請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101359完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃育熙 | zh_TW |
| dc.contributor.advisor | Yu-Hsi Huang | en |
| dc.contributor.author | 閻建佑 | zh_TW |
| dc.contributor.author | Chien-Yu Yen | en |
| dc.date.accessioned | 2026-01-27T16:11:37Z | - |
| dc.date.available | 2026-01-28 | - |
| dc.date.copyright | 2026-01-27 | - |
| dc.date.issued | 2026 | - |
| dc.date.submitted | 2026-01-16 | - |
| dc.identifier.citation | [1] Shipway, N. J., Huthwaite, P., Lowe, M. J. S., & Barden, T. J. (2021). Using ResNets to perform automated defect detection for fluorescent penetrant inspection. NDT & E International, 119, 102400.
[2] Ou, Y., Xu, T., Fan, J., Xu, B., Cai, H., & Zhao, J. (2025). Vision‑based quality evaluation method towards automated penetrant testing. NDT & E International, 153, 103334. [3] Manikandan, K. R., Sivagurunathan, P. A., Ananthan, S. S., Moshi, A. A. M., & Bharathi, S. R. S. (2021). Study on the influence of temperature and vibration on indications of liquid penetrant testing of A516 low carbon steel. Materials Today: Proceedings, 39(Part 4), 1559–1564. [4] Wu, Q., Dong, K., Qin, X., Hu, Z., & Xiong, X. (2024). Magnetic particle inspection: Status, advances, and challenges — Demands for automatic non-destructive testing. NDT & E International, 143, 103030. [5] Chen, Y., Feng, B., Kang, Y., Cai, X., Wang, S., Li, Y., & Duan, Z. (2023). Automatic crack identification using a novel 3D profilometry-based magnetic particle testing method. Mechanical Systems and Signal Processing, 202, 110720. [6] Tatarinov, A., Rumjancevs, A., & Mironovs, V. (2019). Assessment of cracks in pre-stressed concrete railway sleepers by ultrasonic testing. Procedia Computer Science, 149, 324–330. [7] Camacho, J., Atehortua, D., Cruza, J. F., Brizuela, J., & Ealo, J. (2018). Ultrasonic crack evaluation by phase coherence processing and TFM and its application to online monitoring in fatigue tests. NDT & E International, 93, 164–174. [8] Müller, T., & Sander, M. (2013). On the use of ultrasonic fatigue testing technique – Variable amplitude loadings and crack growth monitoring. Ultrasonics, 53(8), 1417–1424. [9] Zhang, Q., Tian, K., Luo, L., Li, J., Yang, K., Luo, L., Gao, X., & Peng, J. (2025). DiffUT: Diffusion‑based augmentation for limited ultrasonic testing defects in high‑speed rail. NDT & E International, 154, 103388. [10] Lee, D., Yoon, S., Park, J., Eum, S., & Cho, H. (2022). Demonstration of model-assisted probability of detection framework for ultrasonic inspection of cracks in compressor blades. NDT & E International, 128, 102618. [11] Steen, C. V., Pahlavan, L., Wevers, M., & Verstrynge, E. (2019). Localisation and characterisation of corrosion damage in reinforced concrete by means of acoustic emission and X-ray computed tomography. Construction and Building Materials, 197, 21–29. [12] Shi, J., Ming, J., & Sun, W. (2018). Accelerated corrosion behavior of steel in concrete subjected to sustained flexural loading using electrochemical methods and X-ray computed tomography. Journal of Materials in Civil Engineering, 30(10), 04018131. [13] Ramos, H. G., Rocha, T. J., Pasadas, D. J., & Ribeiro, A. L. (2013). Velocity induced eddy currents technique to inspect cracks in moving conducting media. In 2013 IEEE International Instrumentation and Measurement Technology Conference (I2MTC) (pp. 931–934). IEEE. [14] Rocha, T. J., Ramos, H. G., Ribeiro, A. L., & Pasadas, D. J. (2015). Evaluation of subsurface defects using diffusion of motion-induced eddy currents. IEEE Transactions on Instrumentation and Measurement, 65(5), 1182–1187. [15] Johnson, P. (2012). Quality control and non-destructive testing of self-piercing riveted joints in aerospace and other applications. In M. C. Chaturvedi (Ed.), Welding and joining of aerospace materials (pp. 215–234). Woodhead Publishing. [16] Ehrhart, B., Valeske, B., & Bockenheimer, C. (2013). Non-destructive evaluation (NDE) of aerospace composites: Methods for testing adhesively bonded composites. In V. K. Varadan (Ed.), Non-destructive evaluation (NDE) of polymer matrix composites (pp. 220–237). Woodhead Publishing. [17] Kolkoori, S., Wrobel, N., Zscherpel, U., & Ewert, U. (2015). A new X-ray backscatter imaging technique for non-destructive testing of aerospace materials. NDT & E International, 70, 41–52. [18] Zboray, R., Roeoesli, C., Flisch, A., Plamondon, M., Kaufmann, R., von Deschwanden, C., Zweiacker, K., Lüthi, T., Bandi, T., Bourban, G., Gass, V., Amstutz, D., Dommann, A., & Neels, A. (2025). Multi-scale and multi-energy non-destructive X-ray analysis of the European Retrievable Carrier (EURECA). Acta Astronautica, 235, 90–100. [19] Sato, K., Tamai, A., Ohara, K., Kiuchi, H., & Matsubara, E. (2022). Non-destructive observation of plated lithium distribution in a large-scale automobile Li-ion battery using synchrotron X-ray diffraction. Journal of Power Sources, 535, 231399. [20] Kazys, R., Mazeika, L., Voleisis, A., Sliteris, R., Kundrotas, K., & Augutis, V. (1998). Ultrasonic non-destructive testing system of journal bearings. NDT.net, 3(5). [21] Malarvel, M., Sethumadhavan, G., Bhagi, P. C. R., Kar, S., Saravanan, T., & Krishnan, A. (2017). Anisotropic diffusion based denoising on X-radiography images to detect weld defects. Digital Signal Processing, 68, 112–126. [22] Adiban, S. V., & Ramu, M. (2018). Study on the effect of weld defects on fatigue life of structures. Materials Today: Proceedings, 5, 17114–17124. [23] Yu, J., Zhao, G., Zhao, X., Chen, L., & Chen, M. (2019). Microstructures of longitudinal/transverse welds and back-end defects and their influences on the corrosion resistance and mechanical properties of aluminum alloy extrusion profiles. Journal of Materials Processing Technology, 267, 1–16. [24] Pant, U., & Shrestha, J. K. (2024). Framework for assessing bridge quality index based on the correlation of non-destructive test results. Heliyon, 10(4), e26392. [25] Cafiso, S., Di Graziano, A., Goulias, D. G., & Pappalardo, G. (2022). Data fusion of non-destructive testing methods for bridge deck condition assessment. The Open Transportation Journal, 16, Article e187444782211140. [26] Bień, J., Kamiński, T., & Kużawa, M. (2019). Taxonomy of non-destructive field tests of bridge materials and structures. Archives of Civil and Mechanical Engineering, 19(4), 1353–1367. [27] Lee, S., Kalos, N., & Shin, D. H. (2014). Non-destructive testing methods in the U.S. for bridge inspection and maintenance. KSCE Journal of Civil Engineering, 18(5), 1322–1331. [28] Orbán, Z., & Gutermann, M. (2009). Assessment of masonry arch railway bridges using non-destructive in-situ testing methods. Engineering Structures, 31(10), 2287–2298. [29] Dang, D.-Z., Wang, Y.-W., & Ni, Y.-Q. (2024). Nonlinear autoregression-based non-destructive evaluation approach for railway tracks using an ultrasonic fiber Bragg grating array. Construction and Building Materials, 411, 134728. [30] du Plessis, A., le Roux, S. G., & Guelpa, A. (2016). Comparison of medical and industrial X-ray computed tomography for non-destructive testing. Case Studies in Nondestructive Testing and Evaluation, 6(Part A), 17–25. [31] Curie, J., & Curie, P. (1880a). Développement, par compression, de l’électricité polaire dans les cristaux hémièdres à faces inclinées. Bulletin de la Société minéralogique de France, 3, 90–93. [32] W. G. Cady, “Piezoelectricity,” McGraw-Hill Book Company, Inc., New York, 1946. [33] W. P. Mason, “Piezoelectric crystals and their applications to ultrasonics,” Van Nostrand, New York, 1950. [34] H. F. Tiersten, “Linear piezoelectric plate vibrations: Elements of the linear theory of piezoelectricity and the vibrations of piezoelectric plates,” Springer, 2013. [35] R. Mindlin, “High frequency vibrations of piezoelectric crystal plates,” International Journal of Solids and Structures, vol. 8(7), pp. 895–906, 1972. [36] IEEE Ultrasonics, Ferroelectrics, and Frequency Control Society, “IEEE standard on piezoelectricity,” ANSI/IEEE Std 176, 1987. [37] N. N. Rogacheva, “The theory of piezoelectric shells and plates,” CRC Press, USA, 1994 [38] Chang, S., Du, B., & Lin, J. (1999). Electro-elastic modeling of annular piezoceramic actuating disk transducers. Journal of Intelligent Material Systems and Structures, 10(5), 410–421. [39] 何祥瑋(2005)。《壓電圓盤與壓電圓環共振特性的理論分析與實驗量測》(碩士論文)。國立臺灣大學機械工程學研究所。 [40] Huang, C. H. (2005). Free vibration analysis of the piezoceramic bimorph with theoretical and experimental investigation. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 52(8), 1393–1403. [41] 黃育熙(2009)。《壓電陶瓷平板、薄殼與雙晶片三維耦合動態特性之實驗量測、數值計算與理論解析》(博士論文)。國立臺灣大學機械工程學研究所。 [42] 許松逸(2018)。《多層壓電圓盤及圓環複合等向性材料三維振動特性之理論解析、數值分析與實驗量測》(碩士論文)。國立臺灣科技大學機械工程學研究所。 [43] Leissa, A. W. (1978). Vibration of plates (NASA SP-160). NASA. Also in Sound and Vibration, 56, 313. [44] Gorman, D. J. (1978). Free vibration analysis of the completely free rectangular plate by the method of superposition. Journal of Sound and Vibration, 57(3), 437–447. [45] Kim, C. S., Young, P. G., & Dickinson, S. M. (1990). On the flexural vibration of rectangular plates approached by using simple polynomials in the Rayleigh-Ritz method. Journal of Sound and Vibration, 143(3), 379–394. [46] 吳亦莊(2009)。《理論解析與實驗量測壓電平板的面外振動及特性探討》(碩士論文)。國立臺灣大學機械工程學研究所。 [47] Huang, Y. H., & Ma, C. C. (2012). Experimental measurements and finite element analysis of the coupled vibrational characteristics of piezoelectric shells. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 59(4), 785–798. [48] Wu, Y. C., Huang, Y. H., & Ma, C. C. (2017). Theoretical analysis and experimental measurement of flexural vibration and dynamic characteristics for piezoelectric rectangular plate. Sensors and Actuators A: Physical, 264, 308–332. [49] Wykes, C. (1982). Use of electronic speckle pattern interferometry (ESPI) in the measurement of static and dynamic surface displacements. Optical Engineering, 21(3), 213400. [50] Sharp, B. (1989). Electronic speckle pattern interferometry (ESPI). Optics and Lasers in Engineering, 11(4), 241–255. [51] Takatsuji, T., Oreb, B. F., Farrant, D. I., & Tyrer, J. R. (1997). Simultaneous measurement of three orthogonal components of displacement by electronic speckle-pattern interferometry and the Fourier transform method. Applied Optics, 36(7), 1438–1445. [52] Flynn, E. B., Bassman, L. C., Smith, T. P., Lalji, Z., Fullerton, L. H., Leung, T. C., Greenfield, S. R., & Koskelo, A. C. (2006). Three-wavelength electronic speckle pattern interferometry with the Fourier-transform method for simultaneous measurement of microstructure-scale deformations in three dimensions. Applied Optics, 45(14), 3218–3225. [53] Sun, L., Yu, Y., & Zhou, W. (2015). 3D deformation measurement based on colorful electronic speckle pattern interferometry. Optik, 126(23), 3998–4003. [54] Yang, L. X., Steinchen, W., Schuth, M., & Kupfer, G. (1995). Precision measurement and nondestructive testing by means of digital phase shifting speckle pattern and speckle pattern shearing interferometry. Measurement, 16(3), 149–160. [55] Baik, S.-H., Park, S.-K., Kim, C.-J., & Kim, S.-Y. (2001). Two-channel spatial phase shifting electronic speckle pattern interferometer. Optics Communications, 192(3–6), 205–211. [56] Richoz, G. L., & Schajer, G. S. (2016). Simultaneous two-axis shearographic interferometer using multiple wavelengths and a color camera. Optics and Lasers in Engineering, 77, 143–153. [57] Leendertz, J. A. (1970). Interferometric displacement measurement on scattering surfaces utilizing speckle effect. Journal of Physics E: Scientific Instruments, 3(3), 214–218. [58] Wong, W. O., Chan, K. T., & Leung, T. P. (1997). Identification of antinodes and zero-surface-strain contours of flexural vibration with time-averaged speckle pattern shearing interferometry. Applied Optics, 36(16), 3637–3642. [59] Kirkove, M., Guérit, S., Jacques, L., Loffet, C., Languy, F., Vandenrijt, J.-F., & Georges, M. (2018). Determination of vibration amplitudes from binary phase patterns obtained by phase-shifting time-averaged speckle shearing interferometry. Applied Optics, 57(27), 8065–8077. [60] Casillas, F. J., Davila-Alvarez, A., Rothberg, S. J., & Garnica, G. (2004). Small amplitude estimation of mechanical vibrations using electronic speckle shearing pattern interferometry. Optical Engineering, 43(4), 792–799. [61] Sirohi, R. S., Burke, J., Helmers, H., & Hinsch, K. D. (1997). Spatial phase shifting for pure in-plane displacement and displacement-derivative measurements in electronic speckle pattern interferometry (ESPI). Applied Optics, 36(23), 5787–5791. [62] Hiwarkar, V. R., Babitsky, V. I., & Silberschmidt, V. V. (2012). Crack as modulator, detector and amplifier in structural health monitoring. Journal of Sound and Vibration, 331(15), 3587–3598 [63] Nguyen, K. V. (2013). Comparison studies of open and breathing crack detections of a beam-like bridge subjected to a moving vehicle. Engineering Structures, 51, 306–314. [64] Dimarogonas, A. D. (1996). Vibration of cracked structures: A state of the art review. Engineering Fracture Mechanics, 55(5), 831–857 [65] Semperlotti, F., Wang, K. W., & Smith, E. C. (2009). Localization of a breathing crack using super-harmonic signals due to system nonlinearity. AIAA Journal, 47(9), 2076–2086. [66] Shen, M.-H. H., & Chu, Y. C. (1992). Vibrations of beams with a fatigue crack. Computers & Structures, 45(1), 79–93. [67] Qian, G.-L., Gu, S.-N., & Jiang, J.-S. (1990). The dynamic behaviour and crack detection of a beam with a crack. Journal of Sound and Vibration, 138(2), 233–243. [68] Douka, E., & Hadjileontiadis, L. J. (2005). Time–frequency analysis of the free vibration response of a beam with a breathing crack. NDT & E International, 38(1), 3–10. [69] Ganguly, S. (2023). Methodologies for modeling and identification of breathing crack: A review. MethodsX, 11, 102420. [70] Ramesh, K., & Sasikumar, S. (2020). Digital photoelasticity: Recent developments and diverse applications. Optics and Lasers in Engineering, 135, 106186. [71] Scafidi, M., Pitarresi, G., Toscano, A., Petrucci, G., Alessi, S., & Ajovalasit, A. (2015). Review of photoelastic image analysis applied to structural birefringent materials: Glass and polymers. Optical Engineering, 54(8), 081206. [72] Briñez, J. C., Martínez, A. R., & Branch, J. W. (2018). Computational hybrid phase shifting technique applied to digital photoelasticity. Optik, 157, 287–297. [73] Vivekanandan, A., & Ramesh, K. (2020). Study of crack interaction effects under thermal loading by digital photoelasticity and finite elements. Experimental Mechanics, 60, 295–316. [74] Hernandez, J. C. Sr, de León, J. C. B. Sr, & Restrepo, A. (2021). Digital photoelasticity studies for analyzing fractal stress concentrators into birefringent bodies. In Optics and Photonics for Information Processing XV (Vol. 11841, pp. 112–118). SPIE. [75] Vergara-Puello, R., Fandiño-Toro, H. A., & Restrepo-Martínez, A. (2020). Stresses analysis through digital photoelasticity and infrared thermography in an epoxy sample affected by cyclic loads: A cost-effective proposal. In Optics and Photonics for Information Processing XIV (Vol. 11509, pp. 82–91). SPIE. [76] Ju, Y., Wan, C., Dong, S., Mao, L., Wang, K., & Chiang, F.-P. (2023). Method to quantify the dynamic near-fault full-field stress evolution associated with rough fault shear deformation based on 3D printed models and photoelastic measurements. Measurement, 207, 112395 [77] Y. Ju, Z. Ren, X. Li, Y. Wang, L. Mao, F.-P. Chiang. Quantification of hidden whole-field stress inside porous geomaterials via three-dimensional printing and photoelastic testing methods, J Geophys Res, Solid Earth, 124 (6) (2019), pp. 5408-5426 [78] Ren, Z., Xie, H., & Ju, Y. (2021). Determination of the stress and strain fields in porous structures by photoelasticity and digital image correlation techniques. Polymer Testing, 102, 107315. [79] Kim, S., Nam, B.-H., & Jung, Y.-H. (2023). Evaluating variability in reflective photoelasticity: Focus on adhesives, light sources, and camera setup. Applied Sciences, 13(19), 10628. [80] Gómez, J. C. H., Briñez-de León, J. C., Perez-Atencia, S., & Restrepo-Martínez, A. (2020). Digital photoelasticity and DIC applied to stress and strain hybrid evaluation of bioinspired structures from rice root cross-section. In Applications of Digital Image Processing XLIII (Vol. 11510, pp. 429–440). SPIE. [81] Amini, N., Tuohey, J., Long, J. M., Zhang, J., Morton, D. A., Daniels, K. E., et al. (2022). Photoelastic stress response of complex 3D-printed particle shapes. Powder Technology, 409, 117852. [82] Patterson, E. A. (2002). Digital photoelasticity: Principles, practice and potential: Measurements lecture. Strain, 38(1), 27–39. [83] Wang, J., & Tao, J. (2022). Determination of tensile strength at crack initiation in dynamic Brazilian disc test for concrete-like materials. Buildings, 12(6), 797. [84] Honlet, M., Lesniak, J., Boyce, B., & Calvert, G. (2004). Real-time photoelastic stress analysis – a new dynamic photoelastic method for non-destructive testing. Insight, 46(4), 193–195. [85] Idichandy, V., & Rao, G. V. (1983). A simple technique to count the fringes in a dynamic-photoelastic oscillogram. Experimental Techniques, 7(5), 26–28. [86] Ekman, M., & Nurse, A. (1998). Absolute determination of the isochromatic parameter by load-stepping photoelasticity. Experimental Mechanics, 38, 189–195. [87] Briñez-de León, J. C., Rico-García, M., & Restrepo-Martínez, A. (2022). Photoelastnet: A deep convolutional neural network for evaluating the stress field by using a single color photoelasticity image. Applied Optics, 61(7), D50–D62. [88] Chen, C., Ding, C., Zhang, Z., Zhai, B., Song, G., & Xu, P. (2022). Study of the interaction mechanism of oppositely propagating cracks by dynamic photoelasticity and numerical simulation. Mechanics of Advanced Materials and Structures. Advance online publication, 1–14. [89] Chiu, Y.-C., Lin, C.-Y., Yen, C.-Y., & Huang, Y.-H. (2021). Development of a new piezoelectric galvanometer scanner: Fabrication, operation, and measurements. Smart Materials and Structures, 30(7), 075014. [90] 黃御宸(2022)。《壓電薄板複合薄膜聲振研究之最佳化設計》(碩士論文)。國立臺灣大學機械工程研究所。 [91] Aftab, H., Baneen, U., & Israr, A. (2021). Identification and severity estimation of a breathing crack in a plate via nonlinear dynamics. Nonlinear Dynamics, 104, 1973–1989. [92] Theocaris, P. S., & Gdoutos, E. E. (1979). Matrix theory of photoelasticity. Springer-Verlag. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101359 | - |
| dc.description.abstract | 本論文之研究內容主要聚焦於全域光學非破壞檢測在應力與缺陷量測上的應用。第一部分探討光學干涉技術於結構振動特性量測之方法與創新,採用剪切干涉術以全域虛像疊合的方式,結合均時法與影像相減法,量測結構面外振動之平面微分剪切分量,並與電子斑點干涉術進行比較。研究結果顯示,兩者皆可進行全場量測,而全域式剪切干涉術具備可調式高靈敏度與高解析度之優勢,得以深入分析薄板與厚板結構之三維板殼振動分量,並評估其於裂紋缺陷檢測上的應用成效。第二部分則利用光彈應力量測技術,針對圓盤與圓環結構於三點徑向施力於多角度的負載下,探討應力分布特性並比較理論解析與有限元素數值計算的結果。
本研究基於薄板理論平面應力位移解析的假設,比較高階中厚板面內位移高階項,透過兩種全像干涉實驗量測欲驗證理論解析的振動位移特性,同時採用有限元素法進行數值計算,經由理論解析、數值模擬與實驗量測於三維振動的振形分布結果,驗證不同板殼振動的位移特性。為了釐清剪切干涉量測技術在位移定量過程中的精確度與可靠性,提出量測精度的定義方法並建立獲取解析度的流程,研究中利用雷射都卜勒振動儀擷取試片表面逐點之面外振動位移,計算面外振動於空間分布下於面內剪切方向的分量,並計算分析精度與探討量測誤差。本研究整體在全域式的剪接干涉量測技術利用振動特性進行量測,具備高解析與高準確度特性之外,在裂紋與缺陷的檢測上,也因裂紋斷差易使面外位移在試片平面空間分布之剪切位移不連續性容易顯現,故也可應用於非破壞檢測中,本研究驗證其缺陷檢測特性,選用壓電材料與鋁板並於表面加工不同的缺陷與裂紋,透過本技術以振動模態進行量測藉以進行缺陷裂紋檢測的可行性。 第二部分利用光彈應力研究量測圓盤與圓環結構於徑向載荷作用下之應力分布,除一般進行雙點對稱載荷探討之外,本研究也針對非對稱的三點施力進行不同載荷角度的研究,透過圓偏振光系統所獲得之等差干涉圖樣,可定性與定量分析內部應力場,實驗結果與理論解析及有限元素法所得到的結果進行比較與驗證。實驗結果顯示載荷處的剪切應力的控制效果,方能與理論解析與有限元素分析於正向力的加載具有良好的對應結果。 隨著科技快速發展,人工智慧已成為多數產業的核心趨勢,並推動半導體與精密製造技術朝向高密度與微小化發展。製程尺度的微縮使微缺陷、結構振動與應力集中等問題日益顯著,對元件可靠度與製程良率造成關鍵影響。因此,具備高靈敏度與高解析度之全場非破壞檢測技術已成為先進製造中不可或缺的關鍵工具。本論文所提出之全域光學干涉與光彈性量測方法,可有效量測結構振動、應力分布與缺陷特徵,展現其於高階製程監控與微尺度缺陷檢測上的應用潛力。 | zh_TW |
| dc.description.abstract | This dissertation primarily focuses on the application of full-field optical nondestructive testing techniques for stress and defect measurements. The first part investigates the methodologies and innovations of optical interferometric techniques for structural vibration characterization. A shearography approach with full-field virtual image superposition is employed, in conjunction with the time-averaging method and image subtraction technique, to measure the planar differential shear components of out-of-plane structural vibrations. The proposed method is compared with electronic speckle pattern interferometry (ESPI), which is commonly used for three-dimensional vibration measurements. While both techniques enable full-field measurements, full-field shearography offers adjustable high sensitivity and high spatial resolution, allowing for detailed analysis of three-dimensional plate and shell vibration components in both thin and thick structures. Furthermore, its effectiveness in crack defect detection is evaluated in this study.
This research is based on the assumptions of plane stress and displacement analysis derived from thin plate theory, while higher-order in-plane displacement terms for moderately thick plates are also considered for comparison. Two holographic interferometric experimental configurations are employed to validate the theoretically derived vibration displacement characteristics, and finite element analysis is simultaneously conducted for numerical simulation. By correlating theoretical predictions, numerical simulations, and experimental measurements of three-dimensional vibration mode shapes, the displacement characteristics of various plate and shell vibration behaviors are verified. To clarify the accuracy and reliability of shearography-based displacement quantification, a definition of measurement accuracy and a procedure for determining spatial resolution are proposed. A laser Doppler vibrometer is utilized to acquire pointwise out-of-plane vibration displacement on the specimen surface, from which the in-plane shear components under spatially distributed out-of-plane vibrations are calculated, enabling quantitative accuracy evaluation and error analysis. Overall, the proposed full-field shearography-based vibration measurement technique demonstrates high spatial resolution and high accuracy. In addition, due to the discontinuity in shear displacement induced by cracks, which is readily manifested in the spatial distribution of out-of-plane vibration displacement, the method is well suited for nondestructive crack and defect detection. The feasibility of this approach is experimentally verified using piezoelectric materials and aluminum plates with artificially introduced defects and cracks, where vibration mode measurements are employed to detect and characterize structural damage. The second part of this dissertation applies photoelastic stress analysis to investigate the stress distribution in circular disk and ring structures subjected to radial loading. In addition to conventional symmetric two-point loading conditions, this study also examines asymmetric three-point loading configurations with varying load angles. Isochromatic fringe patterns obtained using a circularly polarized light system enable both qualitative and quantitative analyses of internal stress fields. The experimental results are compared and validated against theoretical solutions and finite element analyses. The results demonstrate that effective control of shear stress at the loading locations is essential to achieve good agreement between experimental observations, theoretical predictions, and finite element results under normal force loading conditions. With the rapid advancement of technology, artificial intelligence has become a core trend across many industries, driving semiconductor and precision manufacturing toward higher density and miniaturization. As fabrication scales shrink, micro-defects, structural vibrations, and stress concentrations increasingly affect device reliability and manufacturing yield. Therefore, high-sensitivity, high-resolution full-field nondestructive testing techniques have become essential in advanced manufacturing. The global optical interferometry and photoelastic methods proposed in this study enable effective measurement of structural vibrations, stress distributions, and defects, demonstrating strong potential for advanced process monitoring and microscale defect detection. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2026-01-27T16:11:37Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2026-01-27T16:11:37Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 I
中文摘要 II Abstract IV 目次 VII 圖次 IX 表次 XIV 第壹章 緒論 1 1.1 研究動機及背景 1 1.2 研究方向規劃 2 1.3 文獻回顧 3 1.4 論文章節說明 11 第貳章 儀器與實驗架設介紹 15 2.1 雷射都卜勒量測儀 16 2.2 電子斑點干涉術-面外方向 19 2.3 電子斑點干涉術-面內方向 24 2.4 電子斑點干涉術-剪切方向 27 第參章 薄板振動理論 42 3.1 柯西荷夫薄板理論(Kirchhoff plate theory) 42 3.2 壓電陶瓷薄板基本理論 43 3.3 矩形薄板振動理論 46 3.4 圓盤振動理論 55 第肆章 全域式干涉法於結構三維振動之探討 62 4.1 壓電材料於不同結構與邊界條件下之實驗設計概述 62 4.2 矩形壓電材料在不同邊界條件下之振動行為探討 65 4.3 多層結構對三維振動響應與剪切干涉之影響 75 4.4 圓盤型壓電材料於不同層數結構下之振動表現 80 4.5 特殊幾何結構對振動模態與剪切干涉觀測之影響 88 4.6 討論與小結 91 第伍章 剪切干涉術之定量研究分析 92 5.1 電子斑點干涉術-面外方向干涉條紋解析度定義 93 5.2 電子斑點干涉術-面內方向干涉條紋解析度定義 97 5.3 電子斑點干涉術-剪切方向干涉條紋解析度定義 99 第陸章 利用剪切干涉術與模態振形進行缺陷檢測 110 6.1 實驗介紹 111 6.2 表面局部未貫穿損傷型缺陷 112 6.3 貫穿破壞型缺陷 132 6.4 討論與小結 151 第柒章 光彈應力分析 156 7.1 光彈理論及實驗介紹 157 7.2 實驗量測結果 165 7.3 討論與小結 174 第捌章 結論與未來展望 175 8.1 結論 175 8.2 未來展望 177 參考文獻 179 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 非破壞檢測 | - |
| dc.subject | 剪切干涉術 | - |
| dc.subject | 三維振動 | - |
| dc.subject | 裂紋缺陷檢測 | - |
| dc.subject | 薄板理論 | - |
| dc.subject | 光彈應力 | - |
| dc.subject | Non-Destructive Testing | - |
| dc.subject | Shearography | - |
| dc.subject | Three-Dimensional Vibration | - |
| dc.subject | Crack Defect Detection | - |
| dc.subject | Thin Plate Theory | - |
| dc.subject | Photoelastic Stress | - |
| dc.title | 全域式光學非破壞檢測技術應用於應力及缺陷檢測 | zh_TW |
| dc.title | Full-field optical non-destructive testing technology for stress and defect detection | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 114-1 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.oralexamcommittee | 陳永裕;尹慶中;楊哲化;林派臣;趙振綱;任貽明 | zh_TW |
| dc.contributor.oralexamcommittee | Yung-Yu Chen;Ching-Chung Yin;Che-Hua Yang;Pai-Chen Lin;Ching-Kong Chao;Yi-Ming Jen | en |
| dc.subject.keyword | 非破壞檢測,剪切干涉術三維振動裂紋缺陷檢測薄板理論光彈應力 | zh_TW |
| dc.subject.keyword | Non-Destructive Testing,ShearographyThree-Dimensional VibrationCrack Defect DetectionThin Plate TheoryPhotoelastic Stress | en |
| dc.relation.page | 189 | - |
| dc.identifier.doi | 10.6342/NTU202600128 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2026-01-19 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 機械工程學系 | - |
| dc.date.embargo-lift | 2031-01-15 | - |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-114-1.pdf 未授權公開取用 | 22.94 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
