Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 病理學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10136
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鄭永銘(Yung-Ming Jeng)
dc.contributor.authorFang-I Huangen
dc.contributor.author黃芳儀zh_TW
dc.date.accessioned2021-05-20T21:04:38Z-
dc.date.available2016-10-07
dc.date.available2021-05-20T21:04:38Z-
dc.date.copyright2011-10-07
dc.date.issued2011
dc.date.submitted2011-07-07
dc.identifier.citation1. Nakamura, T., Molecular cloning and expression of human hepatocyte growth factor. Nature, 1989. 342: p. 440-443.
2. Trusolino, L. and P.M. Comoglio, Scatter-factor and semaphorin receptors: cell signalling for invasive growth. Nat Rev Cancer, 2002. 2(4): p. 289-300.
3. Stamos, J., et al., Crystal structure of the HGF β-chain in complex with the Sema domain of the Met receptor. EMBO J., 2004. 23: p. 2325-2335.
4. Basilico, C., et al., A high affinity hepatocyte growth factor-binding site in the immunoglobulin-like region of Met. J. Biol. Chem., 2008. 283: p. 21267-21277.
5. Ponzetto, C., A multifunctional docking site mediates signaling and transformation by the hepatocyte growth factor/scatter factor receptor family. Cell, 1994. 77: p. 261-271.
6. Trusolino, L., A. Bertotti, and P.M. Comoglio, MET signalling: principles and functions in development, organ regeneration and cancer. Nat Rev Mol Cell Biol, 2010. 11(12): p. 834-848.
7. Maroun, C.R., The Gab1 PH domain is required for localization of Gab1 at sites of cell-cell contact and epithelial morphogenesis downstream from the met receptor tyrosine kinase. Mol. Cell. Biol., 1999. 19: p. 1784-1799.
8. Sipeki, S., Phosphatidylinositol 3-kinase contributes to Erk1/Erk2 MAP kinase activation associated with hepatocyte growth factor-induced cell scattering. Cell Signal., 1999. 11: p. 885-890.
9. Maroun, C.R., et al., The tyrosine phosphatase SHP-2 is required for sustained activation of extracellular signal-regulated kinase and epithelial morphogenesis downstream from the met receptor tyrosine kinase. Mol. Cell. Biol., 2000. 20: p. 8513-8525.
10. Birchmeier, C., et al., Met, metastasis, motility and more. Nature Rev. Mol. Cell Biol., 2003. 4: p. 915-925.
11. Lai, A.Z., J.V. Abella, and M. Park, Crosstalk in Met receptor oncogenesis. Trends Cell Biol., 2009. 19: p. 542-551.
12. Johnson, G.L. and R. Lapadat, Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science, 2002. 298: p. 1911-1912.
13. Rodrigues, G.A., M. Park, and J. Schlessinger, Activation of the JNK pathway is essential for transformation by the Met oncogene. EMBO J., 1997. 16: p. 2634-2645.
14. Lamorte, L., D.M. Kamikura, and M. Park, A switch from p130Cas/Crk to Gab1/Crk signaling correlates with anchorage independent growth and JNK activation in cells transformed by the Met receptor oncoprotein. Oncogene, 2000. 19: p. 5973-5981.
15. Rasola, A., Hepatocyte growth factor sensitizes human ovarian carcinoma cell lines to paclitaxel and cisplatin. Cancer Res., 2004. 64: p. 1744-1750.
16. Coltella, N., p38 MAPK turns hepatocyte growth factor to a death signal that commits ovarian cancer cells to chemotherapy-induced apoptosis. Int. J. Cancer, 2006. 118: p. 2981-2990.
17. Boccaccio, C., Induction of epithelial tubules by growth factor HGF depends on the STAT pathway. Nature, 1998. 391: p. 285-288.
18. Zhang, Y.W., et al., Requirement of Stat3 signaling for HGF/SF-Met mediated tumorigenesis. Oncogene, 2002. 21: p. 217-226.
19. Karin, M., et al., NF-κB in cancer: from innocent bystander to major culprit. Nature Rev. Cancer, 2002. 2: p. 301-310.
20. Müller, M., A. Morotti, and C. Ponzetto, Activation of NF-κB is essential for hepatocyte growth factor-mediated proliferation and tubulogenesis. Mol. Cell. Biol., 2002. 22: p. 1060-1072.
21. Fan, S., Role of NF-κB signaling in hepatocyte growth factor/scatter factor-mediated cell protection. Oncogene, 2005. 24: p. 1749-1766.
22. Abounader, R., In vivo targeting of SF/HGF and c-met expression via U1snRNA/ribozymes inhibits glioma growth and angiogenesis and promotes apoptosis. FASEB J., 2002. 16: p. 108-110.
23. Montesano, R., et al., Identification of a fibroblast-derived epithelial morphogen as hepatocyte growth factor. Cell, 1991. 67: p. 901-908.
24. Gherardi, E. and M. Stoker, Hepatocytes and scatter factor. Nature, 1990. 346: p. 228.
25. Sachs, M., Motogenic and morphogenic activity of epithelial receptor tyrosine kinases. J. Cell Biol., 1996. 133: p. 1095-1107.
26. Potempa, S. and A.J. Ridley, Activation of both MAP kinase and phosphatidylinositide 3-kinase by Ras is required for hepatocyte growth factor/scatter factor-induced adherens junction disassembly. Mol. Biol. Cell, 1998. 9: p. 2185-2200.
27. Gu, H. and B.G. Neel, The 'Gab' in signal transduction. Trends Cell Biol., 2003. 13: p. 122-130.
28. Birchmeier, C., et al., Met, metastasis, motility and more. Nature Reviews Molecular Cell Biology, 2003. 4(12): p. 915-925.
29. Tannapfel, A., et al., Effect of hepatocyte growth factor on the expression of E- and P-cadherin in gastric carcinoma cell lines. Virchows Arch., 1994. 425: p. 139-144.
30. Miura, H., Effects of hepatocyte growth factor on E-cadherin-mediated cell-cell adhesion in DU145 prostate cancer cells. Urology, 2001. 58: p. 1064-1069.
31. Balkovetz, D.F., A.L. Pollack, and K.E. Mostov, Hepatocyte growth factor alters the polarity of Madin-Darby canine kidney cell monolayers. J. Biol. Chem., 1997. 272: p. 3471-3477.
32. Balkovetz, D.F. and V. Sambandam, Dynamics of E-cadherin and [gamma]-catenin complexes during dedifferentiation of polarized MDCK cells. Kidney Int., 1999. 56: p. 910-921.
33. Davies, G., W.G. Jiang, and M.D. Mason, Matrilysin mediates extracellular cleavage of E-cadherin from prostate cancer cells: a key mechanism in hepatocyte growth factor/scatter factor-induced cell-cell dissociation and in vitro invasion. Clin. Cancer Res., 2001. 7: p. 3289-3297.
34. Shibamoto, S., Tyrosine phosphorylation of [beta]-catenin and plakoglobin enhanced by hepatocyte growth factor and epidermal growth factor in human carcinoma cells. Cell Adhes. Commun., 1994. 1: p. 295-305.
35. Cui, Y., Q. Tian, and J.L. Christian, Synergistic effects of Vg1 and Wnt signals in the specification of dorsal mesoderm and endoderm. Dev Biol, 1996. 180(1): p. 22-34.
36. Zorn, A.M., K. Butler, and J.B. Gurdon, Anterior endomesoderm specification in Xenopus by Wnt/beta-catenin and TGF-beta signalling pathways. Dev Biol, 1999. 209(2): p. 282-97.
37. Robb, L. and P.P. Tam, Gastrula organiser and embryonic patterning in the mouse. Semin Cell Dev Biol, 2004. 15(5): p. 543-54.
38. Gebeshuber, C.A., S. Sladecek, and S. Grunert, β-Catenin/LEF-1 Signalling in Breast Cancer – Central Players Activated by a Plethora of Inputs.
39. Polakis, P., The oncogenic activation of beta-catenin. Curr Opin Genet Dev, 1999. 9(1): p. 15-21.
40. Banumathy, G. and P. Cairns, Signaling pathways in renal cell carcinoma. Cancer Biol Ther, 2010. 10(7): p. 658-64.
41. Behari, J., The Wnt/beta-catenin signaling pathway in liver biology and disease. Expert Rev Gastroenterol Hepatol, 2010. 4(6): p. 745-56.
42. Jain, P. and S.K. Alahari, Breast cancer stem cells: a new challenge for breast cancer treatment. Front Biosci, 2011. 16: p. 1824-32.
43. Reya, T. and H. Clevers, Wnt signalling in stem cells and cancer. Nature, 2005. 434(7035): p. 843-50.
44. Schmidt-Ott, K.M. and J. Barasch, WNT/beta-catenin signaling in nephron progenitors and their epithelial progeny. Kidney Int, 2008. 74(8): p. 1004-8.
45. Clevers, H., Wnt/beta-catenin signaling in development and disease. Cell, 2006. 127(3): p. 469-80.
46. Gordon, M.D. and R. Nusse, Wnt signaling: multiple pathways, multiple receptors, and multiple transcription factors. J Biol Chem, 2006. 281(32): p. 22429-33.
47. van de Wetering, M., et al., Armadillo coactivates transcription driven by the product of the Drosophila segment polarity gene dTCF. Cell, 1997. 88(6): p. 789-99.
48. Veeman, M.T., J.D. Axelrod, and R.T. Moon, A second canon. Functions and mechanisms of beta-catenin-independent Wnt signaling. Dev Cell, 2003. 5(3): p. 367-77.
49. Seifert, J.R. and M. Mlodzik, Frizzled/PCP signalling: a conserved mechanism regulating cell polarity and directed motility. Nat Rev Genet, 2007. 8(2): p. 126-38.
50. Karner, C., K.A. Wharton, Jr., and T.J. Carroll, Planar cell polarity and vertebrate organogenesis. Semin Cell Dev Biol, 2006. 17(2): p. 194-203.
51. Mikels, A.J. and R. Nusse, Purified Wnt5a protein activates or inhibits beta-catenin-TCF signaling depending on receptor context. PLoS Biol, 2006. 4(4): p. e115.
52. Waterman, M.L., W.H. Fischer, and K.A. Jones, A thymus-specific member of the HMG protein family regulates the human T cell receptor C alpha enhancer. Genes Dev, 1991. 5(4): p. 656-69.
53. Travis, A., et al., LEF-1, a gene encoding a lymphoid-specific protein with an HMG domain, regulates T-cell receptor alpha enhancer function [corrected]. Genes Dev, 1991. 5(5): p. 880-94.
54. van de Wetering, M., et al., Identification and cloning of TCF-1, a T lymphocyte-specific transcription factor containing a sequence-specific HMG box. EMBO J, 1991. 10(1): p. 123-32.
55. Waterman, M.L. and K.A. Jones, Purification of TCF-1 alpha, a T-cell-specific transcription factor that activates the T-cell receptor C alpha gene enhancer in a context-dependent manner. New Biol, 1990. 2(7): p. 621-36.
