質之篩選 84 4.3.2不同結構含氮有機前質經UV/H2O2處理後之NPDOC變化 89 4.3.3不同結構含氮有機前質經UV/H2O2處理後之DON變化 92 4.3.4不同結構含氮有機前質經UV/H2O2處理後之THMFP與HAAFP變化……………………………………………………………………………95 4.3.5 不同結構含氮有機前質經UV/H2O2處理後之NDMAFP與中間產物DMA濃度相關性 100 4.4 HPUV/H2O2氧化Diltiazem之探討 104 4.4.1 Diltiazem-HPUV處理3小時之DOM與含氮物種的變化 105 4.4.3 Diltiazem-HPUV處理3小時之NDMA生成量探討 113 第五章 結論 116 參考文獻 118 | |
dc.language.iso | zh-TW | |
dc.title | UV/H2O2處理水中含碳及含氮有機前質與新興消毒副產物生成之影響 | zh_TW |
dc.title | The influence of UV/H2O2 on organic carbon and nitrogen precursors and disinfection by-products formation in drinking water | en |
dc.type | Thesis | |
dc.date.schoolyear | 99-2 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 康世芳,林財富,廖志祥,童心欣,陳家揚 | |
dc.subject.keyword | UV/U2O2,有機碳,有機氮, | zh_TW |
dc.subject.keyword | UV/U2O2,DOC,DON,THMFP,HAAFP,NDMAFP, | en |
dc.relation.page | 126 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2011-05-26 | |
dc.contributor.author-college | 公共衛生學院 | zh_TW |
dc.contributor.author-dept | 環境衛生研究所 | zh_TW |
Appears in Collections: | 環境衛生研究所 |
Files in This Item:
File | Size | Format | |
---|---|---|---|
ntu-100-1.pdf | 2.22 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.