Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工程科學及海洋工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101368
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳昭宏zh_TW
dc.contributor.advisorJau-Horng Chenen
dc.contributor.author吳侑懋zh_TW
dc.contributor.authorYu-Mau Wuen
dc.date.accessioned2026-01-27T16:16:20Z-
dc.date.available2026-01-28-
dc.date.copyright2026-01-27-
dc.date.issued2025-
dc.date.submitted2026-01-02-
dc.identifier.citation[1] Deng MJ, Zhao YY, Liang ZX, Chen JT, Zhang Y, and Duan XM, “Maximizing energy utilization in DMD-based projection lithography,” Optics Express, Vol. 30, No. 4, pp. 6271-6283, 2022.
[2] Huang S, Ren B, Tang Y, Wu D, Pan J, Tian Z, Jiang C, Li Z, and Huang J, “Edge smoothing optimization method in DMD digital lithography system based on dynamic blur matching pixel overlap technique,” Optics Express, Vol. 32, Issue 2, pp. 2114-2123, 2024.
[3] Wang H, Huang Z, Shen Y, and Zhou S, “Highly Efficient Digitized Quasi-3D Photolithography Based on a Modified Golomb Coding via DMD Laser Direct Writing,” Photonics, Vol. 12, Issue 6, p. 587, 2025.
[4] Choi J, Kim G, Lee WS, Chang WS, and Yoo H, “Method for improving the speed and pattern quality of a DMD maskless lithography system using a pulse exposure method,” Optics express, vol. 30, no. 13, pp. 22487-22500, 2022.
[5] D. Dudley, W. M. Duncan, and J. Slaughter, “Emerging Digital Micromirror Device (DMD) Applications,” in Proceedings of SPIE - The International Society for Optical Engineering, vol. 4985, pp. 14-25, 2003.
[6] Xiong Z, Liu H, Chen R, Xu J, Li Q, Li J, and Zhang W, “Illumination uniformity improvement in digital micromirror device based scanning photolithography system,” Journal of Micro/Nanolithography, MEMS, and MOEMS, Vol. 17, Issue 3, 2018.
[7] Choi J, Kim G, Lee WS, Chang WS, and Yoo H, “Method for improving the speed and pattern quality of a DMD maskless lithography system using a pulse exposure method,” Journal of Micro/Nanolithography, MEMS, and MOEMS, Vol. 21, Issue 2, 2022.
[8] Y. -C. Li and Y. -C. Lu, “BLASTP-ACC: Parallel Architecture and Hardware Accelerator Design for BLAST-Based Protein Sequence Alignment,” in IEEE Transactions on Biomedical Circuits and Systems, vol. 13, no. 6, pp. 1771-1782, Dec. 2019.
[9] Z. -W. Shen, J. -S. Huang and Y. -C. Lu, “A Memory-Efficient Accelerator for 128-Parallel Sequence-to-Graph Alignment in Variant-Enriched Regions,” 2024 IEEE Biomedical Circuits and Systems Conference (BioCAS), Xi'an, China, 2024, pp. 1-5.
[10] N. Miyamoto, M. Shimakage, T. Morimoto, K. Kadota, S. Sugawa, and T. Ohmi, “A rapid prototyping of real-time pattern generator for step-and-scan lithography using digital micromirror device,” 2007 International Conference on Field-Programmable Technology, Kitakyusyu, Japan, 2007, pp. 305-308.
[11] K. WANG, T. LENG, J. MAO, and G. -x. LIAN, “Research on Parallel Multi-Channel Ultrasonic Data Cache and Transfer Method Based on RIFFA Framework PCIe Bus,” 2019 14th Symposium on Piezoelectrcity, Acoustic Waves and Device Applications (SPAWDA), Shijiazhuang, China, 2019, pp. 1-5.
[12] Baungarten-Leon, Emilio Isaac, Gustavo Daniel Martín-del-Campo-Becerra, Susana Ortega-Cisneros, Maron Schlemon, Jorge Rivera, and Andreas Reigber, “Towards On-Board SAR Processing with FPGA Accelerators and a PCIe Interface,” Electronics, vol. 12, no. 11, p. 2558, 2023..
[13] M. Jacobsen, Y. Freund, and R. Kastner, “RIFFA: A reusable integration framework for FPGA accelerators,” 2012 IEEE 20th International Symposium on Field-Programmable Custom Computing Machines, Toronto, ON, Canada, 2012, pp. 216-219.
[14] M. Jacobsen, and R. Kastner, “RIFFA 2.0: A reusable integration framework for FPGA accelerators,” 2013 23rd International Conference on Field programmable Logic and Applications, Porto, Portugal, 2013, pp. 1-8.
[15] Texas Instruments, “DLP9000X WQXGA Digital Micromirror Device,” 2018.
[16] Texas Instruments, “DLPC910 Digital Controller for DLP9000X,” 2018.
[17] PCI-SIG, “PCI Express Base Specification, Revision 3.0,” PCI-SIG, 2010.
[18] A. Forencich, M. Lavrinc, and E. Petersen, “Corundum: An Open-Source 100GbE FPGA-Based SmartNIC,” ACM Transactions on Reconfigurable Technology and Systems, vol. 15, no. 3, pp. 1-15, 2022.
[19] T. Nakamura, K. Hashimoto, and S. Yamada, “Limago: A Lightweight FPGA-based 10GbE NIC for Low-Latency Network Processing,” in 2021 IEEE International Conference on Field-Programmable Logic and Applications (FPL), pp. 134-141, 2021.
[20] S. Sivanathan, M. A. Roula, K. Li, D. Qiao, and N. J. Copner, “Design of an FPGA-Based High-Speed Data Acquisition System for Frequency Scanning Interferometry Long-Range Measurement,” in IEEE Open Journal of Instrumentation and Measurement, vol. 3, pp. 1-10, 2024.
[21] Q. Dong, S. Sajedi, K. Cui, and C. S. Levin, “Compact FPGA-Based Data Acquisition System for a High-Channel, High-Count-Rate TOF-PET Insert for Brain PET/MRI,” in IEEE Transactions on Instrumentation and Measurement, vol. 73, pp. 1-9, 2024.
[22] M. Blott, K. Vissers, J. Zambreno, and I. Zecena, “SNAP: An Open FPGA-based Platform for PCIe Networking and Storage Acceleration,” in 2018 IEEE Symposium on High-Performance Interconnects (HOTI), pp. 24-31, 2018.
[23] Xilinx, Inc., “Aurora 64B/66B Protocol User Guide (PG074),” 2019
[24] X. Li, K. Vipin, D. L. Maskell, S. A. Fahmy, and A. K. Jain, “High Throughput Accelerator Interface Framework for a Linear Time-Multiplexed FPGA Overlay,” in 2020 IEEE International Symposium on Circuits and Systems (ISCAS), 2020.
[25] Xilinx, Inc., “VC709 Evaluation Board for the Virtex-7 FPGA User Guide (UG887),” 2018.
[26] Xilinx, Inc., “7 Series FPGAs Integrated Block for PCI Express User Guide (PG054),” 2020.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101368-
dc.description.abstract本論文研究目的為應用於製程產業曝光系統上,在電腦與微鏡裝置之間傳輸大量的曝光影像資料,為了加快影像資料傳輸的速度且確保資料皆正確無誤,本研究使用擁有高吞吐量、低延遲與資料錯誤重傳機制的PCIe傳輸協定,在FPGA上使用RIFFA(A Reusable Integration Framework for FPGA Accelerators)架構運行在PCIe(Peripheral Component Interconnect Express)上。RIFFA提供一個簡單的數據傳輸軟體API和一個AXI-Stream FIFO硬體界面,並處理PCIe協定的數據封包編碼與解碼,讓使用者能夠專注於實現應用邏輯而不是基本的PCIe連接界面,本研究改進RIFFA架構的封包處理以提升至Gen 3 ×8,使其吞吐量達到6603.17 MB/s。
本論文分為兩大研究主題討論,第一部分主題為基於RIFFA架構實現PCIe Gen 3 ×8的介面傳輸,電腦端以Linux Ubuntu作業系統的環境下,使用者透過簡單的API(A high-level Application Programming Interface)將資料利用PCIe協定傳送至VC709 FPGA(Field Programmable Gate Array),在透過RIFFA的內部邏輯解碼、重排封包等,FPGA將資料解碼並進行資料處理後,再經由Aurora協議透過雙端QSFP+ (40G or 56G) FMC(Field-Programmable Mezzanine Card)模組接口傳送至DMD (Digital Micromirror Device)顯示。
第二部分主題,即為此VC709至Kintex-7的端對端橋接系統設計。在VC709 傳輸節點上,本研究設計了Chnl_dmd模組,其核心在於使用FIFO_O與FIFO_I 兩個非同步 FIFO,成功解決RIFFA核心與Aurora IP之間的時脈域轉換問題。在 Kintex-7接收節點上,則實作了Aurora2Mcu_blk 模組,其內含一個解多工器,將 Aurora傳來的256-bit高速資料流,轉換為64-bit資料流,以供後端MCU_blk與Dmd_ctl模組進行即時的影像矩陣運算與解碼。
實驗結果證實,此一完整的端對端系統能成功傳輸132,249,600 words的影像並正確成像。在總體傳輸時間上,本系統僅需0.42秒即完成傳輸。相較於現有的 10G Ethernet TCP-like方案所需的3.95秒,效能提升接近一個數量級,充分滿足了即時大量影像傳輸的嚴苛需求。
zh_TW
dc.description.abstractThis thesis aims to develop a high-throughput, high-integrity data transmission system for industrial lithography applications, specifically for transferring large-scale exposure images between a host computer and a microlithography device. To achieve the required speed and data integrity, this research utilizes the Peripheral Component Interconnect Express (PCIe) protocol, renowned for its high throughput, low latency, and error-retry mechanisms. The system is implemented on an FPGA using the A Reusable Integration Framework for FPGA Accelerators (RIFFA) framework. RIFFA provides a simple software API and a streaming FIFO hardware interface, abstracting the complexities of the PCIe protocol and allowing the user to focus on application logic. A primary contribution of this research is the modification of the RIFFA framework's packet processing logic to support a PCIe Gen 3 ×8 interface, achieving a measured throughput of 6603.17 MB/s.
This thesis discusses two main research topics. The first part details the implementation of the RIFFA-based PCIe Gen 3 ×8 interface. Operating on a Linux Ubuntu host, a user application utilizes the high-level API to transmit data via the PCIe protocol to a VC709 FPGA. On the FPGA, RIFFA's internal logic decodes and reorders the packets. After data processing, the data is transmitted to the Digital Micromirror Device (DMD) via the Aurora protocol using a dual QSFP+ (40G/56G) FMC module.
The second part details the design of the end-to-end bridge system from the VC709 to a Kintex-7 FPGA. On the VC709 transmission node, this study designed the Chnl_dmd module, which utilizes two asynchronous FIFOs to successfully resolve the clock domain crossing (CDC) issue between the RIFFA core and the Aurora IP. On the Kintex-7 receiving node, an Aurora2Mcu_blk module was implemented. This module integrates a demultiplexer that converts the 256-bit high-speed Aurora data stream into a 64-bit data stream, feeding the backend MCU_blk and Dmd_ctl modules for real-time image matrix operations and decoding.
