請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101426完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 盧彥文 | zh_TW |
| dc.contributor.advisor | Yen-Wen Lu | en |
| dc.contributor.author | 張晏瑋 | zh_TW |
| dc.contributor.author | Yen-Wei Chang | en |
| dc.date.accessioned | 2026-02-03T16:11:46Z | - |
| dc.date.available | 2026-02-04 | - |
| dc.date.copyright | 2026-02-03 | - |
| dc.date.issued | 2026 | - |
| dc.date.submitted | 2026-01-27 | - |
| dc.identifier.citation | Au, A. K., Lee, W., & Folch, A. (2014). Mail-order microfluidics: evaluation of stereolithography for the production of microfluidic devices. Lab Chip, 14(7), 1294-1301. https://doi.org/10.1039/c3lc51360b
Barman, S. R., Khan, I., Chatterjee, S., Saha, S., Choi, D., Lee, S., & Lin, Z. H. (2020). Electrowetting-on-dielectric (EWOD): Current perspectives and applications in ensuring food safety. J Food Drug Anal, 28(4), 595-621. https://doi.org/10.38212/2224-6614.1239 Bartosova, L., & Bajgar, J. (2012). Transdermal Drug Delivery In Vitro Using Diffusion Cells. Current Medicinal Chemistry, 19(27), 4671-4677. https://doi.org/http://dx.doi.org/10.2174/092986712803306358 BioLabs, N. E. (2023). SARS-CoV-2 LAMP Primer Mix (N/E). https://www.neb.com/en/products/s1883-sars-cov-2-lamp-primer-mix-ne#Product%20Information Borer, J. S., & Simon, L. S. (2005). Cardiovascular and gastrointestinal effects of COX-2 inhibitors and NSAIDs: achieving a balance. Arthritis Res Ther, 7 Suppl 4(Suppl 4), S14-22. https://doi.org/10.1186/ar1794 Bressan, L. P., Lima, T. M., da Silveira, G. D., & da Silva, J. A. F. (2020). Low-cost and simple FDM-based 3D-printed microfluidic device for the synthesis of metallic core–shell nanoparticles. SN Applied Sciences, 2(5). https://doi.org/10.1007/s42452-020-2768-2 Cao, H., Zhou, X., & Zeng, Y. (2019). Microfluidic Exponential Rolling Circle Amplification for Sensitive microRNA Detection Directly from Biological Samples. Sens Actuators B Chem, 279, 447-457. https://doi.org/10.1016/j.snb.2018.09.121 Cerpa-Naranjo, A., Perez-Pineiro, J., Navajas-Chocarro, P., Arce, M. P., Lado-Tourino, I., Barrios-Bermudez, N., Moreno, R., & Rojas-Cervantes, M. L. (2022). Rheological Properties of Different Graphene Nanomaterials in Biological Media. Materials (Basel), 15(10). https://doi.org/10.3390/ma15103593 Chang, Y.-W., Kuo, K. P., & Lu, Y.-W. (2026). In-line monitoring permeation assays using a wax-sealed SPE-integrated microfluidic device. Sensors and Actuators B: Chemical, 450. https://doi.org/10.1016/j.snb.2025.139205 Chang, Y. W., Lin, J. P., Ling, S. J., Chen, Y. C., Liu, H. M., & Lu, Y. W. (2024). Pipette-operable microfluidic devices with hydrophobic valves in sequential dispensing with various liquid samples: multiplex disease assay by RT-LAMP. Lab Chip, 24(12), 3112-3124. https://doi.org/10.1039/d4lc00209a Chen, J. M., Huang, P.-C., & Lin, M.-G. (2007). Analysis and experiment of capillary valves for microfluidics on a rotating disk. Microfluidics and Nanofluidics, 4(5), 427-437. https://doi.org/10.1007/s10404-007-0196-x Cho, H., Kim, H. Y., Kang, J. Y., & Kim, T. S. (2007). How the capillary burst microvalve works. J Colloid Interface Sci, 306(2), 379-385. https://doi.org/10.1016/j.jcis.2006.10.077 Chu, V. T., Schwartz, N. G., Donnelly, M. A. P., Chuey, M. R., Soto, R., Yousaf, A. R., Schmitt-Matzen, E. N., Sleweon, S., Ruffin, J., Thornburg, N., Harcourt, J. L., Tamin, A., Kim, G., Folster, J. M., Hughes, L. J., Tong, S., Stringer, G., Albanese, B. A., Totten, S. E., . . . Team, C.-H. T. (2022). Comparison of Home Antigen Testing With RT-PCR and Viral Culture During the Course of SARS-CoV-2 Infection. JAMA Intern Med, 182(7), 701-709. https://doi.org/10.1001/jamainternmed.2022.1827 Emonds-Alt, G., Malherbe, C., Kasemiire, A., Avohou, H. T., Hubert, P., Ziemons, E., Monbaliu, J. M., & Eppe, G. (2022). Development and validation of an integrated microfluidic device with an in-line Surface Enhanced Raman Spectroscopy (SERS) detection of glyphosate in drinking water. Talanta, 249, 123640. https://doi.org/10.1016/j.talanta.2022.123640 Epstein, N. (1989). On tortuosity and the tortuosity factor in flow and diffusion through porous media. Chemical Engineering Science, 44(3), 777-779. https://doi.org/https://doi.org/10.1016/0009-2509(89)85053-5 Erkal, J. L., Selimovic, A., Gross, B. C., Lockwood, S. Y., Walton, E. L., McNamara, S., Martin, R. S., & Spence, D. M. (2014). 3D printed microfluidic devices with integrated versatile and reusable electrodes. Lab Chip, 14(12), 2023-2032. https://doi.org/10.1039/c4lc00171k Fang, X., Chen, H., Yu, S., Jiang, X., & Kong, J. (2011). Predicting viruses accurately by a multiplex microfluidic loop-mediated isothermal amplification chip. Anal Chem, 83(3), 690-695. https://doi.org/10.1021/ac102858j Fernández-la-Villa, A., Pozo-Ayuso, D. F., & Castaño-Álvarez, M. (2019). Microfluidics and electrochemistry: an emerging tandem for next-generation analytical microsystems. Current Opinion in Electrochemistry, 15, 175-185. https://doi.org/10.1016/j.coelec.2019.05.014 Gao, X., Yu, P., Wang, Y., Ohsaka, T., Ye, J., & Mao, L. (2013). Microfluidic chip-based online electrochemical detecting system for continuous and simultaneous monitoring of ascorbate and Mg2+ in rat brain. Anal Chem, 85(15), 7599-7605. https://doi.org/10.1021/ac401727d Goto, M., Honda, E., Ogura, A., Nomoto, A., & Hanaki, K. (2009). Colorimetric detection of loop-mediated isothermal amplification reaction by using hydroxy naphthol blue. Biotechniques, 46(3), 167-172. https://doi.org/10.2144/000113072 Graczyk, K. M., & Matyka, M. (2020). Predicting porosity, permeability, and tortuosity of porous media from images by deep learning. Sci Rep, 10(1), 21488. https://doi.org/10.1038/s41598-020-78415-x Guatelli, J. C., Whitfield, K. M., Kwoh, D. Y., Barringer, K. J., Richman, D. D., & Gingeras, T. R. (1990). Isothermal, in vitro amplification of nucleic acids by a multienzyme reaction modeled after retroviral replication. Proc Natl Acad Sci U S A, 87(5), 1874-1878. https://doi.org/10.1073/pnas.87.5.1874 Guckenberger, D. J., de Groot, T. E., Wan, A. M., Beebe, D. J., & Young, E. W. (2015). Micromilling: a method for ultra-rapid prototyping of plastic microfluidic devices. Lab Chip, 15(11), 2364-2378. https://doi.org/10.1039/c5lc00234f Hadfield, J., Megill, C., Bell, S. M., Huddleston, J., Potter, B., Callender, C., Sagulenko, P., Bedford, T., Neher, R. A., Sagulenko, P., Puller, T., & Neher, R. A. (2021). Genomic epidemiology of novel coronavirus - Global subsampling (last updated 2021-07-31). https://www.gisaid.org/phylodynamics/global/nextstrain/ Han, J., Swan, D. C., Smith, S. J., Lum, S. H., Sefers, S. E., Unger, E. R., & Tang, Y. W. (2006). Simultaneous amplification and identification of 25 human papillomavirus types with Templex technology. J Clin Microbiol, 44(11), 4157-4162. https://doi.org/10.1128/JCM.01762-06 Haouari, K. B., & Ouardouz, M. (2024). Latest Trends In 3D Printed Microfluidics. Incertitudes et fiabilité des systèmes multiphysiques, 8(2), 8-16. https://doi.org/10.21494/iste.Op.2024.1226 Hellmann, J. (2008). Deciding to resuscitate extremely premature babies: How do parents and neonatologists engage in the decision? Yearbook of Neonatal and Perinatal Medicine, 2008, 334-336. https://doi.org/10.1016/s8756-5005(08)79269-2 Ho, K.-L., Liao, H.-Y., Liu, H. M., Lu, Y.-W., Yeh, P.-K., Chang, J. Y., & Fan, S.-K. (2022). Digital microfluidic qPCR cartridge for SARS-CoV-2 detection. Micromachines, 13(2), 196. Jang, M., Kim, S., Song, J., & Kim, S. (2022). Rapid and simple detection of influenza virus via isothermal amplification lateral flow assay. Anal Bioanal Chem, 414(16), 4685-4696. https://doi.org/10.1007/s00216-022-04090-8 Jarnda, K. V., Dai, H., Ali, A., Bestman, P. L., Trafialek, J., Roberts-Jarnda, G. P., Anaman, R., Kamara, M. G., Wu, P., & Ding, P. (2025). A Review on Optical Biosensors for Monitoring of Uric Acid and Blood Glucose Using Portable POCT Devices: Status, Challenges, and Future Horizons. Biosensors (Basel), 15(4). https://doi.org/10.3390/bios15040222 Ji, C., Zhou, L., Chen, Y., Fang, X., Liu, Y., Du, M., Lu, X., Li, Q., Wang, H., Sun, Y., Lan, T., & Ma, J. (2023). Microfluidic-LAMP chip for the point-of-care detection of gene-deleted and wild-type African swine fever viruses and other four swine pathogens. Front Vet Sci, 10, 1116352. https://doi.org/10.3389/fvets.2023.1116352 Jong, W. R., Kuo, T. H., Ho, S. W., Chiu, H. H., & Peng, S. H. (2007). Flows in rectangular microchannels driven by capillary force and gravity. International Communications in Heat and Mass Transfer, 34(2), 186-196. https://doi.org/10.1016/j.icheatmasstransfer.2006.09.011 Kadara, R. O., Jenkinson, N., & Banks, C. E. (2009). Characterisation of commercially available electrochemical sensing platforms. Sensors and Actuators B: Chemical, 138(2), 556-562. https://doi.org/10.1016/j.snb.2009.01.044 Karpanen, T. J., Worthington, T., Conway, B. R., Hilton, A. C., Elliott, T. S. J., & Lambert, P. A. (2008). Penetration of chlorhexidine into human skin [Article]. Antimicrobial Agents and Chemotherapy, 52(10), 3633-3636. https://doi.org/10.1128/AAC.00637-08 Kaur, G., Tomar, M., & Gupta, V. (2018). Development of a microfluidic electrochemical biosensor: Prospect for point-of-care cholesterol monitoring. Sensors and Actuators B: Chemical, 261, 460-466. https://doi.org/10.1016/j.snb.2018.01.144 Klusák, J., Mucha, J., & Večeř, M. (2021). 3D-printed microfluidic device for monodisperse emulsions preparation. Chemical Papers, 75(11), 6101-6113. https://doi.org/10.1007/s11696-021-01782-w Korjamo, T., Heikkinen, A. T., & Monkkonen, J. (2009). Analysis of unstirred water layer in in vitro permeability experiments. J Pharm Sci, 98(12), 4469-4479. https://doi.org/10.1002/jps.21762 Kubo, T., Agoh, M., Mai le, Q., Fukushima, K., Nishimura, H., Yamaguchi, A., Hirano, M., Yoshikawa, A., Hasebe, F., Kohno, S., & Morita, K. (2010). Development of a reverse transcription-loop-mediated isothermal amplification assay for detection of pandemic (H1N1) 2009 virus as a novel molecular method for diagnosis of pandemic influenza in resource-limited settings. J Clin Microbiol, 48(3), 728-735. https://doi.org/10.1128/JCM.01481-09 Ly, B. C. K., Dyer, E. B., Feig, J. L., Chien, A. L., & Del Bino, S. (2020). Research Techniques Made Simple: Cutaneous Colorimetry: A Reliable Technique for Objective Skin Color Measurement. J Invest Dermatol, 140(1), 3-12 e11. https://doi.org/10.1016/j.jid.2019.11.003 Mabey, D., Peeling, R. W., Ustianowski, A., & Perkins, M. D. (2004). Diagnostics for the developing world. Nat Rev Microbiol, 2(3), 231-240. https://doi.org/10.1038/nrmicro841 McDonald, J. C., Duffy, D. C., Anderson, J. R., Chiu, D. T., Wu, H., Schueller, O. J. A., & Whitesides, G. M. (2000). Fabrication of microfluidic systems in poly(dimethylsiloxane). Electrophoresis, 21(1), 27-40. https://doi.org/10.1002/(sici)1522-2683(20000101)21:1<27::Aid-elps27>3.0.Co;2-c Milark, O., Buttkewitz, M., Agócs, E., Legutko, B., Bergmann, B., Bahnemann, J., Heisterkamp, A., & Torres‐Mapa, M. L. (2024). Design and Fabrication of 3D‐Printed Lab‐On‐A‐Chip Devices for Fiber‐Based Optical Chromatography and Sorting. Advanced Photonics Research, 5(10). https://doi.org/10.1002/adpr.202400011 Mori, Y., Kitao, M., Tomita, N., & Notomi, T. (2004). Real-time turbidimetry of LAMP reaction for quantifying template DNA. J Biochem Biophys Methods, 59(2), 145-157. https://doi.org/10.1016/j.jbbm.2003.12.005 Natsuhara, D., Saito, R., Aonuma, H., Sakurai, T., Okamoto, S., Nagai, M., Kanuka, H., & Shibata, T. (2021). A method of sequential liquid dispensing for the multiplexed genetic diagnosis of viral infections in a microfluidic device. Lab Chip, 21(24), 4779-4790. https://doi.org/10.1039/d1lc00829c Nelson, G. L., Lines, A. M., Bello, J. M., & Bryan, S. A. (2019). Online Monitoring of Solutions Within Microfluidic Chips: Simultaneous Raman and UV-Vis Absorption Spectroscopies. ACS Sens, 4(9), 2288-2295. https://doi.org/10.1021/acssensors.9b00736 Nelson, M. D., Ramkumar, N., & Gale, B. K. (2019). Flexible, transparent, sub-100 µm microfluidic channels with fused deposition modeling 3D-printed thermoplastic polyurethane. Journal of Micromechanics and Microengineering, 29(9). https://doi.org/10.1088/1361-6439/ab2f26 Nielsen, P. E., & Avdeef, A. (2004). PAMPA--a drug absorption in vitro model 8. Apparent filter porosity and the unstirred water layer. Eur J Pharm Sci, 22(1), 33-41. https://doi.org/10.1016/j.ejps.2004.02.003 Notomi, T., Okayama, H., Masubuchi, H., Yonekawa, T., Watanabe, K., Amino, N., & Hase, T. (2000). Loop-mediated isothermal amplification of DNA. Nucleic Acids Res, 28(12), E63. https://doi.org/10.1093/nar/28.12.e63 Olanrewaju, A., Beaugrand, M., Yafia, M., & Juncker, D. (2018). Capillary microfluidics in microchannels: from microfluidic networks to capillaric circuits. Lab Chip, 18(16), 2323-2347. https://doi.org/10.1039/c8lc00458g Oliver, J. F., Huh, C., & Mason, S. G. (1977). Resistance to spreading of liquids by sharp edges. Journal of Colloid and Interface Science, 59(3), 568-581. https://doi.org/https://doi.org/10.1016/0021-9797(77)90052-2 Platten, M., Hoffmann, D., Grosser, R., Wisplinghoff, F., Wisplinghoff, H., Wiesmuller, G., Schildgen, O., & Schildgen, V. (2021). SARS-CoV-2, CT-Values, and Infectivity-Conclusions to Be Drawn from Side Observations. Viruses, 13(8). https://doi.org/10.3390/v13081459 Ploner, M., Shkodra, B., Franchin, L., Altana, A., Petrelli, M., Costa Angeli, M. A., Ciccone, G., Antrack, T., Vanzetti, L., Nair, R. R., Canteri, R., Bonaldo, S., Paccagnella, A., Kleemann, H., Resnati, D., Lugli, P., Erten, A., & Petti, L. (2025). Flexible microfluidics-integrated electrochemical system for detection of tumor necrosis factor-alpha under continuous flow of sweat. Biosens Bioelectron, 287, 117734. https://doi.org/10.1016/j.bios.2025.117734 Podunavac, I., Djocos, M., Vejin, M., Birgermajer, S., Pavlovic, Z., Kojic, S., Petrovic, B., & Radonic, V. (2023). 3D-Printed Microfluidic Chip for Real-Time Glucose Monitoring in Liquid Analytes. Micromachines (Basel), 14(3). https://doi.org/10.3390/mi14030503 Poon, C. (2022). Measuring the density and viscosity of culture media for optimized computational fluid dynamics analysis of in vitro devices. J Mech Behav Biomed Mater, 126, 105024. https://doi.org/10.1016/j.jmbbm.2021.105024 Ren, K., Zhou, J., & Wu, H. (2013). Materials for Microfluidic Chip Fabrication. Accounts of Chemical Research, 46(11), 2396-2406. https://doi.org/10.1021/ar300314s Rochowski, P., & Pontrelli, G. (2022). Mass diffusion in multi-layer systems: an electrical analogue modelling approach. Comput Biol Med, 148, 105774. https://doi.org/10.1016/j.compbiomed.2022.105774 Sabate Del Rio, J., Ro, J., Yoon, H., Park, T. E., & Cho, Y. K. (2023). Integrated technologies for continuous monitoring of organs-on-chips: Current challenges and potential solutions. Biosens Bioelectron, 224, 115057. https://doi.org/10.1016/j.bios.2022.115057 Sahar, A. M., Wissink, J., Mahmoud, M. M., Karayiannis, T. G., & Ashrul Ishak, M. S. (2017). Effect of hydraulic diameter and aspect ratio on single phase flow and heat transfer in a rectangular microchannel. Applied Thermal Engineering, 115, 793-814. https://doi.org/10.1016/j.applthermaleng.2017.01.018 Saiki, R. K., Scharf, S., Faloona, F., Mullis, K. B., Horn, G. T., Erlich, H. A., & Arnheim, N. (1985). Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science, 230(4732), 1350-1354. https://doi.org/10.1126/science.2999980 Scott, S. M., & Ali, Z. (2021). Fabrication Methods for Microfluidic Devices: An Overview. Micromachines (Basel), 12(3). https://doi.org/10.3390/mi12030319 Sekhwama, M., Mpofu, K., Sudesh, S., & Mthunzi-Kufa, P. (2024). Integration of microfluidic chips with biosensors. Discover Applied Sciences, 6(9). https://doi.org/10.1007/s42452-024-06103-w Seok, Y., Joung, H. A., Byun, J. Y., Jeon, H. S., Shin, S. J., Kim, S., Shin, Y. B., Han, H. S., & Kim, M. G. (2017). A Paper-Based Device for Performing Loop-Mediated Isothermal Amplification with Real-Time Simultaneous Detection of Multiple DNA Targets. Theranostics, 7(8), 2220-2230. https://doi.org/10.7150/thno.18675 Shen, L., & Chen, Z. (2007). Critical review of the impact of tortuosity on diffusion. Chemical Engineering Science, 62(14), 3748-3755. https://doi.org/10.1016/j.ces.2007.03.041 Shin, S. R., Kilic, T., Zhang, Y. S., Avci, H., Hu, N., Kim, D., Branco, C., Aleman, J., Massa, S., Silvestri, A., Kang, J., Desalvo, A., Hussaini, M. A., Chae, S. K., Polini, A., Bhise, N., Hussain, M. A., Lee, H., Dokmeci, M. R., & Khademhosseini, A. (2017). Label-Free and Regenerative Electrochemical Microfluidic Biosensors for Continual Monitoring of Cell Secretomes. Adv Sci (Weinh), 4(5), 1600522. https://doi.org/10.1002/advs.201600522 Song, J., Mauk, M. G., Hackett, B. A., Cherry, S., Bau, H. H., & Liu, C. (2016). Instrument-Free Point-of-Care Molecular Detection of Zika Virus. Anal Chem, 88(14), 7289-7294. https://doi.org/10.1021/acs.analchem.6b01632 Song, Q., Sun, X., Dai, Z., Gao, Y., Gong, X., Zhou, B., Wu, J., & Wen, W. (2021). Point-of-care testing detection methods for COVID-19. Lab on a Chip, 21(9), 1634-1660. Song, X., Delaney, M., Shah, R. K., Campos, J. M., Wessel, D. L., & DeBiasi, R. L. (2020). Comparison of Clinical Features of COVID-19 vs Seasonal Influenza A and B in US Children. JAMA Netw Open, 3(9), e2020495. https://doi.org/10.1001/jamanetworkopen.2020.20495 Tanner, N. A., Zhang, Y., & Evans, T. C., Jr. (2015). Visual detection of isothermal nucleic acid amplification using pH-sensitive dyes. Biotechniques, 58(2), 59-68. https://doi.org/10.2144/000114253 Terry, S. C., Jerman, J. H., & Angell, J. B. (1979). A gas chromatographic air analyzer fabricated on a silicon wafer. IEEE Transactions on Electron Devices, 26(12), 1880-1886. https://doi.org/10.1109/T-ED.1979.19791 Toepke, M. W., & Beebe, D. J. (2006). PDMS absorption of small molecules and consequences in microfluidic applications. Lab Chip, 6(12), 1484-1486. https://doi.org/10.1039/b612140c Venzac, B., Deng, S., Mahmoud, Z., Lenferink, A., Costa, A., Bray, F., Otto, C., Rolando, C., & Le Gac, S. (2021). PDMS Curing Inhibition on 3D-Printed Molds: Why? Also, How to Avoid It? Anal Chem, 93(19), 7180-7187. https://doi.org/10.1021/acs.analchem.0c04944 Wang, H., Enders, A., Preuss, J. A., Bahnemann, J., Heisterkamp, A., & Torres-Mapa, M. L. (2021). 3D printed microfluidic lab-on-a-chip device for fiber-based dual beam optical manipulation. Sci Rep, 11(1), 14584. https://doi.org/10.1038/s41598-021-93205-9 Wang, N., Tan, F., Zhao, Y., Tsoi, C. C., Fan, X., Yu, W., & Zhang, X. (2016). Optofluidic UV-Vis spectrophotometer for online monitoring of photocatalytic reactions. Sci Rep, 6, 28928. https://doi.org/10.1038/srep28928 Wang, Y. C., Lee, Y. T., Yang, T., Sun, J. R., Shen, C. F., & Cheng, C. M. (2020). Current diagnostic tools for coronaviruses–From laboratory diagnosis to POC diagnosis for COVID‐19. Bioengineering & Translational Medicine, 5(3), e10177. Weng, J.-H., Lai, C.-Y., & Chen, L.-C. (2019). Microfluidic amperometry with two symmetric Au microelectrodes under one-way and shuttle flow conditions. Electrochimica Acta, 297, 118-128. https://doi.org/10.1016/j.electacta.2018.11.128 Windberger, U., Bartholovitsch, A., Plasenzotti, R., Korak, K. J., & Heinze, G. (2003). Whole blood viscosity, plasma viscosity and erythrocyte aggregation in nine mammalian species: reference values and comparison of data. Experimental Physiology, 88(3), 431-440. Wu, G., & Zaman, M. H. (2012). Low-cost tools for diagnosing and monitoring HIV infection in low-resource settings. Bull World Health Organ, 90(12), 914-920. https://doi.org/10.2471/BLT.12.102780 Xia, Y.-M., Hua, Z.-S., Srivannavit, O., Ozel, A. B., & Gulari, E. (2007). Minimizing the surface effect of PDMS–glass microchip on polymerase chain reaction by dynamic polymer passivation. Journal of Chemical Technology & Biotechnology, 82(1), 33-38. https://doi.org/10.1002/jctb.1631 Yang, N., Zhang, H., Han, X., Liu, Z., & Lu, Y. (2024). Advancements and applications of loop-mediated isothermal amplification technology: a comprehensive overview. Front Microbiol, 15, 1406632. https://doi.org/10.3389/fmicb.2024.1406632 Yildirim, E. (2017). Modeling and Analysis of a Microfluidic Capillary Valve. Journal of Polytechnic, 20, 487-494. Ying, Z., Qiao, L., Liu, B., Gao, L., & Zhang, P. (2024). Development of a microfluidic wearable electrochemical sensor for the non-invasive monitoring of oxidative stress biomarkers in human sweat. Biosens Bioelectron, 261, 116502. https://doi.org/10.1016/j.bios.2024.116502 Young, O. M., Xu, X., Sarker, S., & Sochol, R. D. (2024). Direct laser writing-enabled 3D printing strategies for microfluidic applications. Lab Chip, 24(9), 2371-2396. https://doi.org/10.1039/d3lc00743j Yue, J., Falke, F. H., Schouten, J. C., & Nijhuis, T. A. (2013). Microreactors with integrated UV/Vis spectroscopic detection for online process analysis under segmented flow. Lab Chip, 13(24), 4855-4863. https://doi.org/10.1039/c3lc50876e Zai, Y., Min, C., Wang, Z., Ding, Y., Zhao, H., Su, E., & He, N. (2022). A sample-to-answer, quantitative real-time PCR system with low-cost, gravity-driven microfluidic cartridge for rapid detection of SARS-CoV-2, influenza A/B, and human papillomavirus 16/18. Lab on a Chip, 22(18), 3436-3452. Zhang, D. Y., Brandwein, M., Hsuih, T. C., & Li, H. (1998). Amplification of target-specific, ligation-dependent circular probe. Gene, 211(2), 277-285. https://doi.org/10.1016/s0378-1119(98)00113-9 Zhang, J., Ma, C., Du, Y., Huang, J., & Xue, L. (2025). Microfluidic biosensors for rapid detection of foodborne pathogenic bacteria: recent advances and future perspectives. Front Chem, 13, 1536928. https://doi.org/10.3389/fchem.2025.1536928 Zhang, P., Bachman, H., Ozcelik, A., & Huang, T. J. (2020). Acoustic Microfluidics. Annu Rev Anal Chem (Palo Alto Calif), 13(1), 17-43. https://doi.org/10.1146/annurev-anchem-090919-102205 Zhang, T., Ding, F., Yang, Y., Zhao, G., Zhang, C., Wang, R., & Huang, X. (2022). Research progress and future trends of microfluidic paper-based analytical devices in in-vitro diagnosis. Biosensors, 12(7), 485. Zhang, T., Yang, Y., Zhou, Y., Lu, Y., Zhang, M., Liu, P., Li, P., Yang, L., & Li, Z. (2024). Microfluidic SERS chip for quantitative detection of weak surficial affinity molecules. Applied Surface Science, 654. https://doi.org/10.1016/j.apsusc.2024.159476 Zhao, A., Lin, T., Xu, Y., Zhang, W., Asif, M., Sun, Y., & Xiao, F. (2022). Integrated electrochemical microfluidic sensor with hierarchically porous nanoarrays modified graphene fiber microelectrode for bioassay. Biosens Bioelectron, 205, 114095. https://doi.org/10.1016/j.bios.2022.114095 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101426 | - |
| dc.description.abstract | 隨著3D列印技術解析度的顯著提升,其已成為微流體裝置製作的新興主流,相較於傳統軟微影製程需要靠多層光罩設計堆疊成3D結構,3D列印不僅免除黃光室設備需求,更能夠實現全3D設計與製作,不僅對於儀器環境設備的需求大幅減少,更可以提升設計自由度。因此本論文聚焦3D列印技術在微流體領域的應用。本論文將分為兩部分,第一部分為利用3D列印模具製作之可用簡易工具操作之定點照護多重疾病核酸檢測裝置。該研究利用3D列印製作模具以PDMS翻模成型,透過疏水閥門設計與安排,該流道能夠承受最高25 μL/s之高流速,藉此能夠實現以簡易移液工具進行等量、依序的液體加載。最後結合冷凍乾燥技術與反轉錄恆溫環形核酸增幅法,完成可用肉眼判讀結果之多種病原體的即時核酸檢測平台。
第二部分提出蠟封法整合網版印刷電極於3D列印微流體裝置之技術。該方法透過熔融蠟與材料間的毛細力自動地填入網版印刷電極與微流體間的間隙,且能夠利用毛細閥現象防止蠟溢流,整個蠟封法僅需要將定量的蠟塊融化,接著固化後便能夠固定兩者相對位置,整合過程可以在5分鐘內完成,以達成異質材料的高效整合。透過蠟封法所組成的電化學電極整合微流體裝置,能夠用於開發線上即時監測裝置,該裝置能夠連續記錄分析物濃度隨時間變化曲線。赤血鹽溶液測試下在該為流道裝置中之檢測極限為1.06 μg/mL相比於再開放環境中進行電化學檢測,期檢測極限略微提升,而在進行利用赤血鹽溶液進行透析實驗的研究中,該裝置所檢測到的濃度變化符合理論模型,且最終該系統所檢測到之滲透率達95 %以上,已經符合標準滲透測試儀器之標準,在雙氯酚雙鈉透皮藥物測試中,該系統也能描繪出藥物釋放情形,其藥品滲透率約為80% ± 10%,符合一般凝膠類藥物滲透情形,表明該系統具有用於藥物傳輸監測與新藥開發的應用潛力。 | zh_TW |
| dc.description.abstract | With the advancement in resolution of 3D printing technology, it has become a popular fabrication method for microfluidic devices. Compared with traditional soft lithography that requires multiple layers to create a 3D structure, 3D printing not only eliminates the requirement for cleanroom facilities but also can directly print either the mold with 3D structure microfluidic channel or directly print the 3D resin microfluidic channel; this enhances design flexibility. Thereby, this thesis investigates the application of 3D printed microfluidics. This thesis has two parts. The first part shows a pipette-operable microfluidic device with hydrophobic valves in sequential dispensing. By the design and the arrangement of the hydrophobic valves, the maximum flow rate can reach 25 μL/s, such a high flow rate make the device is capable with hand tools. Furthermore, the device combines freeze-drying technology and reverse transcription loop-mediated isothermal amplification (RT-LAMP) to achieve naked-eye visible multiplex disease point-of-care testing.
The second part shows a wax-sealing method for integrating screen-printed electrodes (SPEs) into 3D-printed microfluidic devices. The method used the capillary force of molten wax to autonomously fill the gap between the SPE and the microfluidic device and prevent wax from overflowing into the liquid channels. Upon solidification, the wax securely fixes the relative position of the electrode and the device. The entire wax-sealing process takes only 5 minutes and allows multiple devices to be integrated at the same time. This shows that the wax-sealing method is a highly efficient integration method for a homogeneous-material device. In the potassium ferrocyanide testing, the limit of detection (LOD) is 1.06 μg/mL compared to the open environment LOD of 1.92 µg/mL; shows the device can slightly improve the LOD. In the permeation assay, the release profile follows the theoretical mass transport model. Furthermore, the permeation rate is higher than 95 % which match the requirement of the tools for permeation assay. Furthermore, the device is tested by a commercial diclofenac sodium gel; it is also shows the clear release profile and the permeation rate is 80% ± 10% which is match the common permeation rate of the gel form drug. In conclude, the wax-sealed SPE microfluidic device successfully enables in-line monitoring of the release profiles in a permeation assay. Highlighting its potential for drug delivery and pharmaceutical development. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2026-02-03T16:11:46Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2026-02-03T16:11:46Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 i
中文摘要 v Abstract vi Table of contents viii List of Figures xii List of Tables xvii Chapter 1. Introduction 1 1.1 Introduction of microfluidic technologies 1 1.2 Different methods to fabricate microfluidic devices 3 1.3 Different 3D printing methods for the microfluidic device 5 1.3.1 Fused Deposition Modeling printing (FDM) 5 1.3.2 Stereolithography (SLA) 5 1.3.3 Digital light processing (DLP) 6 1.4 Overall structure of thesis 8 Chapter 2. Pipette-operable microfluidic devices with hydrophobic valves in sequential dispensing with various liquid samples: multiplex disease assay by RT-LAMP 9 2.1 Introduction 9 2.2 Literature review 11 2.2.1 Multiplex disease diagnosis on a chip 11 2.3 Methods and materials 16 2.3.1 The design of the pipette operable microfluidic devices for liquid dispersion 16 2.3.2 Working principle of the hydrophobic valve 18 2.3.3 Pipette-operable microfluidic device for liquid dispersion 21 2.3.4 Input pressure and loading process 23 2.3.5 Maximum flow rate 23 2.3.6 Material for LAMP reaction 27 2.3.7 Fabrication of POCT microfluidic device 30 2.4 Results 33 2.4.1 Three-chamber design 33 2.4.2 Optimization of the three-chamber design 36 2.4.3 Loading with various volumes 38 2.4.4 Loading with various liquids 40 2.4.5 Loading with various tools 43 2.4.6 Twenty-chamber design 46 2.4.7 LAMP for multiple disease diagnoses 50 2.5 Discussion 54 Chapter 3. In-line monitoring permeation assays using a wax-sealed SPE-integrated microfluidic device 57 3.1 Introduction 57 3.2 Literature review for electrochemical sensor integration method 59 3.2.1 PDMS-based microfluidic device 59 3.2.2 Polymer-based microfluidic device 61 3.3 Methods and materials 64 3.3.1 In-line monitoring electrochemical microfluidic device for permeation assay 64 3.3.2 Classical Permeation Assay 64 3.3.3 In-line monitoring microfluidic device for permeation assay 66 3.3.4 The design of the microfluidic device 68 3.3.5 Device fabrication and post-process 69 3.3.6 Capillary pressure and meniscus pinning 71 3.3.7 Wax sealing process 74 3.3.8 Mass transport model 76 3.4 Results 80 3.4.1 Wax-sealed process 80 3.4.2 Sealing performance testing 83 3.4.3 The electrochemical performance of SPEs in microfluidic devices 84 3.4.4 Release profile by theoretical mass transport model 90 3.4.5 In-line monitoring permeation assay 94 3.4.6 Permeation assay of commercial gel 99 3.5 Discussion 103 Chapter 4. Conclusion & prospective 106 4.1 Conclusion 106 4.2 Prospective 108 Reference 109 Appendix 1 118 Appendix 2 121 Appendix 3 122 Appendix 4 126 Appendix 5 127 Appendix 6 128 | - |
| dc.language.iso | en | - |
| dc.subject | 3D列印微流體 | - |
| dc.subject | 恆溫式圈環形核酸增幅法 | - |
| dc.subject | 多重疾病檢測 | - |
| dc.subject | 蠟封法 | - |
| dc.subject | 線上即時監測 | - |
| dc.subject | 3D printed microfluidic | - |
| dc.subject | loop-mediated isothermal amplification | - |
| dc.subject | multiplex disease assay | - |
| dc.subject | wax-sealing | - |
| dc.subject | in-line monitoring | - |
| dc.title | 3D列印微流體之開發:以定點照護多重疾病檢測及電化學線上藥物滲透性測試為例 | zh_TW |
| dc.title | Development of 3D-Printed Microfluidic Devices: Point-of-Care Multiplexed Disease Diagnostics and Electrochemical In-Line Monitoring Drug Permeability Assay as Examples | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 114-1 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.oralexamcommittee | 何佳安;謝博全;余靈珊;蔡佳宏 | zh_TW |
| dc.contributor.oralexamcommittee | Ja-An Annie Ho;Bo-Chuan Hsieh ;Ling-Shan Yu;Chia-Hung Dylan Tsai | en |
| dc.subject.keyword | 3D列印微流體,恆溫式圈環形核酸增幅法多重疾病檢測蠟封法線上即時監測 | zh_TW |
| dc.subject.keyword | 3D printed microfluidic,loop-mediated isothermal amplificationmultiplex disease assaywax-sealingin-line monitoring | en |
| dc.relation.page | 146 | - |
| dc.identifier.doi | 10.6342/NTU202600377 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2026-01-28 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 生物機電工程學系 | - |
| dc.date.embargo-lift | 2026-02-04 | - |
| 顯示於系所單位: | 生物機電工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-114-1.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 6.62 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