56. Howe, D. and T. Bromidge, Variation of LEF-1 mRNA expression in low-grade B-cell non-Hodgkin's lymphoma. Leuk Res, 2006. 30(1): p. 29-32.
57. Gebeshuber, C.A., S. Sladecek, and S. Grunert, β-Catenin/LEF-1 Signalling in Breast Cancer – Central Players Activated by a Plethora of Inputs. Cells Tissues Organs, 2007. 185(1-3): p. 51-60.
58. He, T.-C., et al., Identification of c-MYC as a Target of the APC Pathway. Science, 1998. 281(5382): p. 1509-1512.
59. Shtutman, M., et al., The cyclin D1 gene is a target of the β-catenin/LEF-1 pathway. Proceedings of the National Academy of Sciences, 1999. 96(10): p. 5522-5527.
60. Staal, F.J. and J.M. Sen, The canonical Wnt signaling pathway plays an important role in lymphopoiesis and hematopoiesis. Eur J Immunol, 2008. 38(7): p. 1788-94.
61. van Genderen, C., et al., Development of several organs that require inductive epithelial-mesenchymal interactions is impaired in LEF-1-deficient mice. Genes Dev, 1994. 8(22): p. 2691-703.
62. Zhou, P., et al., Lymphoid enhancer factor 1 directs hair follicle patterning and epithelial cell fate. Genes Dev, 1995. 9(6): p. 700-13.
63. D'Anto, V., et al., [The cellular and molecular bases of 'tooth framing']. Minerva Stomatol, 2003. 52(11-12): p. 489-506.
64. Li, C., et al., Wnt5a participates in distal lung morphogenesis. Dev Biol, 2002. 248(1): p. 68-81.
65. Verbeek, S., et al., An HMG-box-containing T-cell factor required for thymocyte differentiation. Nature, 1995. 374(6517): p. 70-4.
66. Yin, A., et al., Wnt signaling is required for early development of zebrafish swimbladder. PLoS One, 2011. 6(3): p. e18431.
67. Wu, X., et al., LEF1 Identifies Androgen-Independent Epithelium in the Developing Prostate. Mol Endocrinol, 2011.
68. Gutierrez, A., et al., Inactivation of LEF1 in T-cell acute lymphoblastic leukemia. Blood, 2010. 115(14): p. 2845-51.
69. Rubinfeld, B., et al., Stabilization of beta-catenin by genetic defects in melanoma cell lines. Science, 1997. 275(5307): p. 1790-2.
70. Brabletz, T., et al., Opinion: migrating cancer stem cells - an integrated concept of malignant tumour progression. Nat Rev Cancer, 2005. 5(9): p. 744-9.
71. Li, F.Q., et al., Lymphoid enhancer factor-1 links two hereditary leukemia syndromes through core-binding factor alpha regulation of ELA2. J Biol Chem, 2004. 279(4): p. 2873-84.
72. Waterman, M.L., Lymphoid enhancer factor/T cell factor expression in colorectal cancer. Cancer Metastasis Rev, 2004. 23(1-2): p. 41-52.
73. Nguyen, A., et al., Wnt pathway component LEF1 mediates tumor cell invasion and is expressed in human and murine breast cancers lacking ErbB2 (her-2/neu) overexpression. Int J Oncol, 2005. 27(4): p. 949-56.
74. Ueda, M., et al., Mutations of the beta- and gamma-catenin genes are uncommon in human lung, breast, kidney, cervical and ovarian carcinomas. Br J Cancer, 2001. 85(1): p. 64-8.
75. Kriegl, L., et al., LEF-1 and TCF4 expression correlate inversely with survival in colorectal cancer. J Transl Med, 2010. 8: p. 123.
76. Iwai, S., et al., Involvement of the Wnt-beta-catenin pathway in invasion and migration of oral squamous carcinoma cells. Int J Oncol, 2010. 37(5): p. 1095-103.
77. He, T.C., et al., Identification of c-MYC as a target of the APC pathway. Science, 1998. 281(5382): p. 1509-12.
78. Kim, K., Z. Lu, and E.D. Hay, Direct evidence for a role of beta-catenin/LEF-1 signaling pathway in induction of EMT. Cell Biol Int, 2002. 26(5): p. 463-76.
79. Shtutman, M., et al., The cyclin D1 gene is a target of the beta-catenin/LEF-1 pathway. Proc Natl Acad Sci U S A, 1999. 96(10): p. 5522-7.
80. Carlson, M.L., E.T. Wilson, and S.M. Prescott, Regulation of COX-2 transcription in a colon cancer cell line by Pontin52/TIP49a. Mol Cancer, 2003. 2: p. 42.
81. Sakai, D., et al., Regulation of Slug transcription in embryonic ectoderm by beta-catenin-Lef/Tcf and BMP-Smad signaling. Dev Growth Differ, 2005. 47(7): p. 471-82.
82. Joensuu, K., et al., Bmi-1, c-myc, and Snail expression in primary breast cancers and their metastases-elevated Bmi-1 expression in late breast cancer relapses. Virchows Arch, 2011.
83. Stabile, L.P., et al., Targeting of Both the c-Met and EGFR Pathways Results in Additive Inhibition of Lung Tumorigenesis in Transgenic Mice. Cancers (Basel), 2010. 2(4): p. 2153-2170.
84. O'Neill, L.A.J. and C. Kaltschmidt, NF-kB: a crucial transcription factor for glial and neuronal cell function. Trends in Neurosciences, 1997. 20(6): p. 252-258.
