請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101494完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 侯維恕 | zh_TW |
| dc.contributor.advisor | Wei-Shu Hou | en |
| dc.contributor.author | 畢昇 | zh_TW |
| dc.contributor.author | Sven Martin Hadriaan Teunissen | en |
| dc.date.accessioned | 2026-02-04T16:14:08Z | - |
| dc.date.available | 2026-02-05 | - |
| dc.date.copyright | 2026-02-04 | - |
| dc.date.issued | 2026 | - |
| dc.date.submitted | 2026-01-24 | - |
| dc.identifier.citation | L. Boyle, “Converted to png from file: Standard model of particle physics, most complete diagram.jpg, cc by-sa 4.0.” [Online]. Available: https://commons.wikimedia.org/w/index.php?curid=45839544
R. Alarcon et al., “Electric dipole moments and the search for new physics,” arXiv preprint arXiv:2203.08103, 2022. R. L. Workman et al., “Review of particle physics,” Progress of Theoretical and Experimental Physics, vol. 2022, no. 8, 2022. A. Pais and S. B. Treiman, “How many charm quantum numbers are there?” Physical Review Letters, vol. 35, no. 23, pp. 1556–1559, 1975. M. Schirber, “Q&a: Standard bearer,” Physics Magazine, vol. 11, p. 134, December 21 2018. M. Born and P. Jordan, “Zur quantenmechanik,” Zeitschrift für Physik, vol. 34, no. 1, pp. 858–888, 1925. M. Born, W. Heisenberg, and P. Jordan, “Zur quantenmechanik. ii,” Zeitschrift für Physik, vol. 35, no. 8, pp. 557–615, 1926. L. De Broglie, “Recherches sur la théorie des quanta,” Ann. Phys., vol. 10, no. 3, pp. 22–128, 1925. P. A. M. Dirac, “The quantum theory of the emission and absorption of radiation,” Proceedings of the Royal Society of London Series a-Containing Papers of a Mathematical and Physical Character, vol. 114, no. 767, pp. 243–265, 1927. P. A. M. Dirac, “The quantum theory of the electron,” Proceedings of the Royal Society of London Series a-Containing Papers of a Mathematical and Physical Character, vol. 117, no. 778, pp. 610–624, 1928. C. D. Anderson, “The positive electron,” Physical Review, vol. 43, no. 6, pp. 491–494, 1933. E. Fermi, “Versuch einer theorie der β-strahlen. i,” Zeitschrift für Physik, vol. 88, no. 3, pp. 161–177, 1934. H. Yukawa, “On the interaction of elementary particles. i,” Progress of Theoretical Physics Supplement, vol. 1, pp. 1–10, 01 1955. C. D. Anderson and S. H. Neddermeyer, “Cloud chamber observations of cosmic rays at 4300 meters elevation and near sea-level,” Physical Review, vol. 50, no. 4, pp. 263–271, 1936. J. C. Street and E. C. Stevenson, “New evidence for the existence of a particle of mass intermediate between the proton and electron,” Physical Review, vol. 52, no. 9, pp. 1003–1004, 1937. S. Tomonaga, “On a relativistically invariant formulation of the quantum theory of wave fields*,” Progress of Theoretical Physics, vol. 1, no. 2, pp. 27–42, 1946. J. Schwinger, “On quantum-electrodynamics and the magnetic moment of the electron,” Physical Review, vol. 73, no. 4, pp. 416–417, 1948. J. Schwinger, “Quantum electrodynamics. i. a covariant formulation,” Physical Review, vol. 74, no. 10, pp. 1439–1461, 1948. R. P. Feynman, “Space-time approach to quantum electrodynamics,” Physical Review, vol. 76, no. 6, pp. 769–789, 1949. R. P. Feynman, “The theory of positrons,” Physical Review, vol. 76, no. 6, pp. 749–759, 1949. R. P. Feynman, “Mathematical formulation of the quantum theory of electromagnetic interaction,” Physical Review, vol. 80, no. 3, pp. 440–457, 1950. F. J. Dyson, “The radiation theories of tomonaga, schwinger, and feynman,” Physical Review, vol. 75, no. 3, pp. 486–502, 1949. F. J. Dyson, “The s matrix in quantum electrodynamics,” Physical Review, vol. 75, no. 11, pp. 1736–1755, 1949. M. Conversi, E. Pancini, and O. Piccioni, “On the disintegration of negative mesons,” Physical Review, vol. 71, no. 3, pp. 209–210, 1947. C. M. G. LATTES, H. MUIRHEAD, G. P. S. OCCHIALINI, and C. F. POWELL, “Processes involving charged mesons,” Nature, vol. 159, no. 4047, pp. 694–697, May 1947. R. Bjorklund, W. E. Crandall, B. J. Moyer, and H. F. York, “High energy photons from proton-nucleon collisions,” Phys. Rev., vol. 77, pp. 213–218, Jan 1950. C. N. Yang and R. L. Mills, “Conservation of isotopic spin and isotopic gauge invariance,” Physical Review, vol. 96, no. 1, pp. 191–195, 1954. T. D. Lee and C. N. Yang, “Question of parity conservation in weak interactions,” Physical Review, vol. 104, no. 1, pp. 254–258, 1956. C. S. Wu, E. Ambler, R. W. Hayward, D. D. Hoppes, and R. P. Hudson, “Experimental test of parity conservation in beta decay,” Physical Review, vol. 105, no. 4, pp. 1413–1415, 1957. S. L. Glashow, “Partial-symmetries of weak interactions,” Nuclear Physics, vol. 22, no. 4, pp. 579–588, 1961. F. Englert and R. Brout, “Broken symmetry and the mass of gauge vector mesons,” Physical Review Letters, vol. 13, no. 9, pp. 321–323, 1964. P. W. Higgs, “Broken symmetries and the masses of gauge bosons,” Physical Review Letters, vol. 13, no. 16, pp. 508–509, 1964. G. S. Guralnik, C. R. Hagen, and T. W. B. Kibble, “Global conservation laws and massless particles,” Physical Review Letters, vol. 13, no. 20, pp. 585–587, 1964. J. Bardeen, L. N. Cooper, and J. R. Schrieffer, “Theory of superconductivity,” Physical Review, vol. 108, no. 5, pp. 1175–1204, 1957. P. W. Anderson, “Plasmons, gauge invariance, and mass,” Physical Review, vol. 130, no. 1, pp. 439–442, 1963. A. Klein and B. W. Lee, “Does spontaneous breakdown of symmetry imply zero-mass particles?” Physical Review Letters, vol. 12, no. 10, pp. 266–268, 1964. M. Gell-Mann, “A schematic model of baryons and mesons,” Physics Letters, vol. 8, no. 3, pp. 214–215, 1964. G. Zweig, “An su3 model for strong interaction symmetry and its breaking,” CERN Document Server, no. CERN-TH-412, 1964. S. Weinberg, “A model of leptons,” Physical Review Letters, vol. 19, no. 21, pp. 1264–1266, 1967. A. Salam, “Weak and electromagnetic interactions,” pp 367-77 of Elementary Particle Theory. Svartholm, Nils (ed.). New York, John Wiley and Sons, Inc., 1968., p. Medium: X, 1969. E. D. Bloom et al., “High-energy inelastic e − p scattering at 6° and 10°,” Physical Review Letters, vol. 23, no. 16, pp. 930–934, 1969. M. Breidenbach et al., “Observed behavior of highly inelastic electron-proton scattering,” Physical Review Letters, vol. 23, no. 16, pp. 935–939, 1969. S. L. Glashow, J. Iliopoulos, and L. Maiani, “Weak interactions with lepton-hadron symmetry,” Physical Review D, vol. 2, no. 7, pp. 1285–1292, 1970. B. J. Bjørken and S. L. Glashow, “Elementary particles and su(4),” Physics Letters, vol. 11, no. 3, pp. 255–257, 1964. F. J. Hasert et al., “Search for elastic muon-neutrino electron scattering,” Physics Letters B, vol. 46, no. 1, pp. 121–124, 1973. F. J. Hasert et al., “Observation of neutrino-like interactions without muon or electron in the gargamelle neutrino experiment,” Physics Letters B, vol. 46, no. 1, pp. 138–140, 1973. F. J. Hasert et al., “Observation of neutrino-like interactions without muon or electron in the gargamelle neutrino experiment,” Nuclear Physics B, vol. 73, no. 1, pp. 1–22, 1974. D. J. Gross and F. Wilczek, “Ultraviolet behavior of non-abelian gauge theories,” Physical Review Letters, vol. 30, no. 26, pp. 1343–1346, 1973. H. D. Politzer, “Reliable perturbative results for strong interactions?” Physical Review Letters, vol. 30, no. 26, pp. 1346–1349, 1973. M. Kobayashi and T. Maskawa, “Cp-violation in the renormalizable theory of weak interaction,” Progress of Theoretical Physics, vol. 49, no. 2, pp. 652–657, 1973. N. Cabibbo, “Unitary symmetry and leptonic decays,” Physical Review Letters, vol. 10, no. 12, pp. 531–533, 1963. J. E. Augustin et al., “Discovery of a narrow resonance in e+e- annihilation,” Physical Review Letters, vol. 33, no. 23, pp. 1406–1408, 1974. J. J. Aubert et al., “Experimental observation of a heavy particle-j,” Physical Review Letters, vol. 33, no. 23, pp. 1404–1406, 1974. C. Bacci et al., “Preliminary result of frascati (adone) on nature of a new 3.1-gev particle produced in e+e- annihilation,” Physical Review Letters, vol. 33, no. 23, pp. 1408–1410, 1974. M. L. Perl et al., “Evidence for anomalous lepton production in e+ -e- annihilation,” Physical Review Letters, vol. 35, no. 22, pp. 1489–1492, 1975. M. L. Perl et al., “Properties of anomalous emu events produced in e+e- annihilation,” Physics Letters B, vol. 63, no. 4, pp. 466–470, 1976. M. Perl, “Evidence for, and properties of the new heavy lepton,” SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States), Report, 1977. [Online]. Available: https://www.osti.gov/biblio/1446487 https://www.osti.gov/servlets/purl/1446487 S. W. Herb et al., “Observation of a dimuon resonance at 9.5 gev in 400-gev proton-nucleus collisions,” Physical Review Letters, vol. 39, no. 5, pp. 252–255, 1977. G. Arnison et al., “Experimental-observation of lepton pairs of invariant mass around 95 gev/c2 at the cern sps collider,” Physics Letters B, vol. 126, no. 5, pp. 398–410, 1983. M. Banner et al., “Observation of single isolated electrons of high transverse-momentum in events with missing transverse energy at the cern pbarp collider,” Physics Letters B, vol. 122, no. 5-6, pp. 476–485, 1983. G. Arnison et al., “Experimental-observation of lepton pairs of invariant mass around 95 gev/c2 at the cern sps collider,” Physics Letters B, vol. 126, no. 5, pp. 398–410, 1983. P. Bagnaia et al., “Evidence for z0-¿e+e- at the cern p-p collider,” Physics Letters B, vol. 129, no. 1-2, pp. 130–140, 1983. C. D. F. Collaboration et al., “Observation of top quark production in pp collisions with the collider detector at fermilab,” Physical Review Letters, vol. 74, no. 14, pp. 2626–2631, 1995. D. Collaboration et al., “Observation of the top quark,” Physical Review Letters, vol. 74, no. 14, pp. 2632–2637, 1995. S. Chatrchyan et al., “Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc,” Physics Letters B, vol. 716, no. 1, pp. 30–61, 2012. G. Aad et al., “Observation of a new particle in the search for the standard model higgs boson with the atlas detector at the lhc,” Physics Letters B, vol. 716, no. 1, pp. 1–29, 2012. M. Thomson, Modern particle physics. Cambridge, United Kingdom; New York: Cambridge University Press, 2013. U. Sarkar, Particle and astroparticle physics, ser. Series in high energy physics, cosmology, and gravitation. New York: Taylor & Francis, 2008. A. R. Liddle, An introduction to modern cosmology, 3rd ed. Chichester, West Sussex: John Wiley and Sons, Inc., 2015. J. D. Barrow and M. S. Turner, “Baryosynthesis and the origin of galaxies,” Nature, vol. 291, no. 5815, pp. 469–472, 1981. M. S. Turner, “Big band baryosynthesis and grand unification,” AIP Conference Proceedings, vol. 72, no. 1, pp. 224–243, 1981. V. A. Kuzmin, V. A. Rubakov, and M. E. Shaposhnikov, “On anomalous electroweak baryon-number non-conservation in the early universe,” Physics Letters B, vol. 155, no. 1-2, pp. 36–42, 1985. A. G. Cohen, D. B. Kaplan, and A. E. Nelson, “Weak scale baryogenesis,” Physics Letters B, vol. 245, no. 3-4, pp. 561–564, 1990. A. A. Penzias and R. W. Wilson, “A measurement of excess antenna temperature at 4080mc/s,” Astrophysical Journal, vol. 142, no. 1, pp. 419–421, 1965. J. H. Christenson, V. L. Fitch, J. W. Cronin, and R. Turlay, “Evidence for 2π decay of k 0 meson,” Physical Review Letters, vol. 13, no. 4, pp. 138–+, 1964. A. D. Sakharov, “Violation of cp invariance c asymmetry and baryon asymmetry of universe,” Jetp Letters-Ussr, vol. 5, no. 1, pp. 24–+, 1967. G. R. Farrar and M. E. Shaposhnikov, “Baryon asymmetry of the universe in the minimal standard model,” Physical Review Letters, vol. 70, no. 19, pp. 2833–2836, 1993. A. I. Bochkarev, S. V. Kuzmin, and M. E. Shaposhnikov, “Electroweak baryogenesis and the higgs boson mass problem,” Physics Letters B, vol. 244, no. 2, pp. 275–278, 1990. G. C. Branco et al., “Theory and phenomenology of two-higgs-doublet models,” Physics Reports-Review Section of Physics Letters, vol. 516, no. 1-2, pp. 1–102, 2012. S. Davidson and H. E. Haber, “Basis-independent methods for the two-higgs-doublet model (vol 72, pg 035004, 2005),” Physical Review D, vol. 72, no. 9, 2005. W. S. Hou and T. Modak, “Production of and in 2hdm: Prospects for discovery at the lhc,” Physical Review D, vol. 101, no. 3, 2020. T. P. Cheng and M. Sher, “Mass-matrix ansatz and flavor nonconservation in models with multiple higgs doublets,” Physical Review D, vol. 35, no. 11, pp. 3484–3491, 1987. W. S. Hou and G. Kumar, “Muon flavor violation in two-higgs-doublet model with extra yukawa couplings,” Physical Review D, vol. 102, no. 11, 2020. W.-S. Hou and M. Kikuchi, “Approximate alignment in two-higgs-doublet model with extra yukawa couplings,” Europhysics Letters, vol. 123, no. 1, p. 11001, 2018. K. Fuyuto, W. S. Hou, and E. Senaha, “Electroweak baryogenesis driven by extra top yukawa couplings,” Physics Letters B, vol. 776, pp. 402–406, 2018. G. ’t HOOFT, “Computation of quantum effects due to a 4-dimensional pseudoparticle,” Physical Review D, vol. 14, no. 12, pp. 3432–3450, 1976. F. R. Klinkhamer and N. S. Manton, “A saddle-point solution in the weinberg-salam theory,” Physical Review D, vol. 30, no. 10, pp. 2212–2220, 1984. G. R. Farrar and M. E. Shaposhnikov, “Baryon asymmetry of the universe in the minimal standard model,” Physical Review Letters, vol. 70, no. 19, pp. 2833–2836, 1993. S. Kanemura, Y. Okada, and E. Senaha, “Electroweak baryogenesis and quantum corrections to the triple higgs boson coupling,” Physics Letters B, vol. 606, no. 3-4, pp. 361–366, 2005. P. Huet and A. E. Nelson, “Electroweak baryogenesis in supersymmetric models,” Physical Review D, vol. 53, no. 8, pp. 4578–4597, 1996. J. M. Cline and K. Kainulainen, “New source for electroweak baryogenesis in the minimal supersymmetric standard model,” Physical Review Letters, vol. 85, no. 26, pp. 5519–5522, 2000. P. A. R. Ade et al., “2013 results. xvi. cosmological parameters,” Astronomy & Astrophysics, vol. 571, 2014. C. W. Chiang, K. Fuyuto, and E. Senaha, “Electroweak baryogenesis with lepton flavor violation,” Physics Letters B, vol. 762, pp. 315–320, 2016. D. J. Griffiths, Introduction to electrodynamics, 4th ed. Boston: Pearson, 2013. J. D. Jackson, Classical electrodynamics, 3rd ed. New York: Wiley, 1999. E. E. Salpeter, “Some atomic effects of an electronic electric dipole moment,” Physical Review, vol. 112, no. 5, pp. 1642–1648, 1958. T. E. Chupp, P. Fierlinger, M. J. Ramsey-Musolf, and J. T. Singh, “Electric dipole moments of atoms, molecules, nuclei, and particles,” Reviews of Modern Physics, vol. 91, no. 1, 2019. M. Nowakowski, E. A. Paschos, and J. M. Rodrı́guez, “All electromagnetic form factors,” European Journal of Physics, vol. 26, no. 4, pp. 545–560, 2005. J. D. Bjorken and S. Weinberg, “Mechanism for nonconservation of muon number,” Physical Review Letters, vol. 38, no. 12, pp. 622–625, 1977. S. M. Barr and A. Zee, “Electric-dipole moment of the electron and of the neutron,” Physical Review Letters, vol. 65, no. 1, pp. 21–24, 1990. R. G. Leigh, S. Paban, and R. M. Xu, “Electric-dipole moment of electron,” Nuclear Physics B, vol. 352, no. 1, pp. 45–58, 1991. D. Chang, W. Y. Keung, and J. Liu, “The electric-dipole moment of w-boson,” Nuclear Physics B, vol. 355, no. 2, pp. 295–304, 1991. C. Kao and R. M. Xu, “Charged-higgs-loop contribution to the electric-dipole moment of the electron,” Physics Letters B, vol. 296, no. 3-4, pp. 435–439, 1992. D. BowserChao, D. Chang, and W. Y. Keung, “Electron electric dipole moment from cp violation in the charged higgs sector,” Physical Review Letters, vol. 79, no. 11, pp. 1988–1991, 1997. T. Abe, J. Hisano, T. Kitahara, and K. Tobioka, “Gauge invariant barr-zee type contributions to fermionic edms in the two-higgs doublet models,” Journal of High Energy Physics, no. 1, 2014. S. Weinberg, “Larger higgs-boson-exchange terms in the neutron electric-dipole moment,” Physical Review Letters, vol. 63, no. 21, pp. 2333–2336, 1989. M. Jung and A. Pich, “Electric dipole moments in two-higgs-doublet models,” Journal of High Energy Physics, no. 4, 2014. K. Kaneta, N. Nagata, K. A. Olive, M. Pospelov, and L. Velasco-Sevilla, “Quantifying limits on cp violating phases from edms in supersymmetry,” Journal of High Energy Physics, no. 3, 2023. T. S. Roussy et al., “An improved bound on the electron’s electric dipole moment,” Science, vol. 381, no. 6653, pp. 46–50, 2023. V. Andreev et al., “Improved limit on the electric dipole moment of the electron,” Nature, vol. 562, no. 7727, pp. 355–+, 2018. G. W. Bennett et al., “Improved limit on the muon electric dipole moment,” Physical Review D, vol. 80, no. 5, 2009. R. Chislett, “The muon edm in the g-2 experiment at fermilab,” EPJ Web of Conferences, vol. 118, p. 01005, 2016. M. Abe et al., “A new approach for measuring the muon anomalous magnetic moment and electric dipole moment,” Progress of Theoretical and Experimental Physics, vol. 2019, no. 5, 2019. Y. H. Ema, T. Gao, and M. Pospelov, “Improved indirect limits on muon electric dipole moment,” Physical Review Letters, vol. 128, no. 13, 2022. A. Adelmann et al., “Search for a muon edm using the frozen-spin technique,” arXiv preprint arXiv:2102.08838, 2021. K. Inami et al., “An improved search for the electric dipole moment of the τ lepton,” Journal of High Energy Physics, no. 4, 2022. E. Kou et al., “The belle ii physics book,” Progress of Theoretical and Experimental Physics, vol. 2019, no. 12, 2019. W. Bernreuther, L. Chen, and O. Nachtmann, “Electric dipole moment of the tau lepton revisited,” Physical Review D, vol. 103, no. 9, 2021. G. D’Ambrosio, G. F. Giudice, G. Isidori, and A. Strumia, “Minimal flavour violation: an effective field theory approach,” Nuclear Physics B, vol. 645, no. 1-2, pp. 155–187, 2002. G. Hiller, K. Huitu, T. Rüppell, and J. Laamanen, “Large muon electric dipole moment from flavor?” Physical Review D, vol. 82, no. 9, 2010. A. Crivellin, M. Hoferichter, and P. Schmidt-Wellenburg, “Combined explanations of (g-2) and implications for a large muon edm,” Physical Review D, vol. 98, no. 11, 2018. K. Fuyuto, W. S. Hou, and E. Senaha, “Cancellation mechanism for the electron electric dipole moment connected with the baryon asymmetry of the universe,” Physical Review D, vol. 101, no. 1, 2020. W. S. Hou, G. Kumar, and S. Teunissen, “Discovery prospects for electron and neutron electric dipole moments in the general two higgs doublet model,” Physical Review D, vol. 109, no. 1, 2024. C. Abel et al., “Measurement of the permanent electric dipole moment of the neutron,” Physical Review Letters, vol. 124, no. 8, 2020. N. J. Ayres et al., “The design of the n2edm experiment nedm collaboration,” European Physical Journal C, vol. 81, no. 6, 2021. “Oak ridge national laboratory nedm web page.” [Online]. Available: https://nedm.ornl.gov/ J. Hisano, D. Kobayashi, W. Kuramoto, and T. Kuwahara, “Nucleon electric dipole moments in high-scale supersymmetric models,” Journal of High Energy Physics, vol. 2015, no. 11, p. 85, Nov. 2015. M. Pospelov and A. Ritz, “Electric dipole moments as probes of new physics,” Annals of Physics, vol. 318, no. 1, pp. 119–169, 2005. A. Bean et al., “Limits on b0bbar0 mixing and taub0 taub+,” Physical Review Letters, vol. 58, no. 3, pp. 183–186, 1987. H. Albrecht et al., “Observation of b0-b-bar-0 mixing,” Physics Letters B, vol. 192, no. 1-2, pp. 245–252, 1987. I. Maksymyk, C. P. Burgess, and D. London, “Beyond s, t, and u,” Physical Review D, vol. 50, no. 1, pp. 529–535, 1994. W. Grimus, L. Lavoura, O. M. Ogreid, and P. Osland, “A precision constraint on multi-higgs-doublet models,” Journal of Physics G-Nuclear and Particle Physics, vol. 35, no. 7, 2008. W. Grimus, L. Lavoura, O. M. Ogreid, and P. Osland, “The oblique parameters in multi-higgs-doublet models,” Nuclear Physics B, vol. 801, no. 1-2, pp. 81–96, 2008. J. M. Gérard and M. Herquet, “Twisted custodial symmetry in two-higgs-doublet models,” Physical Review Letters, vol. 98, no. 25, 2007. B. Abi et al., “Measurement of the positive muon anomalous magnetic moment to 0.46 ppm,” Physical Review Letters, vol. 126, no. 14, 2021. G. W. Bennett et al., “Final report of the e821 muon anomalous magnetic moment measurement at bnl -: art. no. 072003,” Physical Review D, vol. 73, no. 7, 2006. T. Aoyama et al., “The anomalous magnetic moment of the muon in the standard model,” Physics Reports-Review Section of Physics Letters, vol. 887, pp. 1–166, 2020. W. S. Hou, G. Kumar, and S. Teunissen, “Charged lepton edm with extra yukawa couplings,” Journal of High Energy Physics, no. 1, 2022. W. S. Hou, R. Jain, C. Kao, G. Kumar, and T. Modak, “Collider prospects for the muon g-2 in a general two-higgs-doublet model,” Physical Review D, vol. 104, no. 7, 2021. D. P. Aguillard et al., “Measurement of the positive muon anomalous magnetic moment to 0.20 ppm,” Physical Review Letters, vol. 131, no. 16, 2023. S. Borsanyi et al., “Leading hadronic contribution to the muon magnetic moment from lattice qcd,” Nature, vol. 593, no. 7857, pp. 51–+, 2021. F. V. Ignatov et al., “Measurement of the e + e − − > π + π− cross section from threshold to 1.2 gev with the cmd-3 detector,” Physical Review D, vol. 109, no. 11, 2024. G. Colangelo et al., “Prospects for precise predictions of aµ in the standard model,” arXiv preprint arXiv:2203.15810, 2022. A. Tumasyan et al., “Search for cp violation using ttevents in the lepton+jets channel in pp collisions at s=√13 tev,” Journal of High Energy Physics, vol. 2023, no. 6, p. 81, 2023. W. S. Hou, “Decadal mission for the new physics higgs/flavor era,” Chinese Journal of Physics, vol. 77, pp. 432–451, 2022. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101494 | - |
| dc.description.abstract | 在過去的大約50年間,不含重力的所有基本物理學都由粒子物理的「標準模型」所涵蓋。標準模型提供了一個統一性的數學架構,解釋了許多原子和次原子層級的現象,更提出了一連串的預測,其中有許多已經透過實驗以極高的精確度去驗證。雖然如此,還是存在一些標準模型尚無法解釋的疑問,其中一個是現存物質與反物質數量的不平衡,又稱「宇宙重子不守恆」。受此(和其他)疑問的啟發,有許多人嘗試提出標準模型之延伸理論模型。當中有一個系列的理論模型多加入了一組(性質不盡相同的)希格斯二重態,稱之為「雙希格斯二重態模型」。在這些雙希格斯二重態模型中,有一種沒有提出任何預先性的對稱性或耦合限制,被稱作「一般性雙希格斯二重態模型」。這些試圖解釋宇宙重子不守恆的理論模型都有一個特色,就是內含為數不小的CP違逆。在實驗方面,因欠缺新的對撞機實驗觀測結果,且低能量精準測量實驗的實驗數值極小,這對宇宙重子不守恆的CP違逆形成了大幅度的限制。在這些實驗中,各基本粒子的電偶極矩值成了CP違逆所造成之效應的決定性測試。此篇研究旨在分析一般性雙希格斯二重態模型中的各種基本粒子電偶極矩值。我們從電子電偶極矩出發,提出一個相消效應,以提供足夠的參數空間,讓理論在解釋宇宙重子不守恆的同時,不被電偶極矩量測結果所限制。隨後,我們將理論框架延伸套用至緲子和濤子,並呈現此二較重之輕子的電偶極矩理論預測與實驗觀測。我們也透過中子電偶極矩來探究較輕之夸克電偶極矩相關效應,並同時納入膠子相關效應的影響。最後,我們呈現一個同時包含電子電偶極矩和中子電偶極矩的分析,並強調實驗的驗證,甚至是發現,在未來十年至二十年間極有可能達成。 | zh_TW |
| dc.description.abstract | The Standard Model (SM) of particle physics has been the dominant theory of all fundamental physics sans gravity for a good 50-or-so years. The SM provides a unifying mathematical framework, explanations for various atomic and subatomic phenomena, and a plethora of predictions, many of which have since been verified by experiments to high precision. Nevertheless, there are still questions the SM still does not have an answer for, one of them being the imbalance of naturally existing matter and antimatter, also known as the Baryon Asymmetry of the Universe (BAU). Motivated by this question (among others), there have been various theoretical attempts at extending beyond the Standard Model (BSM). One family of these extensions are the Two-Higgs Doublet Models (2HDMs), which propose an extra Higgs doublet with varying properties. Among these 2HDMs, one type does not have any assumed symmetry or coupling constraints, and is known as the General Two Higgs Doublet Model (G2HDM). A key feature of such theories attempting to address BAU is large charge-parity violation (CPV). On the experimental front, both the lack of new collider observations as well as the smallness of low-energy precision measurements put heavy constraints on BSM CPV. In particular, the electric dipole moments (EDMs) of various fundamental particles provide a litmus test for CPV effects. This study is an examination and analysis of various EDMs under the G2HDM framework. We start with the electron EDM (eEDM), introducing a cancellation mechanism that allows for an adequate parameter space to address the BAU issue while evading the current EDM bounds. We then extend the framework to the muon and the tau, and present both general and cancellation-imposed results for the EDM of heavier leptons. We also probe the effects of the light quark EDMs through the neutron EDM (nEDM), taking into account gluon-related contributions. At last, we present a combined scenario analysis of the eEDM and the nEDM, signifying that experimental verification, or even discovery, is achievable within the next decade or two. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2026-02-04T16:14:08Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2026-02-04T16:14:08Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Master’s Thesis Acceptance Certificate i
Acknowledgements iii Chinese Abstract v Abstract vii Contents ix List of Figures xi List of Tables xiii 1 Introduction 1 1.1 The Standard Model of Particle Physics 2 1.1.1 Brief History 2 1.1.2 Theoretical Overview 4 1.2 Limits of the Standard Model 8 2 The General Two-Higgs Doublet Model 11 2.1 The Model 11 2.2 Electroweak Baryogenesis 13 3 Electric Dipole Moment 17 3.1 The electric dipole moment in particle physics 17 3.1.1 The Dirac method 18 3.1.2 Form factor decomposition 19 3.1.3 General properties of EDM 20 3.2 G2HDM contributions to EDMs 20 3.2.1 One-loop v.s. Two-loop 20 3.2.2 Two-loop Formulae 21 3.3 Chromoelectric dipole moment 24 4 Electric Dipole Moment of Leptons 29 4.1 Experimental Overview 29 4.2 The Electron 31 4.2.1 Cancellation Mechanism 32 4.2.2 Enlarging the Parameter Space 33 4.3 The Muon 34 4.4 The Tau Lepton 34 5 Electric and Chromo-electric Dipole Moment of Quarks 37 5.1 The Neutron 37 5.1.1 Experimental Overview 37 5.1.2 G2HDM Calculations 38 6 Combined Analysis of eEDM and nEDM 43 7 Conclusion 45 7.1 Comments 45 7.1.1 Heavy Higgs Masses 45 7.1.2 Muon g−2 46 7.1.3 Top Chromo-EDM 47 7.2 Summary and Conclusion 48 References 49 | - |
| dc.language.iso | en | - |
| dc.subject | 標準模型 | - |
| dc.subject | 希格斯粒子 | - |
| dc.subject | 雙希格斯二重態模型 | - |
| dc.subject | 電偶極矩 | - |
| dc.subject | 重子產生過程 | - |
| dc.subject | CP違逆 | - |
| dc.subject | 湯川耦合 | - |
| dc.subject | 輕子 | - |
| dc.subject | 夸克 | - |
| dc.subject | 中子 | - |
| dc.subject | Standard Model | - |
| dc.subject | Higgs Boson | - |
| dc.subject | Two Higgs Doublet Model | - |
| dc.subject | Electric Dipole Moment | - |
| dc.subject | Baryogenesis | - |
| dc.subject | CP Violation | - |
| dc.subject | Yukawa Coupling | - |
| dc.subject | Lepton | - |
| dc.subject | Quark | - |
| dc.subject | Neutron | - |
| dc.title | 一般性雙希格斯二重態模型中的電偶極矩 | zh_TW |
| dc.title | Electric Dipole Moments in a General Two Higgs Doublet Model | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 114-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 阮自強;蔣正偉;陳凱風 | zh_TW |
| dc.contributor.oralexamcommittee | Tzu-Chiang Yuan;Cheng-Wei Chiang;Kai-Feng Chen | en |
| dc.subject.keyword | 標準模型,希格斯粒子雙希格斯二重態模型電偶極矩重子產生過程CP違逆湯川耦合輕子夸克中子 | zh_TW |
| dc.subject.keyword | Standard Model,Higgs BosonTwo Higgs Doublet ModelElectric Dipole MomentBaryogenesisCP ViolationYukawa CouplingLeptonQuarkNeutron | en |
| dc.relation.page | 63 | - |
| dc.identifier.doi | 10.6342/NTU202600155 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2026-01-26 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 物理學系 | - |
| dc.date.embargo-lift | 2026-02-05 | - |
| 顯示於系所單位: | 物理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-114-1.pdf | 6.53 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