Experimental results validate this complete end-to-end system, which successfully transmitted a 132,249,600-word image and displayed it correctly. The total transmission time was only 0.42 seconds, compared to the 3.95 seconds required by the existing 10G Ethernet TCP-like solution. This achievement represents a nearly order-of-magnitude performance increase, fully satisfying the stringent demands of real-time, high-throughput image transmission.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2026-01-27T16:16:20Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2026-01-27T16:16:20Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 i
中文摘要 ii
英文摘要 iii
目次 v
圖次 viii
表次 x
第一章 緒論 1
1.1 研究動機 1
1.2 研究目的 4
1.3 論文架構 5
第二章 背景介紹及文獻回顧 7
2.1 數位微鏡裝置系統與DLP9000X介紹 7
2.1.1 數位微鏡裝置原理 7
2.1.2 DLPC910概論 8
2.2 高速資料傳輸技術 9
2.2.1 匯流排技術發展與演進 9
2.2.2 高速串列傳輸技術 10
2.2.3 資料傳輸路徑之結構與效能比較 11
2.2.4 PCI Express規範與演進 12
2.2.5 PCIe於高速傳輸產品之應用 13
2.3 Aurora 64B/66B通訊協定 14
2.3.1 協定定位與特性 14
2.3.2 實體層與編碼機制 14
2.3.3 介面設計與可靠度 16
2.3.4 實作考量與吞吐量 16
2.4 RIFFA 架構 17
2.4.1 RIFFA簡介與發展背景 17
2.4.2 架構概觀與Channel模型 18
2.4.3 驅動程式與應用程式介面概論 19
2.4.4 DMA Engine與硬體介面 21
第三章 PCI Express通訊協定 22
3.1 PCIe 協定層級架構 22
3.2 事務層 24
3.2.1 TLP 格式與欄位解析 24
3.2.2 事務類型與路由機制 (Transaction Types and Routing) 26
3.3 資料鏈結層 27
3.3.1 資料可靠性與重傳機制 29
3.3.2 信用機制流量控制 30
3.4 實體層 31
3.4.1 PMA/PCS 分層 31
3.4.2 8B/10B與128B/130B編碼 33
3.4.3 時脈架構與參考時鐘 34
3.4.4 通道初始化與LTSSM訓練序列 36
第四章 FPGA 系統設計 39
4.1 硬體平台 39
4.2 硬體系統整體架構 41
4.2.1 系統層級硬體架構 42
4.2.2 VC709內部功能方塊圖與時脈域 43
4.3 RIFFA 框架硬體實現深度解析 44
4.3.1 RIFFA內部結構介紹 44
4.3.2 RIFFA Gen3x8之核心設計 46
4.4 RIFFA與DMD系統橋接設計 50
4.4.1 VC709橋接邏輯與頻寬分析 51
4.4.2 Kintex-7 FPGA接收端介面設計 54
4.5 實驗結果與分析 55
4.5.1 實驗環境架設 55
4.5.2 RIFFA 鏈路驗證與吞吐量測試 57
4.5.3 系統功能驗證 58
4.5.4 Kintex-7 接收端吞吐量分析 59
4.5.5 效能比較 60
第五章 結論與未來展望 63
5.1 結論 63
5.2 未來展望 64
參考文獻 66
-
dc.language.isozh_TW-
dc.subject數位微鏡裝置-
dc.subjectFPGA-
dc.subjectPCIe-
dc.subjectRIFFA-
dc.subjectAurora-
dc.subjectDigital Micromirror Device (DMD)-
dc.subjectFPGA-
dc.subjectPCIe-
dc.subjectRIFFA-
dc.subjectAurora-
dc.title基於FPGA的PCIe低成本大量影像資料傳輸系統zh_TW
dc.titleA low-cost FPGA-based massive image data transmission system using PCIeen
dc.typeThesis-
dc.date.schoolyear114-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee陳彥廷;謝宏昀;彭盛裕zh_TW
dc.contributor.oralexamcommitteeYen-Ting Chen;Hung-Yun Hsieh;Sheng-Yu Pengen
dc.subject.keyword數位微鏡裝置,FPGAPCIeRIFFAAurorazh_TW
dc.subject.keywordDigital Micromirror Device (DMD),FPGAPCIeRIFFAAuroraen
dc.relation.page69-
dc.identifier.doi10.6342/NTU202600005-
dc.rights.note未授權-
dc.date.accepted2026-01-05-
dc.contributor.author-college工學院-
dc.contributor.author-dept工程科學及海洋工程學系-
dc.date.embargo-liftN/A-
顯示於系所單位:工程科學及海洋工程學系

文件中的檔案:
檔案 大小格式 
ntu-114-1.pdf
  未授權公開取用
4.43 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved