請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101526完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 于昌平 | zh_TW |
| dc.contributor.advisor | Chang-Ping Yu | en |
| dc.contributor.author | 張之暘 | zh_TW |
| dc.contributor.author | Zhiyang Zhang | en |
| dc.date.accessioned | 2026-02-04T16:29:31Z | - |
| dc.date.available | 2026-02-05 | - |
| dc.date.copyright | 2026-02-04 | - |
| dc.date.issued | 2026 | - |
| dc.date.submitted | 2026-02-02 | - |
| dc.identifier.citation | Abbas, T., Zhou, H., Zhang, Q., Li, Y., Liang, Y., Di, H., & Zhao, Y. (2019). Anammox co-fungi accompanying denitrifying bacteria are the thieves of the nitrogen cycle in paddy-wheat crop rotated soils. Environment International, 130, 104913.
Akram, M., Dietl, A., Mersdorf, U., Prinz, S., Maalcke, W., Keltjens, J., ... & Barends, T. R. (2019). A 192-heme electron transfer network in the hydrazine dehydrogenase complex. Science Advances, 5(4), eaav4310. Aroney, S. T., Newell, R. J., Nissen, J. N., Camargo, A. P., Tyson, G. W., & Woodcroft, B. J. (2025). CoverM: read alignment statistics for metagenomics. Bioinformatics, 41(4), btaf147. Arrojo, B., Mosquera-Corral, A., Campos, J. L., & Méndez, R. (2006). Effects of mechanical stress on Anammox granules in a sequencing batch reactor (SBR). Journal of Biotechnology, 123(4), 453-463. Bonsdorff, E. (2021). Eutrophication: Early warning signals, ecosystem-level and societal responses, and ways forward: This article belongs to Ambio’s 50th Anniversary Collection. Theme: Eutrophication. Ambio, 50(4), 753-758. Cao, S., Du, R., Li, B., Ren, N., & Peng, Y. (2016). High-throughput profiling of microbial community structures in an ANAMMOX-UASB reactor treating high-strength wastewater. Applied Microbiology and Biotechnology, 100(14), 6457-6467. Chan, H. W., Meng, H., & Gu, J. D. (2016). Anammox bacteria detected in fish intestinal tract systems. Applied Environmental Biotechnology, 1(1), 13-18. Chen, S. (2025). Fastp 1.0: An ultra‐fast all‐round tool for FASTQ data quality control and preprocessing. iMeta, 4(5), e70078. Chen, X., Duan, F., Yu, X., Xie, Y., Wang, Z., El-Baz, A., ... & Ni, S. Q. (2024). One-stage anammox and thiocyanate-driven autotrophic denitrification for simultaneous removal of thiocyanate and nitrogen: Pathway and mechanism. Water Research, 265, 122268. Dai, H., Han, T., Sun, T., Zhu, H., Wang, X., & Lu, X. (2021). Nitrous oxide emission during denitrifying phosphorus removal process: a review on the mechanisms and influencing factors. Journal of Environmental Management, 278, 111561. Daims, H., Lücker, S., & Wagner, M. (2016). A new perspective on microbes formerly known as nitrite-oxidizing bacteria. Trends in Microbiology, 24(9), 699-712. Dapena-Mora, A., Campos, J. L., Mosquera-Corral, A., Jetten, M. S. M., & Méndez, R. (2004). Stability of the ANAMMOX process in a gas-lift reactor and a SBR. Journal of Biotechnology, 110(2), 159-170. Dapena-Mora, A., Fernandez, I., Campos, J. L., Mosquera-Corral, A., Mendez, R., & Jetten, M. S. M. (2007). Evaluation of activity and inhibition effects on Anammox process by batch tests based on the nitrogen gas production. Enzyme and Microbial Technology, 40(4), 859-865. de Almeida, N. M., Neumann, S., Mesman, R. J., Ferousi, C., Keltjens, J. T., Jetten, M. S., ... & van Niftrik, L. (2015). Immunogold localization of key metabolic enzymes in the anammoxosome and on the tubule-like structures of Kuenenia stuttgartiensis. Journal of Bacteriology, 197(14), 2432-2441. de Celis, M., Belda, I., Ortiz-Álvarez, R., Arregui, L., Marquina, D., Serrano, S., & Santos, A. (2020). Tuning up microbiome analysis to monitor WWTPs’ biological reactors functioning. Scientific Reports, 10(1), 4079. Dietl, A., Ferousi, C., Maalcke, W. J., Menzel, A., de Vries, S., Keltjens, J. T., ... & Barends, T. R. (2015). The inner workings of the hydrazine synthase multiprotein complex. Nature, 527(7578), 394-397. Ding, C., Adrian, L., Peng, Y., & He, J. (2020). 16S rRNA gene-based primer pair showed high specificity and quantification accuracy in detecting freshwater Brocadiales anammox bacteria. FEMS Microbiology Ecology, 96(3), fiaa013. Du, R., Cao, S., Li, B., Niu, M., Wang, S., & Peng, Y. (2017). Performance and microbial community analysis of a novel DEAMOX based on partial-denitrification and anammox treating ammonia and nitrate wastewaters. Water Research, 108, 46-56. Gao, P., Gao, Y., Wang, H., Ma, T., & Gu, J. D. (2023). An evaluation of different detection methods for anaerobic ammonium-oxidizing (anammox) bacteria inhabiting the oil reservoir systems. International Biodeterioration & Biodegradation, 177, 105536. Gottshall, E. Y., Bryson, S. J., Cogert, K. I., Landreau, M., Sedlacek, C. J., Stahl, D. A., ... & Winkler, M. (2021). Sustained nitrogen loss in a symbiotic association of Comammox Nitrospira and Anammox bacteria. Water Research, 202, 117426. Hamersley, M. R., Lavik, G., Woebken, D., Rattray, J. E., Lam, P., Hopmans, E. C., ... & Kuypers, M. M. (2007). Anaerobic ammonium oxidation in the Peruvian oxygen minimum zone. Limnology and Oceanography, 52(3), 923-933. HMMER. (2023). HMMER: biosequence analysis using profile hidden Markov models. HMMER 3.4. http://hmmer.org/. Hou, L., Zheng, Y., Liu, M., Gong, J., Zhang, X., Yin, G., & You, L. (2013). Anaerobic ammonium oxidation (anammox) bacterial diversity, abundance, and activity in marsh sediments of the Yangtze Estuary. Journal of Geophysical Research: Biogeosciences, 118(3), 1237-1246. Howard, J. B., & Rees, D. C. (1996). Structural basis of biological nitrogen fixation. Chemical Reviews, 96(7), 2965-2982. Hu, B. L., Zheng, P., Tang, C. J., Chen, J. W., van der Biezen, E., Zhang, L., ... & Kartal, B. (2010). Identification and quantification of anammox bacteria in eight nitrogen removal reactors. Water Research, 44(17), 5014-5020. Hu, H. W., & He, J. Z. (2017). Comammox—a newly discovered nitrification process in the terrestrial nitrogen cycle. Journal of Soils and Sediments, 17(12), 2709-2717. Hu, Z., Wessels, H. J., van Alen, T., Jetten, M. S., & Kartal, B. (2019). Nitric oxide-dependent anaerobic ammonium oxidation. Nature Communications, 10(1), 1244. Humbert, S., Tarnawski, S., Fromin, N., Mallet, M. P., Aragno, M., & Zopfi, J. (2010). Molecular detection of anammox bacteria in terrestrial ecosystems: distribution and diversity. The ISME Journal, 4(3), 450-454. Hunter, J. D. (2007). Matplotlib: A 2D graphics environment. Computing in science & engineering, 9(03), 90-95. Hyatt, D., Chen, G. L., LoCascio, P. F., Land, M. L., Larimer, F. W., & Hauser, L. J. (2010). Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics, 11(1), 119. Ishii, K., Mußmann, M., MacGregor, B. J., & Amann, R. (2004). An improved fluorescence in situ hybridization protocol for the identification of bacteria and archaea in marine sediments. FEMS Microbiology Ecology, 50(3), 203-213. Jaeschke, A., Op den Camp, H. J., Harhangi, H., Klimiuk, A., Hopmans, E. C., Jetten, M. S., ... & Sinninghe Damsté, J. S. (2009). 16S rRNA gene and lipid biomarker evidence for anaerobic ammonium-oxidizing bacteria (anammox) in California and Nevada hot springs. FEMS Microbiology Ecology, 67(3), 343-350. Jetten, M. S., Niftrik, L. V., Strous, M., Kartal, B., Keltjens, J. T., & Op den Camp, H. J. (2009). Biochemistry and molecular biology of anammox bacteria. Critical Reviews in Biochemistry and Molecular Biology, 44(2-3), 65-84. Ji, B., Yang, K., Zhu, L., Jiang, Y., Wang, H., Zhou, J., & Zhang, H. (2015). Aerobic denitrification: a review of important advances of the last 30 years. Biotechnology and Bioprocess Engineering, 20(4), 643-651. Jin, R. C., Yu, J. J., Ma, C., Yang, G. F., Zhang, J., Chen, H., ... & Hu, B. L. (2014). Transient and long-term effects of bicarbonate on the ANAMMOX process. Applied Microbiology and Biotechnology, 98(3), 1377–1388. Kartal, B., de Almeida, N. M., Maalcke, W. J., Op den Camp, H. J., Jetten, M. S., & Keltjens, J. T. (2013). How to make a living from anaerobic ammonium oxidation. FEMS Microbiology Reviews, 37(3), 428-461. Kartal, B., Kuypers, M. M., Lavik, G., Schalk, J., Op den Camp, H. J., Jetten, M. S., & Strous, M. (2007). Anammox bacteria disguised as denitrifiers: nitrate reduction to dinitrogen gas via nitrite and ammonium. Environmental Microbiology, 9(3), 635-642. Kartal, B., Maalcke, W. J., De Almeida, N. M., Cirpus, I., Gloerich, J., Geerts, W., ... & Strous, M. (2011). Molecular mechanism of anaerobic ammonium oxidation. Nature, 479(7371), 127-130. Katoh, K., Rozewicki, J., & Yamada, K. D. (2019). MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Briefings in Bioinformatics, 20(4), 1160-1166. Keeney, D. R., & Hatfield, J. L. (2008). The nitrogen cycle, historical perspective, and current and potential future concerns. Nitrogen in the Environment (2nd edition). pp. 1-18. Kindaichi, T., Yuri, S., Ozaki, N., & Ohashi, A. (2012). Ecophysiological role and function of uncultured Chloroflexi in an anammox reactor. Water Science and Technology, 66(12), 2556-2561. Kompantseva, E. I., Kublanov, I. V., Perevalova, A. A., Chernyh, N. A., Toshchakov, S. V., Litti, Y. V., ... & Miroshnichenko, M. L. (2017). Calorithrix insularis gen. nov., sp. nov., a novel representative of the phylum Calditrichaeota. International Journal of Systematic and Evolutionary Microbiology, 67(5), 1486-1490. Kuenen, J. G. (2008). Anammox bacteria: from discovery to application. Nature Reviews Microbiology, 6(4), 320-326. Kuraku, S., Zmasek, C. M., Nishimura, O., & Katoh, K. (2013). aLeaves facilitates on-demand exploration of metazoan gene family trees on MAFFT sequence alignment server with enhanced interactivity. Nucleic Acids Research, 41(W1), W22-W28. Kuypers, M. M., Sliekers, A. O., Lavik, G., Schmid, M., Jørgensen, B. B., Kuenen, J. G., ... & Jetten, M. S. (2003). Anaerobic ammonium oxidation by anammox bacteria in the Black Sea. Nature, 422(6932), 608-611. Lan, C. J., Kumar, M., Wang, C. C., & Lin, J. G. (2011). Development of simultaneous partial nitrification, anammox and denitrification (SNAD) process in a sequential batch reactor. Bioresource Technology, 102(9), 5514-5519. Langmead, B., & Salzberg, S. L. (2012). Fast gapped-read alignment with Bowtie 2. Nature Methods, 9(4), 357-359. Lee, N., Nielsen, P. H., Andreasen, K. H., Juretschko, S., Nielsen, J. L., Schleifer, K. H., & Wagner, M. (1999). Combination of fluorescent in situ hybridization and microautoradiography—a new tool for structure-function analyses in microbial ecology. Applied and Environmental Microbiology, 65(3), 1289-1297. Li, D., Liu, C. M., Luo, R., Sadakane, K., & Lam, T. W. (2015). MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics, 31(10), 1674-1676. Li, D., Luo, R., Liu, C. M., Leung, C. M., Ting, H. F., Sadakane, K., ... & Lam, T. W. (2016). MEGAHIT v1.0: a fast and scalable metagenome assembler driven by advanced methodologies and community practices. Methods, 102, 3-11. Li, H., Chen, S., Mu, B. Z., & Gu, J. D. (2010). Molecular detection of anaerobic ammonium-oxidizing (anammox) bacteria in high-temperature petroleum reservoirs. Microbial ecology, 60(4), 771-783. Li, J., Peng, Y., Zhang, L., Liu, J., Wang, X., Gao, R., ... & Zhou, Y. (2019). Quantify the contribution of anammox for enhanced nitrogen removal through metagenomic analysis and mass balance in an anoxic moving bed biofilm reactor. Water Research, 160, 178-187. Li, M., & Gu, J. D. (2011). Advances in methods for detection of anaerobic ammonium oxidizing (anammox) bacteria. Applied Microbiology and Biotechnology, 90(4), 1241-1252. Li, W., Zhuang, J. L., Zhou, Y. Y., Meng, F. G., Kang, D., Zheng, P., ... & Liu, Y. D. (2020). Metagenomics reveals microbial community differences lead to differential nitrate production in anammox reactors with differing nitrogen loading rates. Water Research, 169, 115279. Li, X., Klaus, S., Bott, C., & He, Z. (2018). Status, Challenges, and Perspectives of Mainstream Nitritation–Anammox for Wastewater Treatment: Li et al. Water Environment Research, 90(7), 634-649. Liao, W. T. (2023). Interactions of microbial nitrogen cycling in three landfill leachate treatment plants (Master's Thesis, National Taiwan University). Airiti Library. https://doi.org/10.6342/NTU202302736. Liu, L., Lv, A. P., Narsing Rao, M. P., Ming, Y. Z., Salam, N., Li, M. M., ... & Li, W. J. (2022). Diversity and distribution of anaerobic ammonium oxidation bacteria in hot springs of Conghua, China. Frontiers in Microbiology, 12, 739234. Liu, S., Yang, F., Xue, Y., Gong, Z., Chen, H., Wang, T., & Su, Z. (2008). Evaluation of oxygen adaptation and identification of functional bacteria composition for anammox consortium in non-woven biological rotating contactor. Bioresource Technology, 99(17), 8273-8279. Mardanov, A. V., Beletsky, A. V., Ravin, N. V., Botchkova, E. A., Litti, Y. V., & Nozhevnikova, A. N. (2019). Genome of a novel bacterium “Candidatus Jettenia ecosi” reconstructed from the metagenome of an anammox bioreactor. Frontiers in microbiology, 10, 2442. Mariotti, A. (1983). Atmospheric nitrogen is a reliable standard for natural 15N abundance measurements. Nature, 303(5919), 685-687. Merkel, D. (2014). Docker: lightweight linux containers for consistent development and deployment. Linux J, 239(2), 2. Mosley, O. E., Gios, E., Weaver, L., Close, M., Daughney, C., van der Raaij, R., ... & Handley, K. M. (2022). Metabolic diversity and aero-tolerance in anammox bacteria from geochemically distinct aquifers. Msystems, 7(1), e01255-21. Mulder, L., Van de Graaf, A. A., Robertson, L. A., & Kuenen, J. G. (1995). Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor. FEMS Microbiology Ecology, 16(3), 177-183. Narita, Y., Zhang, L., Kimura, Z. I., Ali, M., Fujii, T., & Okabe, S. (2017). Enrichment and physiological characterization of an anaerobic ammonium-oxidizing bacterium ‘Candidatus Brocadia sapporoensis’. Systematic and Applied Microbiology, 40(7), 448-457. National Center for Biotechnology Information (NCBI). (2026). Protein database. https://www.ncbi.nlm.nih.gov/protein. Neef, A., Amann, R., Schlesner, H., & Schleifer, K. H. (1998). Monitoring a widespread bacterial group: in situ detection of planctomycetes with 16S rRNA-targeted probes. Microbiology, 144(12), 3257-3266. Neumann, S., Wessels, H. J., Rijpstra, W. I. C., Sinninghe Damsté, J. S., Kartal, B., Jetten, M. S., & van Niftrik, L. (2014). Isolation and characterization of a prokaryotic cell organelle from the anammox bacterium Kuenenia stuttgartiensis. Molecular Microbiology, 94(4), 794-802. Ni, B. J., Hu, B. L., Fang, F., Xie, W. M., Kartal, B., Liu, X. W., ... & Yu, H. Q. (2010). Microbial and physicochemical characteristics of compact anaerobic ammonium-oxidizing granules in an upflow anaerobic sludge blanket reactor. Applied and Environmental Microbiology, 76(8), 2652-2656. OECD. (2018). Human Acceleration of the Nitrogen Cycle: Managing Risks and Uncertainty. OECD Publishing, Paris. https://doi.org/10.1787/9789264307438-en. Okabe, S., Ye, S., Lan, X., Nukada, K., Zhang, H., Kobayashi, K., & Oshiki, M. (2023). Oxygen tolerance and detoxification mechanisms of highly enriched planktonic anaerobic ammonium-oxidizing (anammox) bacteria. ISME Communications, 3(1), 45. Oshiki, M., Shinyako-Hata, K., Satoh, H., & Okabe, S. (2015). Draft genome sequence of an anaerobic ammonium-oxidizing bacterium,“Candidatus Brocadia sinica”. Genome Announcements, 3(2), 10-1128. Parween, A., & Patidar, S. K. (2021). Enrichment of Anammox in Sequencing Batch Reactor (SBR). International Conference on Chemical, Bio and Environmental Engineering (pp. 927-938). Penton, C. R., Devol, A. H., & Tiedje, J. M. (2006). Molecular evidence for the broad distribution of anaerobic ammonium-oxidizing bacteria in freshwater and marine sediments. Applied and Environmental Microbiology, 72(10), 6829-6832. Piwosz, K., Mukherjee, I., Salcher, M. M., Grujčić, V., & Šimek, K. (2021). CARD-FISH in the sequencing era: opening a new universe of protistan ecology. Frontiers in Microbiology, 12, 640066. Risgaard‐Petersen, N., Nielsen, L. P., Rysgaard, S., Dalsgaard, T., & Meyer, R. L. (2003). Application of the isotope pairing technique in sediments where anammox and denitrification coexist. Limnology and Oceanography: Methods, 1(1), 63-73. Rognes, T., Flouri, T., Nichols, B., Quince, C., & Mahé, F. (2016). VSEARCH: a versatile open source tool for metagenomics. PeerJ, 4, e2584. Rütting, T., Boeckx, P., Müller, C., & Klemedtsson, L. (2011). Assessment of the importance of dissimilatory nitrate reduction to ammonium for the terrestrial nitrogen cycle. Biogeosciences, 8(7), 1779-1791. Schmid, M., Walsh, K., Webb, R., Rijpstra, W. I., van de Pas-Schoonen, K., Verbruggen, M. J., ... & Strous, M. (2003). Candidatus “Scalindua brodae”, sp. nov., Candidatus “Scalindua wagneri”, sp. nov., two new species of anaerobic ammonium oxidizing bacteria. Systematic and Applied Microbiology, 26(4), 529-538. Schmid, M. C., Maas, B., Dapena, A., van de Pas-Schoonen, K., van de Vossenberg, J., Kartal, B., ... & Strous, M. (2005). Biomarkers for in situ detection of anaerobic ammonium-oxidizing (anammox) bacteria. Applied and Environmental Microbiology, 71(4), 1677-1684. Schubert, C. J., Durisch‐Kaiser, E., Wehrli, B., Thamdrup, B., Lam, P., & Kuypers, M. M. (2006). Anaerobic ammonium oxidation in a tropical freshwater system (Lake Tanganyika). Environmental Microbiology, 8(10), 1857-1863. Shao, Y. H., Wu, J. H., & Chen, H. W. (2024). Comammox Nitrospira cooperate with anammox bacteria in a partial nitritation–anammox membrane bioreactor treating low-strength ammonium wastewater at high loadings. Water Research, 257, 121698. Sheng, H., Weng, R., He, Y., Wei, Z., Yang, Y., Chen, J., ... & Zhou, G. (2021). The coupling of mixotrophic denitrification, dissimilatory nitrate reduction to ammonium (DNRA) and anaerobic ammonium oxidation (anammox) promoting the start-up of anammox by addition of calcium nitrate. Bioresource Technology, 341, 125822. Solomonson, L. P., & Spehar, A. M. (1977). Model for the regulation of nitrate assimilation. Nature, 265(5592), 373-375. Sonthiphand, P., Hall, M. W., & Neufeld, J. D. (2014). Biogeography of anaerobic ammonia-oxidizing (anammox) bacteria. Frontiers in Microbiology, 5, 399. Strous, M., Van Gerven, E., Kuenen, J. G., & Jetten, M. (1997). Effects of aerobic and microaerobic conditions on anaerobic ammonium-oxidizing (anammox) sludge. Applied and Environmental Microbiology, 63(6), 2446-2448. Strous, M., Fuerst, J. A., Kramer, E. H., Logemann, S., Muyzer, G., Van De Pas-Schoonen, K. T., ... & Jetten, M. S. (1999a). Missing lithotroph identified as new planctomycete. Nature, 400(6743), 446-449. Strous, M., Kuenen, J. G., & Jetten, M. S. (1999b). Key physiology of anaerobic ammonium oxidation. Applied and Environmental Microbiology, 65(7), 3248-3250. Thamdrup, B., & Dalsgaard, T. (2002). Production of N2 through anaerobic ammonium oxidation coupled to nitrate reduction in marine sediments. Applied and Environmental Microbiology, 68(3), 1312-1318. Tomaszewski, M., Cema, G., & Ziembińska-Buczyńska, A. (2017). Influence of temperature and pH on the anammox process: a review and meta-analysis. Chemosphere, 182, 203-214. Trigo, C., Campos, J. L., Garrido, J. M., & Mendez, R. (2006). Start-up of the Anammox process in a membrane bioreactor. Journal of Biotechnology, 126(4), 475-487. Van de Graaf, A. A., de Bruijn, P., Robertson, L. A., Jetten, M. S., & Kuenen, J. G. (1996). Autotrophic growth of anaerobic ammonium-oxidizing micro-organisms in a fluidized bed reactor. Microbiology, 142(8), 2187-2196. Van Kessel, M. A., Speth, D. R., Albertsen, M., Nielsen, P. H., Op den Camp, H. J., Kartal, B., ... & Lücker, S. (2015). Complete nitrification by a single microorganism. Nature, 528(7583), 555-559. Vitousek, P. M., Aber, J. D., Howarth, R. W., Likens, G. E., Matson, P. A., Schindler, D. W., ... & Tilman, D. G. (1997). Human alteration of the global nitrogen cycle: sources and consequences. Ecological Applications, 7(3), 737-750. Wan, Y., Ruan, X., Wang, J., & Shi, X. (2019). Spatial and seasonal variations in the abundance of nitrogen-transforming genes and the microbial community structure in freshwater lakes with different trophic statuses. International Journal of Environmental Research and Public Health, 16(13), 2298. Wang, C., He, T., Zhang, M., Zheng, C., Yang, L., & Yang, L. (2024). Review of the mechanisms involved in dissimilatory nitrate reduction to ammonium and the efficacies of these mechanisms in the environment. Environmental Pollution, 345, 123480. Wang, X. W., Tan, X., Dang, C. C., Liu, L. Y., Wang, X., Zhao, Z. C., ... & Xie, G. J. (2024). Enrichment and characterization of thermophilic anaerobic ammonium oxidizing bacteria from hot spring. Water Research, 267, 122497. Wemheuer, F., Taylor, J. A., Daniel, R., Johnston, E., Meinicke, P., Thomas, T., & Wemheuer, B. (2020). Tax4Fun2: prediction of habitat-specific functional profiles and functional redundancy based on 16S rRNA gene sequences. Environmental Microbiome, 15(1), 11. Wickham, H. (2016). Data analysis. ggplot2: Elegant Graphics for Data Analysis (pp. 189-201). Winkler, M. K., Yang, J., Kleerebezem, R., Plaza, E., Trela, J., Hultman, B., & van Loosdrecht, M. C. (2012). Nitrate reduction by organotrophic Anammox bacteria in a nitritation/anammox granular sludge and a moving bed biofilm reactor. Bioresource Technology, 114, 217-223. Wu, L., Shen, M., Li, J., Huang, S., Li, Z., Yan, Z., & Peng, Y. (2019). Cooperation between partial-nitrification, complete ammonia oxidation (comammox), and anaerobic ammonia oxidation (anammox) in sludge digestion liquid for nitrogen removal. Environmental Pollution, 254, 112965. Xiang, Y., Song, X., Yang, Y., Deng, S., Fu, L., Yang, C., ... & Chai, H. (2025). Comammox rather than AOB dominated the efficient autotrophic nitrification-denitrification process in an extremely oxygen-limited environment. Water Research, 268, 122572. Yang, Y., Li, M., Li, H., Li, X. Y., Lin, J. G., Denecke, M., & Gu, J. D. (2020). Specific and effective detection of anammox bacteria using PCR primers targeting the 16S rRNA gene and functional genes. Science of the Total Environment, 734, 139387. Yang, Y., Lu, Z., Azari, M., Kartal, B., Du, H., Cai, M., ... & Gu, J. D. (2022). Discovery of a new genus of anaerobic ammonium oxidizing bacteria with a mechanism for oxygen tolerance. Water Research, 226, 119165. Ye, L., Zhu, G. B., Lun, Z. C., Wang, Z. X., Wang, S. Y., Feng, X. J., & Yin, C. Q. (2011). Determination of activity and contribution of anammox bacteria to N2 production by molecular biology and isotope analyses. Acta Science Cirsumstaniae, 31(6), 1206-1211. Yu, H., Dong, Y., Wang, S., Jia, W., Wang, Y., Zuo, J., & Qu, C. (2024). Nitrate formation in anammox process: Mechanisms and operating conditions. Heliyon, 10(21). Yuan, F. Y. (2025). Development and Functional Assessment of ANAMMOX Immobilization Materials Using 3D Bioprinting (Master's Thesis, National Taiwan University). Airiti Library. https://doi.org/10.6342/NTU202501555. Zehr, J.P., & Capone, D.G. (2021). Nitrogen Fixation in the Marine Environment. Marine Nitrogen Fixation. (pp. 1-7). Zhao, R., Biddle, J. F., & Jørgensen, S. L. (2022). Introducing Candidatus Bathyanammoxibiaceae, a family of bacteria with the anammox potential present in both marine and terrestrial environments. ISME communications, 2(1), 42. Zhao, R., Le Moine Bauer, S., & Babbin, A. R. (2023). “Candidatus Subterrananammoxibiaceae,” a new anammox bacterial family in globally distributed marine and terrestrial subsurfaces. Applied and Environmental Microbiology, 89(8), e00800-23. Zheng, Y., Hou, L., Zhang, Z., Chen, F., Gao, D., Yin, G., ... & Liu, M. (2020). Anaerobic ammonium oxidation (anammox) bacterial diversity, abundance, and activity in sediments of the Indus Estuary. Estuarine, Coastal and Shelf Science, 243, 106925. Zhu, G., Wang, S., Wang, Y., Wang, C., Risgaard-Petersen, N., Jetten, M. S., & Yin, C. (2011). Anaerobic ammonia oxidation in a fertilized paddy soil. The ISME Journal, 5(12), 1905-1912. Zhu, G., Wang, X., Wang, S., Yu, L., Armanbek, G., Yu, J., ... & Zhu, Y. G. (2022). Towards a more labor-saving way in microbial ammonium oxidation: a review on complete ammonia oxidization (comammox). Science of the Total Environment, 829, 154590. Zhu, Y., Wang, Y., Yan, Y., & Xue, H. (2019). Rapid and sensitive quantification of anammox bacteria by flow cytometric analysis based on catalyzed reporter deposition fluorescence in situ hybridization. Environmental Science & Technology, 53(12), 6895-6905. Zumft, W. G. (1997). Cell biology and molecular basis of denitrification. Microbiology and Molecular Biology Reviews, 61(4), 533-616. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101526 | - |
| dc.description.abstract | 厭氧氨氧化菌自上世紀末被發現以來,由於其低有機物需求量、低溫室氣體產出、污泥產量低的優勢,被視為代替現有污水廠除氮使用的反硝化菌法的潜在方法。 近二十年來,關於它的研究及應用已有初步進展,但是在實際應用中仍然面臨種種難題,比如該菌生長有嚴苛的環境條件限制、生長繁殖速度極其緩慢、在汙水處理廠中的低溫環境難以維持活躍、以及難以檢測對比其與反硝化菌的除氮貢獻高低等問題。
本研究使用序批式活性污泥法(Sequencing Batch Reactor,SBR),在接種了來自兩個不同汙水處理廠污泥後,在適宜條件下進行培養,隨後對污泥進行16S rRNA基因的全長測序以及改為15氮-亞硝酸根的穩定同位素示踪法進行厭氧氨氧化菌產氣量和貢獻率測試,探討在實驗室層面的情况下,厭氧氨氧化菌貢獻的檢測方法改良及培養效果。 在其中一個接種某食品廠和某污水廠的混合污泥的反應器B培養350天后,使用16S rRNA基因的全長定序檢測到厭氧氨氧化菌豐度達到3.264%,其優勢種為Candidatus Jettenia屬中一個尚未被歸類的種,而另一個接種某污水廠污泥的反應器A中僅檢測到0.172%,優勢種為Candidatus Brocadia屬種一個尚未被歸類的種。 然而,在厭氧氨氧化菌特有基因肼合成酶A/B/C及肼脫氫酶的宏基因組分析中,反應器A中的基因豐度高達15.7%,反而遠遠高於反應器B的3.26%,推測可能分析程式中有未被發現的問題,也可能是其中未被詳細研究的一個Fimbriimonadaceae屬中的未被分類的種可能攜帶ANAMMOX關鍵代謝的基因組,具體原因需要進一步純化厭氧氨氧化菌后,對該菌全基因組定序后進行確認。 在穩定同位素示踪法示踪法中,為類比利用厭氧氨氧化菌無需額外有機碳添加的優勢的使用場景,本實驗使用15氮-亞硝酸根替代原實驗中的15氮-硝酸根,以避免反硝化菌在缺乏有機物環境下無法將硝酸根轉化成亞硝酸根使厭氧氨氧化作用缺乏底物,從而導致厭氧氨氧化作用被低估的潜在問題。 而結果表明,在該情况下,厭氧氨氧化菌在反應器A、B污泥中分別達到了99.09%、99.61%的貢獻占比,其除氮率分別為1.21±0.57、3.05±0.42毫克每天每升污泥基質混合物(mg/L/h)。 而這一結果與A、B瓶進行的進出水量測離子色譜-質量平衡法有顯著差异。 在改進方法後量測兩個垃圾掩埋場污水廠厭氧池採集的污泥,得到 0.36±0.18、3.10±2.55毫克每天每升污泥基質混合物(mg/L/h)的反應速率,以揮發性懸浮固體VSS計為0.088 ± 0.044 毫克氮每毫克揮發性懸浮固體每小時(mg-N/mg-VSS/h)與0.721 ± 0.593 毫克氮每毫克揮發性懸浮固體每小時(mg-N/mg-VSS/h)及99.26%、89.21%的貢獻占比。 | zh_TW |
| dc.description.abstract | Since the end of the last century, anaerobic ammonium-oxidizing (ANAMMOX) bacteria have been regarded as a potential alternative to the denitrification method used in existing wastewater treatment plants for nitrogen removal, owing to their advantages of minimal organic demand, low production of greenhouse gas (nitrous oxide), and minimal sludge yield. Over the past two decades, research and application have made initial progress. However, the practical implementation of it still faces several obstacles, including stringent environmental constraints for bacterial growth, extremely slow growth and reproduction rates, difficulty maintaining bacterial activity in the low-temperature environment of wastewater treatment plants, and challenges in detecting and comparing their nitrogen removal contributions relative to denitrifying bacteria.
This study employed a Sequencing Batch Reactor (SBR) system with two reactors, A and B. After inoculation with sludge from two distinct wastewater treatment plants, cultivation was conducted under optimized conditions. Subsequently, full-length 16S rRNA gene sequencing was performed on the sludge. Additionally, the contribution percentage and gas production rate of ANAMMOX bacteria were assessed using the stable isotope tracer method with 15N-nitrite instead of the commonly used 15N-nitrate. This approach aimed to refine detection methods for ANAMMOX bacteria contributions and evaluate cultivation efficiency under lab-level conditions. After 350 days of cultivation in Reactor B inoculated with mixed sludge from a food processing plant and a wastewater treatment plant, full-length 16S rRNA gene sequencing detected an ANAMMOX bacteria abundance of 3.264%, with the dominant species being an unclassified species of the genus Candidatus Jettenia. In contrast, reactor A sludge, which is from a wastewater treatment plant, detected only 0.172% ANAMMOX bacteria, dominated by an unclassified species within the genus Candidatus Brocadia. However, in metagenomic analysis of ANAMMOX-specific genes (hydrazine synthase subunit A/B/C and hydrazine dehydrogenase, HzsA/B/C and Hdh), gene abundance in Reactor A reached 15.7%, significantly higher than 3.26% in Reactor B. This suggests potential issues with the analysis software, or the presence of an unclassified species within the Fimbriimonadaceae family that may contain key ANAMMOX metabolic genes. The cause requires further purification of the ANAMMOX bacteria followed by genome sequencing to confirm. In the stable isotope tracing experiment, to simulate an optimal application circumstance for ANAMMOX bacteria, which does not require additional organic carbon supplementation, this study replaced 15N-nitrate with 15N-nitrite to prevent denitrifying bacteria from failing to convert nitrate to nitrite in an organic-carbon-depleted environment, which would deprive the ANAMMOX reaction of substrate, potentially leading to underestimation of its contribution. Results indicate that under these conditions, ANAMMOX bacteria contributed 99.09% and 99.61% to nitrogen removal in reactors A and B sludge, respectively, achieving nitrogen removal rates of 1.21 ± 0.57 and 3.05 ± 0.42 milligrams per day per liter of sludge substrate mixture (mg/L/h). This result differs significantly from the ion chromatography-mass balance measurements of influent and effluent conducted in bottles A and B. After refining the method, measurements of sludge collected from the anaerobic tanks at two different wastewater treatment plants yielded reaction rates of 0.36 ± 0.18 and 3.10 ± 2.55 mg/L/h, which could also be expressed as 0.088 ± 0.044 mg-N/mg-VSS/h and 0.721 ± 0.593 mg-N/mg-VSS/h, respectively, with contribution rates of 99.26% and 89.21%. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2026-02-04T16:29:31Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2026-02-04T16:29:31Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 目 次
論文口試委員會審定書 i 誌謝 ii 摘要 iii Abstract v 目次 vii 圖次 x 表次 xii 1. Introduction 1 1.1 Research background 1 1.2 Research Motivation 2 1.3 Research Objective 3 2. Literature Review 4 2.1 Natural Nitrogen Circle 4 2.1.1 Human inferences on the nitrogen cycle 4 2.1.2 The flow of nitrogen-containing ions 5 2.1.2.1 Nitrite reduction, nitrite assimilation, and nitrate reduction through the food web 6 2.1.2.2 Nitrogen fixation 7 2.1.2.3 Ammonia oxidation, nitrite oxidation, and comammox 7 2.1.2.4 Dissimilatory nitrate reduction 8 2.1.2.5 Denitrification 9 2.1.2.6 ANAMMOX 10 2.2 Biological and ecological basis of Anaerobic ammonia oxidation (ANAMMOX) bacteria 12 2.2.1 Ecological distribution and environmental adaptability 12 2.2.2 Metabolic mechanism of anammox 14 2.2.3 Cultivation of ANAMMOX bacteria 16 2.2.4 Monitoring methods of ANAMMOX bacteria 16 2.3 Principle and application of primary ANAMMOX bacteria nitrogen removal contribution detection methods 17 2.3.1 Experience formula or direct headspace pressure calculation 17 2.3.2 16S rRNA gene sequencing 17 2.3.3 Specific ANAMMOX Activity (SAA) 18 2.3.4 Fluorescence In Situ Hybridization (FISH) 19 2.3.5 15N-stable isotope probing 20 3. Materials and Methods 23 3.1 Materials 23 3.2 Equipment 26 3.3 ANAMMOX bacteria cultivation and monitoring 28 3.3.1 Sludge sources: cultivated sludge and its device 28 3.3.1.1 Ammonia-Nitrogen concentration monitoring by Nessler Reagent Set 31 3.3.1.2 Nitrogen-Nitrite and Nitrogen-Nitrate concentration monitoring by Ion Chromatography 32 3.3.2 Sludge sources: Anaerobic sludge from two different landfill leachate treatment sites 32 3.3.3 Composition of artificial wastewater 34 3.4 15N-stable isotope tracer method 37 3.4.1 Medium preparation 37 3.4.2 Vials and plugs preparation. 38 3.4.3 Sludge preparation 38 3.4.4 Helium Aeration 39 3.4.5 Incubation 42 3.4.6 Nitrogen yield test by GC-BID 42 3.4.7 29N2 and 30N2 ratio test by GC-IRMS 46 3.5 Sludge bacteria community analysis by 16S rRNA gene full-length sequencing 49 3.5.1 DNA extraction and identification 49 3.5.2 Tax4Fun2 general gene function prediction 51 3.5.3 Specific ANAMMOX gene HzsA/B/C and Hdh abundance analysis program 52 4. Result and discussion 55 4.1 Sludge condition 55 4.1.1 Lab-enriched sludge nitrogen concentration 55 4.1.2 Landfill leachate wastewater treatment plant sludge condition 62 4.2 16S rRNA gene full-length sequencing analysis 64 4.2.1 Microbial species analysis 64 4.2.2 Tax4Fun2 functional and pathway prediction 69 4.2.3 Specific ANAMMOX gene HzsA/B/C and Hdh abundance analysis program 70 4.3 Total nitrogen yield calculated by GC-BID and verified by the theoretical experience formula 74 4.3.1 Calibration curve 74 4.3.2 GC-BID examination for 2 Reactors 76 4.4 ANAMMOX contribution analysis by GC-IRMS 80 4.4.1 Calibration curve 80 4.4.2 Reactors 83 4.4.3 Landfill wastewater treatment plant sludge 89 5. Discussion and Conclusion 93 5.1 15N-stable isotope tracer method 93 5.2 16S rRNA analysis 94 6. Suggestions 96 7. References 97 | - |
| dc.language.iso | en | - |
| dc.subject | 厭氧氨氧化 | - |
| dc.subject | 富集 | - |
| dc.subject | 序批式活性污泥法 | - |
| dc.subject | 16S rRNA基因全長定序 | - |
| dc.subject | 15氮穩定同位素法 | - |
| dc.subject | 除氮 | - |
| dc.subject | ANAMMOX | - |
| dc.subject | Enrichment | - |
| dc.subject | Sequencing Batch Reactor (SBR) | - |
| dc.subject | Full-length 16S rRNA gene sequencing | - |
| dc.subject | 15N-stable isotope tracer method | - |
| dc.subject | Nitrogen removal | - |
| dc.title | 厭氧氨氧化菌的培養及其除氮效率評估 | zh_TW |
| dc.title | Enrichment and Evaluation of Anaerobic Ammonium Oxidation (ANAMMOX) Bacteria Contribution to Nitrogen Removal Efficiency | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 114-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 童心欣;江殷儒 | zh_TW |
| dc.contributor.oralexamcommittee | Hsin-Hsin Tung;Yin-Ru Chiang | en |
| dc.subject.keyword | 厭氧氨氧化,富集序批式活性污泥法16S rRNA基因全長定序15氮穩定同位素法除氮 | zh_TW |
| dc.subject.keyword | ANAMMOX,EnrichmentSequencing Batch Reactor (SBR)Full-length 16S rRNA gene sequencing15N-stable isotope tracer methodNitrogen removal | en |
| dc.relation.page | 111 | - |
| dc.identifier.doi | 10.6342/NTU202600468 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2026-02-03 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 環境工程學研究所 | - |
| dc.date.embargo-lift | 2026-02-05 | - |
| 顯示於系所單位: | 環境工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-114-1.pdf | 4.72 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