85. Matsumoto, K. and T. Nakamura, Hepatocyte growth factor and the Met system as a mediator of tumor–stromal interactions.
86. Bremnes, R.M., et al., The role of tumor stroma in cancer progression and prognosis: emphasis on carcinoma-associated fibroblasts and non-small cell lung cancer. J Thorac Oncol, 2011. 6(1): p. 209-17.
87. Burger, R.A., Overview of anti-angiogenic agents in development for ovarian cancer. Gynecol Oncol, 2011. 121(1): p. 230-8.
88. Matsumoto, K. and T. Nakamura, Hepatocyte growth factor and the Met system as a mediator of tumor-stromal interactions. Int J Cancer, 2006. 119(3): p. 477-83.
89. Vermeulen, L., et al., Wnt activity defines colon cancer stem cells and is regulated by the microenvironment. Nat Cell Biol, 2010. 12(5): p. 468-76.
90. Jedeszko, C., et al., Fibroblast hepatocyte growth factor promotes invasion of human mammary ductal carcinoma in situ. Cancer Res, 2009. 69(23): p. 9148-55.
91. Lindemann, K., et al., Differential expression of c-Met, its ligand HGF/SF and HER2/neu in DCIS and adjacent normal breast tissue. Histopathology, 2007. 51(1): p. 54-62.
92. Jiang, W.G., et al., Reduction of stromal fibroblast-induced mammary tumor growth, by retroviral ribozyme transgenes to hepatocyte growth factor/scatter factor and its receptor, c-MET. Clin Cancer Res, 2003. 9(11): p. 4274-81.
93. Grotegut, S., et al., Hepatocyte growth factor induces cell scattering through MAPK/Egr-1-mediated upregulation of Snail. EMBO J, 2006. 25(15): p. 3534-45.
94. Chang, H.Y., et al., Diosgenin Suppresses Hepatocyte Growth Factor (HGF)-Induced Epithelial-Mesenchymal Transition by Down-regulation of Mdm2 and Vimentin. J Agric Food Chem, 2011. 59(10): p. 5357-63.
95. Looyenga, B.D., et al., Chromosomal amplification of leucine-rich repeat kinase-2 (LRRK2) is required for oncogenic MET signaling in papillary renal and thyroid carcinomas. Proc Natl Acad Sci U S A, 2011. 108(4): p. 1439-44.
96. Baillo, A., C. Giroux, and S.P. Ethier, Knock-down of amphiregulin inhibits cellular invasion in inflammatory breast cancer. J Cell Physiol, 2011.
97. Higginbotham, J.N., et al., Amphiregulin exosomes increase cancer cell invasion. Curr Biol, 2011. 21(9): p. 779-86.
98. Dulak, A.M., et al., HGF-independent potentiation of EGFR action by c-Met. Oncogene, 2011.
99. Holliday, D.L., et al., Novel multicellular organotypic models of normal and malignant breast: tools for dissecting the role of the microenvironment in breast cancer progression. Breast Cancer Res, 2009. 11(1): p. R3.
100. Joshi, P.A., H. Chang, and P.A. Hamel, Loss of Alx4, a stromally-restricted homeodomain protein, impairs mammary epithelial morphogenesis. Dev Biol, 2006. 297(1): p. 284-94.
101. Pan, F.Y., et al., Beta-catenin signaling involves HGF-enhanced HepG2 scattering through activating MMP-7 transcription. Histochem Cell Biol, 2010. 134(3): p. 285-95.
102. Okamoto, T., et al., Increased expression of matrix metalloproteinase-9 and hepatocyte growth factor in the cerebrospinal fluid of infants with posthemorrhagic hydrocephalus. Early Hum Dev, 2010. 86(4): p. 251-4.
103. Reboul, P., et al., Hepatocyte growth factor induction of collagenase 3 production in human osteoarthritic cartilage: involvement of the stress-activated protein kinase/c-Jun N-terminal kinase pathway and a sensitive p38 mitogen-activated protein kinase inhibitor cascade. Arthritis Rheum, 2001. 44(1): p. 73-84.
104. Winter, S., et al., Expression of mRNAs encoding for growth factors, ECM molecules, and MMP13 in mono-cultures and co-cultures of human periodontal ligament fibroblasts and alveolar bone cells. Cell Tissue Res, 2005. 319(3): p. 467-78.
105. Kinzler, K.W. and B. Vogelstein, Lessons from hereditary colorectal cancer. Cell, 1996. 87(2): p. 159-70.
106. Heinen, C.D., C. Schmutte, and R. Fishel, DNA repair and tumorigenesis: lessons from hereditary cancer syndromes. Cancer Biol Ther, 2002. 1(5): p. 477-85.
107. Gavert, N. and A. Ben-Ze'ev, beta-Catenin signaling in biological control and cancer. J Cell Biochem, 2007. 102(4): p. 820-8.
108. van de Wetering, M., et al., The beta-catenin/TCF-4 complex imposes a crypt progenitor phenotype on colorectal cancer cells. Cell, 2002. 111(2): p. 241-50.
109. McCrea, P.D., C.W. Turck, and B. Gumbiner, A homolog of the armadillo protein in Drosophila (plakoglobin) associated with E-cadherin. Science, 1991. 254(5036): p. 1359-61.
110. Eger, A., et al., Epithelial mesenchymal transition by c-Fos estrogen receptor activation involves nuclear translocation of beta-catenin and upregulation of beta-catenin/lymphoid enhancer binding factor-1 transcriptional activity. J Cell Biol, 2000. 148(1): p. 173-88.
111. Solanas, G., et al., E-cadherin controls -catenin and NF- B transcriptional activity in mesenchymal gene expression. Journal of Cell Science, 2008. 121(13): p. 2224-2234.
112. Barrallo-Gimeno, A. and M.A. Nieto, The Snail genes as inducers of cell movement and survival: implications in development and cancer. Development, 2005. 132(14): p. 3151-61.
113. Cano, A., et al., The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol, 2000. 2(2): p. 76-83.
114. Zhou, B.P., et al., Dual regulation of Snail by GSK-3beta-mediated phosphorylation in control of epithelial-mesenchymal transition. Nat Cell Biol, 2004. 6(10): p. 931-40.
115. Roura, S., et al., Regulation of E-cadherin/Catenin association by tyrosine phosphorylation. J Biol Chem, 1999. 274(51): p. 36734-40.
116. El-Hariry, I., M. Pignatelli, and N.R. Lemoine, FGF-1 and FGF-2 modulate the E-cadherin/catenin system in pancreatic adenocarcinoma cell lines. Br J Cancer, 2001. 84(12): p. 1656-63.
117. Danilkovitch-Miagkova, A., et al., Oncogenic mutants of RON and MET receptor tyrosine kinases cause activation of the beta-catenin pathway. Mol Cell Biol, 2001. 21(17): p. 5857-68.
118. Brabletz, T., et al., beta-catenin regulates the expression of the matrix metalloproteinase-7 in human colorectal cancer. Am J Pathol, 1999. 155(4): p. 1033-8.
119. Wielenga, V.J., et al., Expression of c-Met and heparan-sulfate proteoglycan forms of CD44 in colorectal cancer. Am J Pathol, 2000. 157(5): p. 1563-73.
120. Chen, J.H., et al., beta-catenin mediates mechanically regulated, transforming growth factor-beta1-induced myofibroblast differentiation of aortic valve interstitial cells. Arterioscler Thromb Vasc Biol, 2011. 31(3): p. 590-7.
121. Walsh, L.A. and S. Damjanovski, IGF-1 increases invasive potential of MCF 7 breast cancer cells and induces activation of latent TGF-beta1 resulting in epithelial to mesenchymal transition. Cell Commun Signal, 2011. 9(1): p. 10.
122. Zhou, S., TGF-beta regulates beta-catenin signaling and osteoblast differentiation in human mesenchymal stem cells. J Cell Biochem, 2011. 112(6): p. 1651-60.
123. Morali, O.G., et al., IGF-II induces rapid beta-catenin relocation to the nucleus during epithelium to mesenchyme transition. Oncogene, 2001. 20(36): p. 4942-50.
124. Conacci-Sorrell, M., et al., Autoregulation of E-cadherin expression by cadherin-cadherin interactions: the roles of beta-catenin signaling, Slug, and MAPK. J Cell Biol, 2003. 163(4): p. 847-57.
125. Muller, T., et al., Regulation of epithelial cell migration and tumor formation by beta-catenin signaling. Exp Cell Res, 2002. 280(1): p. 119-33.
126. Apte, U., et al., Activation of Wnt/beta-catenin pathway during hepatocyte growth factor-induced hepatomegaly in mice. Hepatology, 2006. 44(4): p. 992-1002.
127. Lee, Y.H., et al., Hepatocyte growth factor regulates cyclooxygenase-2 expression via beta-catenin, Akt, and p42/p44 MAPK in human bronchial epithelial cells. Am J Physiol Lung Cell Mol Physiol, 2008. 294(4): p. L778-86.
128. Previdi, S., et al., Interaction between human-breast cancer metastasis and bone microenvironment through activated hepatocyte growth factor/Met and beta-catenin/Wnt pathways. Eur J Cancer, 2010. 46(9): p. 1679-91.
129. Unger, B.L. and D.W. McGee, Hepatocyte growth factor and keratinocyte growth factor enhance IL-1-induced IL-8 secretion through different mechanisms in Caco-2 epithelial cells. In Vitro Cell Dev Biol Anim, 2011. 47(2): p. 173-81.
130. Kanayama, M., et al., Hepatocyte growth factor promotes colonic epithelial regeneration via Akt signaling. Am J Physiol Gastrointest Liver Physiol, 2007. 293(1): p. G230-9.
131. Ye, M., et al., Involvement of PI3K/Akt signaling pathway in hepatocyte growth factor-induced migration of uveal melanoma cells. Invest Ophthalmol Vis Sci, 2008. 49(2): p. 497-504.
132. Zhou, H.Y., et al., Hepatocyte growth factor enhances proteolysis and invasiveness of human nasopharyngeal cancer cells through activation of PI3K and JNK. FEBS Lett, 2008. 582(23-24): p. 3415-22.
133. Menakongka, A. and T. Suthiphongchai, Involvement of PI3K and ERK1/2 pathways in hepatocyte growth factor-induced cholangiocarcinoma cell invasion. World J Gastroenterol, 2010. 16(6): p. 713-22.
134. Lee, W.J., et al., Apigenin inhibits HGF-promoted invasive growth and metastasis involving blocking PI3K/Akt pathway and beta 4 integrin function in MDA-MB-231 breast cancer cells. Toxicol Appl Pharmacol, 2008. 226(2): p. 178-91.
135. Nidai Ozes, O., et al., NF-[kappa]B activation by tumour necrosis factor requires the Akt serine-threonine kinase. Nature, 1999. 401(6748): p. 82-85.
136. Fan, S., et al., Role of NF-kappaB signaling in hepatocyte growth factor/scatter factor-mediated cell protection. Oncogene, 2005. 24(10): p. 1749-66.
137. Esencay, M., E.W. Newcomb, and D. Zagzag, HGF upregulates CXCR4 expression in gliomas via NF-kappaB: implications for glioma cell migration. J Neurooncol, 2010. 99(1): p. 33-40.
138. Maroni, P., et al., HGF induces CXCR4 and CXCL12-mediated tumor invasion through Ets1 and NF-kappaB. Carcinogenesis, 2007. 28(2): p. 267-79.
139. Muller, M., A. Morotti, and C. Ponzetto, Activation of NF-kappaB is essential for hepatocyte growth factor-mediated proliferation and tubulogenesis. Mol Cell Biol, 2002. 22(4): p. 1060-72.
140. Min, C., et al., NF-kappaB and epithelial to mesenchymal transition of cancer. J Cell Biochem, 2008. 104(3): p. 733-44.
141. Chua, H.L., et al., NF-kappaB represses E-cadherin expression and enhances epithelial to mesenchymal transition of mammary epithelial cells: potential involvement of ZEB-1 and ZEB-2. Oncogene, 2007. 26(5): p. 711-24.
142. Sosic, D. and E.N. Olson, A new twist on twist--modulation of the NF-kappa B pathway. Cell Cycle, 2003. 2(2): p. 76-8.
143. Sosic, D., et al., Twist regulates cytokine gene expression through a negative feedback loop that represses NF-kappaB activity. Cell, 2003. 112(2): p. 169-80.
144. Pham, C.G., et al., Upregulation of Twist-1 by NF-kappaB blocks cytotoxicity induced by chemotherapeutic drugs. Mol Cell Biol, 2007. 27(11): p. 3920-35.
145. Lilienbaum, A. and D. Paulin, Activation of the human vimentin gene by the Tax human T-cell leukemia virus. I. Mechanisms of regulation by the NF-kappa B transcription factor. J Biol Chem, 1993. 268(3): p. 2180-8.
146. Dong, R., et al., Role of nuclear factor kappa B and reactive oxygen species in the tumor necrosis factor-alpha-induced epithelial-mesenchymal transition of MCF-7 cells. Braz J Med Biol Res, 2007. 40(8): p. 1071-8.
147. Yun, K., et al., NF-kappaB regulates Lef1 gene expression in chondrocytes. Biochem Biophys Res Commun, 2007. 357(3): p. 589-95.
148. Huang, K., et al., MicroRNA roles in beta-catenin pathway. Molecular Cancer, 2010. 9(1): p. 252.
149. Zhao, J.H., et al., Knockdown of beta-Catenin Through shRNA Cause a Reversal of EMT and Metastatic Phenotypes Induced by HIF-1alpha. Cancer Invest, 2011. 29(6): p. 377-82.
150. Lai, T.Y., et al., beta-catenin plays a key role in metastasis of human hepatocellular carcinoma. Oncol Rep, 2011. 26(2): p. 415-22.
151. Zhang, F., et al., Influence of beta-catenin small interfering RNA on human osteosarcoma cells. J Huazhong Univ Sci Technolog Med Sci, 2011. 31(3): p. 353-8.
152. Arozarena, I., et al., In melanoma, beta-catenin is a suppressor of invasion. Oncogene, 2011.
153. Kuphal, S. and A.K. Bosserhoff, Phosphorylation of beta-catenin results in lack of beta-catenin signaling in melanoma. Int J Oncol, 2011. 39(1): p. 235-43.
154. Nguyen, D.X., et al., WNT/TCF signaling through LEF1 and HOXB9 mediates lung adenocarcinoma metastasis. Cell, 2009. 138(1): p. 51-62.
155. Eichhoff, O.M., et al., Differential LEF1 and TCF4 expression is involved in melanoma cell phenotype switching. Pigment Cell Melanoma Res, 2011.
156. Comoglio, P.M. and L. Trusolino, Invasive growth: from development to metastasis. J Clin Invest, 2002. 109(7): p. 857-62.
157. Cui, Q., et al., HGF inhibits TGF-beta1-induced myofibroblast differentiation and ECM deposition via MMP-2 in Achilles tendon in rat. Eur J Appl Physiol, 2010.
158. Yanti and J.K. Hwang, Suppressive effect of ethanolic Kaempferia pandurata Roxb. extract on matrix metalloproteinase-2 expression in Porphyromonas gingivalis-treated human gingival fibroblasts in vitro. J Oral Sci, 2010. 52(4): p. 583-91.
159. Mariadason, J.M., et al., Down-regulation of beta-catenin TCF signaling is linked to colonic epithelial cell differentiation. Cancer Res, 2001. 61(8): p. 3465-71.
160. Naishiro, Y., et al., Restoration of epithelial cell polarity in a colorectal cancer cell line by suppression of beta-catenin/T-cell factor 4-mediated gene transactivation. Cancer Res, 2001. 61(6): p. 2751-8.
161. Galzie, Z., et al., Invasion of human colorectal carcinoma cells is promoted by endogenous basic fibroblast growth factor. Int J Cancer, 1997. 71(3): p. 390-5.
162. El-Tanani, M., et al., Ets gene PEA3 cooperates with beta-catenin-Lef-1 and c-Jun in regulation of osteopontin transcription. J Biol Chem, 2004. 279(20): p. 20794-806.
163. Fu, L., et al., Wnt2 secreted by tumour fibroblasts promotes tumour progression in oesophageal cancer by activation of the Wnt/{beta}-catenin signalling pathway. Gut, 2011.
164. von Gise, A., et al., WT1 regulates epicardial epithelial to mesenchymal transition through beta-catenin and retinoic acid signaling pathways. Dev Biol, 2011.
165. Ray, S., et al., Cooperative control via lymphoid enhancer factor 1/T cell factor 3 and estrogen receptor-alpha for uterine gene regulation by estrogen. Mol Endocrinol, 2008. 22(5): p. 1125-40.
166. Zhang, W., F. Song, and L.J. Windsor, Effects of tobacco and P. gingivalis on gingival fibroblasts. J Dent Res, 2010. 89(5): p. 527-31.
167. Katoh, Y. and M. Katoh, Comparative integromics on Angiopoietin family members. Int J Mol Med, 2006. 17(6): p. 1145-9.
168. Zhao, P., et al., Repeated hepatocyte growth factor neutralizing antibody treatment leads to HGF/SF unresponsiveness in human glioblastoma multiforme cells. Cancer Lett, 2010. 291(2): p. 209-16.
169. Gomez, A.M., et al., Exercise Training and Cytokines in Breast Cancer Survivors. Int J Sports Med, 2011.
170. Worden, B., et al., Hepatocyte growth factor/scatter factor differentially regulates expression of proangiogenic factors through Egr-1 in head and neck squamous cell carcinoma. Cancer Res, 2005. 65(16): p. 7071-80.
171. Rui, C., et al., Involvement of Egr-1 in HGF-induced elevation of the human 5alpha-R1 gene in human hepatocellular carcinoma cells. Biochem J, 2008. 411(2): p. 379-86.
172. Lee, K.H. and J.R. Kim, Hepatocyte growth factor induced up-regulations of VEGF through Egr-1 in hepatocellular carcinoma cells. Clin Exp Metastasis, 2009. 26(7): p. 685-92.
173. Damm, S., et al., HGF-promoted motility in primary human melanocytes depends on CD44v6 regulated via NF-kappa B, Egr-1, and C/EBP-beta. J Invest Dermatol, 2010. 130(7): p. 1893-903.
174. Ogata, A., et al., Interleukin 18 and hepatocyte growth factor in fulminant hepatic failure of adult onset Still's disease. J Rheumatol, 2003. 30(5): p. 1093-6.
175. Kamimoto, M., et al., Hepatocyte growth factor prevents multiple organ injuries in endotoxemic mice through a heme oxygenase-1-dependent mechanism. Biochem Biophys Res Commun, 2009. 380(2): p. 333-7.
176. Singh, A.P., et al., Genome-wide expression profiling reveals transcriptomic variation and perturbed gene networks in androgen-dependent and androgen-independent prostate cancer cells. Cancer Lett, 2008. 259(1): p. 28-38.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10136-
dc.description.abstract肝細胞生長因子(Hepatocyte growth factor, HGF)與其接受體c-Met在癌症的生長與遷移扮演重要的角色。HGF由纖維組織母細胞(fibroblast)分泌,是一個癌症生長與發育的重要中間因子。然而,這其中的機轉尚未清楚。Wnt/β-catenin/Tcf/LEF1 是一條經常在癌細胞中被活化的路徑。利用β-catenin相關路徑的報導基因表現分析,我們發現在肝癌細胞株,肝細胞生長因子會活化β-catenin的路徑。利用微陣列基因表現分析,我們發現LEF1mRNA的表現量被肝細胞生長因子增加了。給予MDA-MB-231細胞株Wortmannin 會抑制HGF誘導的LEF1表現,這代表HGF 誘導LEF1是藉由PI3K/Akt的路徑。我們也給予MDA-MB-231細胞株BAY11-7082及SN50二種專一抑制NF-κB 的抑制劑,也發現可以減少HGF誘導的LEF1表現。利用shRNA敲毀LEF1,會抑制HGF造成的腫瘤侵襲。根據組織免疫染色,我們發現LEF1在各種不同的癌症表現。我們研究顯示,藉由LEF1的轉譯調控,HGF/Met與Wnt/β-catenin/Tcf/Lef之間的訊息傳遞是HGF誘導侵襲的必要條件。zh_TW
dc.description.abstractHepatocyte growth factor (HGF) and its receptor c-Met play important roles in cancer growth and metastasis. HGF is an important fibroblast-secreted protein which is a mediator of cancer development and progression. However, the mechanism is still poorly characterized. Wnt/β-catenin/Tcf/LEF1 pathway is frequently activated in cancers. Using the reporter of β-catenin pathway, we found HGF activates β-catenin pathway in liver cancer cell line HepG2. Using microarray analysis, we found LEF1 expression is enhanced by HGF. Treatment of the MDA-MB-231 cells with wortmannin suppressed the induction of LEF1, indicating that the effect was mediated by signaling through phosphatidylinositol-3-kinase (PI3K)/Akt pathway. We also treated MDA-MB-231 cells with BAY11-7082 and SN50, two specific NF-κB translocation inhibitors, and also found that it could decrease LEF1 expression after HGF treatment. Knockdown of LEF1 by shRNA in MDA-MB-231 cells inhibited tumor invasion induced by HGF treatment. According to IHC staining data, we found that LEF1 is expressed in various cancers. Our study suggests that cross-talk of HGF/Met and Wnt/β-catenin/Tcf/Lef by transcriptional regulation of LEF1 is essential for the invasion-inducing effect of HGF.en
dc.description.provenanceMade available in DSpace on 2021-05-20T21:04:38Z (GMT). No. of bitstreams: 1
ntu-100-R98444002-1.pdf: 11982429 bytes, checksum: a692c5e1525be4f3d83b0ad67785c61f (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents口試委員審定書 II
中文摘要 III
Abstract IV
Contents V
1. Introduction 1
1.1 Structure of MET and HGF-------------------------------------------------------------------1
1.2 Major MET-regulated signaling pathways--------------------------------------------------2
1.3 HGF/MET induce EMT-----------------------------------------------------------------------4
1.4 Wnt/β-catenin pathway------------------------------------------------------------------------6
1.5 Lymphoid enhancer factor (LEF1) ----------------------------------------------------------7
1.6 Breast cancer------------------------------------------------------------------------------------9
1.7 The study aim---------------------------------------------------------------------------------10
2. Materials and Methods 11
2.1 Cell culture------------------------------------------------------------------------------------11
2.2 RNA interference-----------------------------------------------------------------------------11
2.3 RNA isolation---------------------------------------------------------------------------------12
2.4 RT-PCR ----------------------------------------------------------------------------------------12
2.5 Western Blot-----------------------------------------------------------------------------------12
2.6 In vitro Boyden chamber Invasion Assay -------------------------------------------------14
2.7 Wound-healing Assay------------------------------------------------------------------------14
2.8 Scattering assay-------------------------------------------------------------------------------15
2.9 Chromatin immunoprecipitation assay----------------------------------------------------15
2.10 Immunohistochemistry---------------------------------------------------------------------16
2.11 Reporter assay-------------------------------------------------------------------------------17
3. Results 20
3.1 HGF induces cell scattering-----------------------------------------------------------------20
3.2 Identification of differential gene expression between HGF treated or untreated
HepG2 cell line------------------------------------------------------------------------------20
3.3 HGF induces LEF1 expression in HepG2 and MDA-MB-231-------------------------21
3.4 LEF1 is required for HGF-induced cell invasion and migration. ----------------------21
3.5 HGF induces LEF1 expression independently of β-catenin activity. ----------------- 22
3.6 HGF-induced LEF1 expression depends on PI3K/AKT pathway--------------------- 22
3.7 HGF induces LEF1 expression via NF-κB------------------------------------------------23
3.8 LEF1 is a target gene of NF-κB in MDA-MB-231-------------------------------------- 23
3.9 Knockdown LEF1 in MDA-MB-231 reduce epithelial-mesenchymal transition and
tumor migration----------------------------------------------------------------------------- 24
3.10 The expression degree of LEF1 in various cancers------------------------------------ 24
4. Discussion 25
4.1 The role of HGF in cancer invasion------------------------------------------------------- 25
4.2 HGF induces LEF1 through PI3K/AKT/NF-κB pathway ----------------------------- 26
4.3 HGF induces LEF1 expression in HepG2 and MDA-MB-231------------------------ 30
4.4LEF1 is required for HGF-induced invasion and migration---------------------------- 32
4.5 Knockdown of LEF1 in MDA-MB-231 reduced epithelial-mesenchymal transition
and tumor migration. ---------------------------------------------------------------------- 33
5. Figures and Tables 34
Figure 1. HGF induces cell scattering -------------------------------------------------------- 34
Figure 2.Veridation of the genes upregulated by HGF in microarray data by RT-PCR.-37
Figure 3. HGF induces LEF1 expression in HepG2 and MB231. ------------------------ 39
Figure 4. LEF1 is required for HGF-induced cell invasion. ------------------------------- 40
Figure 5. LEF1 is required for HGF-induced wound-healing migration ----------------- 42
Figure 6. HGF induces TCF/ LEF1 reporter activation in various cell lines------------- 44
Figure 7. LEF1 is regulated by HGF through PI3K/AKT and NF-kB pathway--------- 47
Figure 8. NF-κB binds to its predicted upstream binding site on LEF1 locus----------- 48
Figure 9. Knockdown of LEF1 reduce the expression of Snail and ZEB2. The down
expression was not due to activation of GSK3β. -------------------------------- 51
Figure 10. Immunohistochemical detection of LEF1 in breast cancer. ------------------- 54
Figure 11. Immunohistochemical detection of LEF1 in renal cell carcinoma. ---------- 55
Figure 12. Immunohistochemical detection of LEF1 in lung cancer. --------------------- 56
Figure 13. Immunohistochemical detection of LEF1 in ovary cancer -------------------- 57
Figure 14. Immunostaining of LEF1 in oral mucosa and OSCC-------------------------- 58
Figure 15. Molecular mechanisms underlying HGF-induced cell scattering------------- 59
Table 1. The primers used for PCR reaction. -------------------------------------------------18
Table 2. The primers used for ChIP analysis. -------------------------------------------------18
Table 3. Detect the genes HGF induced by microarray--------------------------------------36
Table 4. Expression of LEF1 andβ-catenin in human breast cancer ---------------------45
Table 5. The expression of LEF1 in various cancers ----------------------------------------52
7. Reference 61
dc.language.isoen
dc.titleHGF藉由活化LEF1轉錄而活化Wnt路徑以促進腫瘤侵襲zh_TW
dc.titleHGF activates Wnt pathway by transcriptional activation of LEF1 to facilitate tumor invasionen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張正琪,林佼穎,黃祥博
dc.subject.keyword肝細胞生長因子,zh_TW
dc.subject.keywordHGF,Wnt,LEF1,en
dc.relation.page73
dc.rights.note同意授權(全球公開)
dc.date.accepted2011-07-07
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept病理學研究所zh_TW
顯示於系所單位:病理學科所

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf11.7 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved