Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10171
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王藹農(Ai-Nung Wang)
dc.contributor.authorYu-Ling Wangen
dc.contributor.author王育齡zh_TW
dc.date.accessioned2021-05-20T21:07:12Z-
dc.date.available2013-07-07
dc.date.available2021-05-20T21:07:12Z-
dc.date.copyright2011-07-07
dc.date.issued2011
dc.date.submitted2011-06-21
dc.identifier.citation[1] Serge Tabachnikov, The Four-Vertex Theorem Revisited–Two Variations on the Old
Theme, American Mathematical Monthly, Volume 102, Issue 10 (Dec., 1995), 912-916.
[2] National Primary And High School Science Fair, The 48 session, 030422.
[3] National Primary And High School Science Fair, The 43 session, 040407.
[4] James R. Munkres, Topology, Second Edition.
[5] Marvin Greenberg, Lectures on Algebraic Topology, p9-p16.
[6] Wu-Hsiung U. Huang, Differential Geometry and Moving Frames, p1-21-p2-39.
[7] Lien-Yung Kao, Ai-Nung Wang, The Tripod Configurations of curves.
[8] Wilhelm Klingenberg, Riemannian Geometry.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10171-
dc.description.abstract這篇論文在探討三腳架構形,根據Serge Tabachnikov在附錄[1]的第二個定理:給定一個平滑凸閉平面曲線,至少存在兩個三角架構形。我們在這篇論文中想用跟Serge Tabachnikov不太相同的方法去建構三腳架構形,使用另一種比較直覺的幾何去建構出來。我們採取的方法是minimax method,建造一些變形使Y形的距離和漸漸縮短,但不是所有的Y形均會退化,而會收斂到一個沒有退化的臨界點,再說明臨界點即為我們要的三腳架構形。zh_TW
dc.description.abstractIn this paper, we research the tripod configurations. By Serge Tabachnikov, see Theorem 2 of Appendix [1] says that for any smooth convex closed curve, there exist at least two tripod configurations. In this paper we want to use another way to construct tripod configurations. Use a intuitive way by a geometrical approach to construct it. We use minimax method, and do some deformation such that the distance of the Y-shaped will decrease, but not all of the Y-shaped will degenerate, it will converge to a critical point which will not degenerate, and we explain that this critical point is our tripod configuration.en
dc.description.provenanceMade available in DSpace on 2021-05-20T21:07:12Z (GMT). No. of bitstreams: 1
ntu-100-R98221008-1.pdf: 430973 bytes, checksum: ceeba455366cca192ce1436312cbec43 (MD5)
Previous issue date: 2011
en
dc.description.tableofcontentsContents
口試委員審定書…………………………………………………….i
誌謝………………………………………………………………. ii
摘要……………………………………………………………… iii
Abstract………………………………………………………. iv
Contents…………………………………………………………v
圖目錄…………………………………………………………vi
1 Introduction 1
2 Convex Bounded Plane Set 2
2.1 Introduction…………………………………………………… 2
2.2 Main Result…………………………………………………… 2
2.3 Construct Main Result……………………………………… 3
2.4 Proof of the Theorem…………………………………………7
References………………………………………………………………14
dc.language.isoen
dc.title三腳架構形之研究與探討zh_TW
dc.titleTripod Configurationsen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.oralexamcommittee夏俊雄(Chun-Hiung Hsia),梁惠禎(Huei-jhen Liang)
dc.subject.keyword三腳架構形,zh_TW
dc.subject.keywordTripod Configurations,en
dc.relation.page14
dc.rights.note同意授權(全球公開)
dc.date.accepted2011-06-21
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept數學研究所zh_TW
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf420.87 kBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved