Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工程科學及海洋工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101424
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張瑞益zh_TW
dc.contributor.advisorRay-I Changen
dc.contributor.author尤貞智zh_TW
dc.contributor.authorChen-Chih Yuen
dc.date.accessioned2026-02-03T16:10:49Z-
dc.date.available2026-02-04-
dc.date.copyright2026-02-03-
dc.date.issued2026-
dc.date.submitted2026-01-26-
dc.identifier.citation參考文獻
[1] Q. Fan, Y. Li, M. Deveci, K. Zhong, and S. Kadry, "LUD-YOLO: A novel lightweight object detection network for unmanned aerial vehicle," Information Sciences, vol. 686, pp. 121366, 2025.
[2] J. Cao, W. Bao, H. Shang, M. Yuan, and Q. Cheng, “GCL-YOLO: A GhostConv-based lightweight YOLO network for UAV small object detection,” Remote Sensing, vol. 15, no. 20, pp. 4932, 2023.
[3] Y. L. Li, Y. Feng, M. L. Zhou, X. C. Xiong, Y. H. Wang, and B. H. Qiang, “DMA-YOLO: multi-scale object detection method with attention mechanism for aerial images,” The Visual Computer, vol. 40, no. 6, pp. 4505–4518, 2024.
[4] R. Jin, Z. Jia, X. Yin, Y. Niu, and Y. Qi, “Domain feature decomposition for efficient object detection in aerial images,” Remote Sensing, vol. 16, no. 9, pp. 1626, 2024.
[5] X. Tang, C. Ruan, X. Li, B. Li, and C. Fu, “MSC-YOLO: Improved YOLOv7 Based on Multi-Scale Spatial Context for Small Object Detection in UAV-View,” Computers, Materials & Continua, vol. 79, no. 1, 2024.
[6] Y. Shi, C. Wang, S. Xu, M. D. Yuan, F. Liu, and L. Zhang, “Deformable convolution-guided multiscale feature learning and fusion for UAV object detection,” IEEE Geoscience and Remote Sensing Letters, vol. 21, pp. 1–5, 2024.
[7] Y. Zhang, C. Wu, W. Guo, T. Zhang, and W. Li, “CFANet: Efficient detection of UAV image based on cross-layer feature aggregation,” IEEE Transactions on Geoscience and Remote Sensing, vol. 61, pp. 1–11, 2023.
[8] H. Liu, Y. Yu, S. Liu, and W. Wang, "A military object detection model of UAV reconnaissance image and feature visualization," Applied Sciences, vol. 12, no. 23, p. 12236, 2022.
[9] S. Ali, A. Athar, M. Ali, A. Hussain, and H. C. Kim, “Computer vision-based military tank recognition using object detection technique: An application of the yolo framework,” in Proc. 2023 1st Int. Conf. on Advanced Innovations in Smart Cities (ICAISC), 2023, pp. 1–6.
[10] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, "You only look once: Unified, real-time object detection," in *Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR)*, 2016, pp. 779–788.
[11] M. L. Ali and Z. Zhang, "The YOLO Framework: A Comprehensive Review of Evolution, Applications, and Benchmarks in Object Detection," Computers, vol. 13, no. 12, p. 336, Dec. 2024.
[12] C.-Y. Wang, A. Bochkovskiy, and H.-Y. M. Liao, “YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors,” 2022, arXiv:2207.02696.
[13] A. Wang, H. Chen, L. Liu, K. Chen, Z. Lin, J. Han, and G. Ding, "YOLOv10: Real-Time End-to-End Object Detection," 2024, arXiv:2405.14458.
[14] P. Zhu, L. Wen, D. Du, X. Bian, H. Fan, Q. Hu, and H. Ling, “Detection and tracking meet drones challenge,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 44, no. 11, pp. 7380–7399, 2021.
[15] Aerial Detection, “Pure Tank Dataset,” Roboflow Universe, Jan. 2023. [Online]. Available: https://universe.roboflow.com/aerial-detection/pure-tank.
[16] B. Dwyer, J. Nelson, T. Hansen, et al., “Roboflow (Version 1.0) [Software],” Computer Vision, 2025. [Online]. Available: https://roboflow.com.
[17] MMSegmentation Contributors, “MMSegmentation: OpenMMLab Semantic Segmentation Toolbox and Benchmark,” 2020, gitHub repository. [Online]. Available: https://github.com/open-mmlab/mmsegmentation.
[18] L. C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam, “Encoder-decoder with atrous separable convolution for semantic image segmentation,” in Proceedings of the European conference on computer vision (ECCV), pp. 801-818 (2018).
[19] R. Yang, “AdverseWeatherSimulation,” 2023, gitHub repository. [Online]. Available: https://github.com/RicardooYoung/AdverseWeatherSimulation.
[20] 陳韋佑, “淺談偽裝新技術-以數位迷彩為例,” 國防部國防線上, Oct. 2017. [Online]. Available: https://www.mnd.gov.tw/NewUpload/201710/淺談偽裝新技術-以數位迷彩為例-陳韋侖_421940.pdf
[21] J. Baumbach, "Psychophysics of human vision: the key to improved camouflage pattern design," 2010.
[22] T. Troscianko, C. P. Benton, P. G. Lovell, D. J. Tolhurst, and Z. Pizlo, "Camouflage and visual perception," Philosophical Transactions of the Royal Society B: Biological Sciences, vol. 364, no. 1516, pp. 449–461, 2009.
[23] S. Merilaita, N. E. Scott-Samuel, and I. C. Cuthill, "How camouflage works," Philosophical Transactions of the Royal Society B: Biological Sciences, vol. 372, no. 1724, p. 20160341, 2017.
[24] S. Wang, D. Zeng, Y. Xu, G. Yang, F. Huang, and L. Chen, "Towards complex scenes: A deep learning-based camouflaged people detection method for snapshot multispectral images," Defence Technology, vol. 34, pp. 269–281, 2024.
[25] A. Haider, G. Muhammad, T. A. Khan, K. Kadir, M. N. Husen, and H. M. Nasir, "Identification of camouflage military individuals with deep learning approaches DFAN and SINETV2," Sci. Rep., vol. 15, no. 1, p. 33271, 2025.
[26] H. Zhang, C. Qin, Y. Yin, and Y. Fu, "Camouflaged image synthesis is all you need to boost camouflaged detection," 2023, arXiv:2308.06701.
[27] z1069614715, “objectdetection_script,” 2023, gitHub repository. [Online]. Available: https://github.com/z1069614715/objectdetection_script.
[28] K. Eykholt, I. Evtimov, E. Fernandes, B. Li, A. Rahmati, C. Xiao, A. Prakash, T. Kohno, and D. Song, “Robust physical-world attacks on deep learning visual classification,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), 2018, pp. 1625–1634.
[29] T. B. Brown, D. Mané, A. Roy, M. Abadi, and J. Gilmer, “Adversarial patch,” unpublished, 2017. [Online]. Available: https://arxiv.org/pdf/1712.09665
[30] A. Kurakin, I. J. Goodfellow, and S. Bengio, “Adversarial examples in the physical world,” in Artificial intelligence safety and security, Chapman and Hall/CRC, 2018, pp. 99-112.
[31] K. Xu, G. Zhang, S. Liu, Q. Fan, M. Sun, H. Chen, and X. Lin, “Adversarial t-shirt! evading person detectors in a physical world,” in European conference on computer vision, Cham: Springer International Publishing, 2020, pp. 665-681.
[32] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing adversarial examples,” unpublished, 2015 . [Online]. Available: https://arxiv.org/pdf/1412.6572
[33] 尤貞智和張瑞益, “城市戰中的坦克影像辨識問題初探,” 2025 資訊科技應用國際學術研討會, 2025.
[34] 尤貞智和張瑞益, “城市戰中坦克迷彩與建築遮蔽影響之影像辨識分析,” TANet 2025 臺灣網際網路研討會, 2025.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101424-
dc.description.abstract無人機(UAV)在現代戰爭中已成為重要的情報與攻擊工具。坦克作為攻擊方核心單位,快速且準確的辨識系統對於戰場上的指揮、決策和自動化武器運用至關重要。城市戰因背景複雜且有煙霧、樹葉與建築物遮擋以及迷彩等干擾因素,使得傳統為開闊戰場所設計的無人機表現不佳,此外,目前全世界仍未有相關城市戰資料集以供機器學習。因此本研究首先設計了一套系統來快速將真實影像進行合成,用以生成多樣化的城市戰坦克資料集,並模擬多種城市戰遮擋情況。接著,本研究使用YOLOv10-S對合成圖像進行模型訓練與測試。結果顯示,在城市戰各種遮擋情況下,YOLOv10-S平均可達到97.375%的mAP50,Precision達到86.675%,Recall達到96.375%。於灰階影像中,模型仍能保持穩定表現,mAP50達94.525%。對抗性攻擊作為一種極端迷彩,對辨識率的破壞最為嚴重,使大部分坦克幾乎無法被辨識。複雜迷彩會顯著降低辨識之Recall,而灰階化處理能有效削弱迷彩干擾,使Recall回升至75%。在常見物體遮擋(如建築物與樹葉)下,辨識效能亦出現下降。最後,在熱源紅外線的影像中,mAP50、Precision和Recall分別可達99.5%、96.4%和99.6%,顯示模型能穩定學習熱度與形狀特徵。實驗也證明YOLOv10-S具有優異的泛化能力,透過合成影像增強資料集,不僅能有效提升模型在惡劣環境下的辨識效能,也為未來結合真實戰場影像與持續學習技術提供了可行的方向。zh_TW
dc.description.abstractUnmanned Aerial Vehicles (UAVs) have become essential tools for intelligence gathering and offensive operations in modern warfare. As tanks serve as the core units of offensive forces, the development of rapid and accurate recognition systems is critical for battlefield command, decision-making, and autonomous weapon deployment. However, UAV performance in urban warfare is often hindered by complex backgrounds and interference factors such as smoke, foliage, buildings, and camouflage, which differ significantly from the open battlefield environments for which most UAV systems were originally designed. Moreover, no publicly available urban warfare dataset currently exists to support machine learning applications. To address this gap, this study designs a system that rapidly synthesizes realistic images to generate a diverse urban tank dataset and simulate various urban occlusion conditions. The YOLOv10-S model is then trained and evaluated on the synthesized images. The results show that under different urban occlusion conditions, YOLOv10-S achieves an average mAP@50 of 97.38%, with 86.68% precision and 96.38% recall. In grayscale images, the model maintains stable performance, achieving an mAP@50 of 94.53%. Adversarial camouflage, representing an extreme form of concealment, causes the most severe degradation in recognition accuracy, rendering most tanks nearly undetectable. Complex camouflage significantly reduces recall, while grayscale processing effectively mitigates such interference, raising recall to 75%. Under common object occlusions (e.g., buildings and foliage), recognition performance also declines. Finally, in thermal infrared imagery, the model achieves 99.5% mAP@50, 96.4% precision, and 99.6% recall, demonstrating its ability to effectively learn both heat and shape features. These results confirm that YOLOv10-S possesses excellent generalization capability. By enhancing datasets through synthetic imagery, the proposed approach not only improves recognition performance under adverse conditions but also provides a feasible direction for integrating real battlefield imagery and continual learning in future research.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2026-02-03T16:10:49Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2026-02-03T16:10:49Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents目 次
誌謝 i
中文摘要 iii
Abstract iv
目 次 vi
圖 次 viii
表 次 xi
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機 1
1.3 研究目的與貢獻 2
第二章 相關研究 4
2.1 坦克影像合成與資料增強 4
2.2 模擬資料集的模型訓練、測試及泛化能力 7
第三章 城市戰坦克資料集生成系統 8
第四章 實驗結果與分析 19
4.1 評估指標 19
4.2 YOLO版本比較與選擇 21
4.3 資料集適配性(日間、夜間) 22
4.4 鳥瞰圖場景中坦克辨識與泛化能力 23
4.5 黑白煙霧遮蔽坦克辨識 25
4.6 彩色隨機透明度煙霧遮蔽坦克辨識 28
4.7 灰階坦克辨識 30
4.8 迷彩坦克辨識 31
4.9 對抗性攻擊迷彩 39
4.10 常見物體遮擋坦克辨識 41
4.11 熱源紅外線坦克辨識 45
4.12 多類別坦克辨識 47
第五章 結論與未來展望 65
5.1 結論 65
5.2 未來展望 67
參考文獻 69
附件 74
-
dc.language.isozh_TW-
dc.subject城市戰-
dc.subject坦克辨識-
dc.subject無人機影像-
dc.subject機器學習-
dc.subjectYOLO-
dc.subject影像辨識-
dc.subject鳥瞰圖-
dc.subjectUrban Warfare-
dc.subjectTank Recognition-
dc.subjectUAV Imagery-
dc.subjectMachine Learning-
dc.subjectYOLO-
dc.subjectImage Recognition-
dc.subjectBird’s-eye View-
dc.title城市戰中的坦克影像辨識問題初探zh_TW
dc.titleA Preliminary Study on Tank Image Recognition in Urban Warfareen
dc.typeThesis-
dc.date.schoolyear114-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee陳彥廷;余琬瑜;王家輝;魏廉臻zh_TW
dc.contributor.oralexamcommitteeYen-Ting Chen;Wan-Yu Yu;Chia-Hui Wang;Lien-Chen Weien
dc.subject.keyword城市戰,坦克辨識無人機影像機器學習YOLO影像辨識鳥瞰圖zh_TW
dc.subject.keywordUrban Warfare,Tank RecognitionUAV ImageryMachine LearningYOLOImage RecognitionBird’s-eye Viewen
dc.relation.page96-
dc.identifier.doi10.6342/NTU202600339-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2026-01-27-
dc.contributor.author-college工學院-
dc.contributor.author-dept工程科學及海洋工程學系-
dc.date.embargo-lift2026-02-04-
顯示於系所單位:工程科學及海洋工程學系

文件中的檔案:
檔案 大小格式 
ntu-114-1.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
4.33 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved