Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物科技研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101313
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉嚞睿zh_TW
dc.contributor.advisorJe-Ruei Liuen
dc.contributor.author林亞理zh_TW
dc.contributor.authorAniket Limayeen
dc.date.accessioned2026-01-14T16:11:24Z-
dc.date.available2026-01-15-
dc.date.copyright2026-01-14-
dc.date.issued2026-
dc.date.submitted2026-01-13-
dc.identifier.citationReferences
Abou Abdallah R, Cimmino T, Baron S, Cadoret F, Michelle C, Raoult D, et al. Description of Chryseobacterium timonianum sp. nov., isolated from a patient with pneumonia. Antonie Van Leeuwenhoek. 2017;110(9):1121-32. doi:10.1007/s10482-017-0885-8.
Abraham N, Schroeter KL, Zhu Y, Chan J, Evans N, Kimber MS, Carere J, Zhou T, Seah SY. Structure–function characterization of an aldo–keto reductase involved in detoxification of the mycotoxin, deoxynivalenol. Sci Rep. 2022;12(1):14737. doi:10.1038/s41598-022-19040-8.
Abrar M, Anjum FM, Butt MS, Pasha I, Randhawa MA, Saeed F, et al. Aflatoxins: biosynthesis, occurrence, toxicity, and remedies. Crit Rev Food Sci Nutr. 2013;53(8):862-74. doi:10.1080/10408398.2011.563154.
Adegoke GO, Babalola AK, Akanni AO. Effects of sodium metabisulphite, hydrogen peroxide and heat on aflatoxin B1 in lafun and gari: two cassava products. Nahrung. 1991;35(10):1041-5. doi:10.1002/food.19910351009.
Alassane-Kpembi I, Schatzmayr G, Taranu I, Marin D, Puel O, Oswald IP. Mycotoxins co-contamination: methodological aspects and biological relevance of combined toxicity studies. Crit Rev Food Sci Nutr. 2017;57(16):3489-3507. doi:10.1080/1040841X.2016.1197539.
Alberts JF, Engelbrecht Y, Steyn PS, Holzapfel WH, van Zyl WH. Biological degradation of aflatoxin B1 by Rhodococcus erythropolis cultures. Int J Food Microbiol. 2006;109(1–2):121–126. doi:10.1016/j.ijfoodmicro.2006.01.019.
Alberts JF, Gelderblom WCA, Botha A, van Zyl WH. Degradation of aflatoxin B1 by fungal laccase enzymes. Int J Food Microbiol. 2009;135(1):47–52. doi:10.1016/j.ijfoodmicro.2009.07.022.
Alshannaq A, Yu JH. Occurrence, toxicity, and analysis of major mycotoxins in food. Int J Environ Res Public Health. 2017;14(6):632. doi:10.3390/ijerph14060632.
An X, Yi C, Ningjian L, Shulin Z, Liuwei W, Qinghua Z. Green and sustainable approach for decoloration and detoxification of azo dye by bacterial-mediated thermo-halotolerant dye-decolorizing peroxidase (DyP). Process Biochem. 2023;130:334-46. doi:10.1016/j.procbio.2023.04.025.
Andrade PD, Caldas ED. Aflatoxins in cereals: worldwide occurrence and dietary risk assessment. World Mycotoxin J. 2015;8(4):415-431. doi:10.3920/WMJ2014.1847
Atehnkeng J, Ojiambo PS, Ikotun T, Sikora RA, Cotty PJ, Bandyopadhyay R. Evaluation of atoxigenic isolates of Aspergillus flavus as potential biocontrol agents for aflatoxin in maize. Food Addit Contam Part A. 2008;25(10):1264–1271. doi:10.1080/02652030802112635.
Battilani P, Toscano P, Van der Fels-Klerx HJ, et al. Aflatoxin B1 contamination in maize in Europe increases due to climate change. Sci Rep. 2016;6:24328. doi:10.1038/srep24328.
Bennett JW, Klich M. Mycotoxins. Clin Microbiol Rev. 2003;16(3):497-516. doi:10.1128/CMR.16.3.497-516.2003.
Berthiller F, Crews C, Dall'Asta C, et al. Masked mycotoxins: a review. Mol Nutr Food Res. 2013;57(1):165-86. doi:10.1002/mnfr.201200764.
Bhatnagar D, Ehrlich KC, Cleveland TE. Molecular genetic analysis and regulation of aflatoxin biosynthesis. Appl Microbiol Biotechnol. 2003;61(2):83-93. doi:10.1007/s00253-002-1199-x.
Branà MT, Sergio L, Haidukowski M, Logrieco AF, Altomare C. Degradation of aflatoxin B1 by an enzymatic extract from spent mushroom substrate of Pleurotus eryngii. Toxins (Basel). 2020;12(1):49. doi:10.3390/toxins12010049.
Cai M, Qian Y, Chen N, Ling T, Wang J, Jiang H, et al. Detoxification of aflatoxin B1 by Stenotrophomonas sp. CW117 and characterization of the thermophilic degradation process. Environ Pollut. 2020;261:114178. doi:10.1016/j.envpol.2020.114178.
Chang PK. Creating large chromosomal segment deletions in Aspergillus flavus by a dual CRISPR/Cas9 system: deletion of gene clusters for production of aflatoxin, cyclopiazonic acid, and ustiloxin B. Microbiol Spectr. 2024;12(1):e0332723. doi:10.1128/spectrum.03327-23.
Chen R, Ma F, Li PW, Zhang W, Ding XX, Zhang Q, et al. Effect of ozone on aflatoxins detoxification and nutritional quality of peanuts. Food Chem. 2014;146:284–288. doi:10.1016/j.foodchem.2013.09.059.
Choi H, Lee SA, Kim JH. Aflatoxin B1: Challenges and strategies for the intestinal microbiota and intestinal health of monogastric animals. Toxins (Basel). 2025;17(1):43. doi:10.3390/toxins17010043.
Codex Alimentarius Commission. Code of practice for the reduction of aflatoxin B1 in raw materials and supplementary feeding stuffs for milk-producing animals (CXC 45-1997). Rome: FAO/WHO; 1997.
Coil D, Jospin G, Darling AE. A5-miseq: an updated pipeline to assemble microbial genomes from Illumina MiSeq data. Bioinformatics. 2015;31(4):587-9. doi:10.1093/bioinformatics/btu661
Cotty PJ. Influence of field application of an atoxigenic strain of Aspergillus flavus on the populations of A. flavus infecting cotton bolls and on the aflatoxin content of cottonseed. Phytopathology. 1994;84:1270-7.
Diao E, Li X, Zhang Z, Ma W, Ji N, Dong H. Ultraviolet irradiation detoxification of aflatoxins. Trends Food Sci Technol. 2015;42(1):64-9. doi:10.1016/j.tifs.2014.12.001.
Eaton DL, Gallagher EP. Mechanisms of aflatoxin carcinogenesis. Annu Rev Pharmacol Toxicol. 1994;34:135-72. doi:10.1146/annurev.pa.34.040194.001031.
Eskola M, Kos G, Elliott CT, Hajšlová J, Mayar S, Krska R. Worldwide contamination of food-crops with mycotoxins: validity of the widely cited 'FAO estimate' of 25%. Crit Rev Food Sci Nutr. 2020;60(16):2773-2789. doi:10.1080/10408398.2019.1658570.
European Commission. Directive 2002/32/EC of the European parliament and of the council of 7 May 2002 on undesirable substances in animal feed. Off J Eur Communities. 2002;L140:10-21.
European Commission. Directive 2003/100/EC of 31 October 2003 amending Annex I to directive 2002/32/EC of the European parliament and of the council on undesirable substances in animal feed. Off J Eur Union. 2003;L285:33-37.
Fountain JC, Scully BT, Ni X, Kemerait RC, Lee RD, Chen ZY, Guo B. Environmental influences on maize-Aspergillus flavus interactions and aflatoxin production. Front Microbiol. 2014;5:40. doi:10.3389/fmicb.2014.00040.
Frisvad JC, Skouboe P, Samson RA. Taxonomic comparison of three different groups of aflatoxin producers and a new efficient producer of aflatoxin B1, sterigmatocystin and 3-O-methylsterigmatocystin, Aspergillus rambellii sp. nov. Syst Appl Microbiol. 2005;28(5):442-53. doi:10.1016/j.syapm.2005.02.009.
Gao B, An W, Wu J, Wang X, Han B, Tao H, Liu J, Wang Z, Wang J. Simultaneous degradation of AFB1 and ZEN by CotA laccase from Bacillus subtilis ZJ-2019-1 in the mediator-assisted or immobilization system. Toxins (Basel). 2024;16(10):445. doi:10.3390/toxins16100445.
Gelaye Y, Luo H. Green-synthesized nanomaterials for aflatoxin mitigation: a review. Nanotechnol Sci Appl. 2025;18:211-223. doi:10.2147/NSA.S520121.
Gratz S, Wu QK, El-Nezami H, Juvonen RO, Mykkänen H, Turner PC. Lactobacillus rhamnosus GG reduces aflatoxin B1 transport, metabolism, and toxicity in Caco-2 cells. Appl Environ Microbiol. 2007;73(12):3958–3964. doi:10.1128/AEM.02945-06.
Groopman JD, Kensler TW, Wild CP. Protective interventions to prevent aflatoxin-induced carcinogenesis in developing countries. Annu Rev Public Health. 2008;29:187-203. doi:10.1146/annurev.publhealth.29.020907.090859.
Guan S, Ji C, Zhou T, Li J, Ma Q, Niu T. Aflatoxin B(1) degradation by Stenotrophomonas maltophilia and other microbes selected using coumarin medium. Int J Mol Sci. 2008;9(8):1489-503. doi:10.3390/ijms9081489.
Haque MA, Wang Y, Shen Z, et al. Mycotoxin contamination and control strategy in human, domestic animal and poultry: a review. Microb Pathog. 2020;142:104095. doi:10.1016/j.micpath.2020.104095.
Haskard CA, El-Nezami HS, Kankaanpää PE, Salminen S, Ahokas JT. Surface binding of aflatoxin B1 by lactic acid bacteria. Appl Environ Microbiol. 2001;67(7):3086–3091. doi:10.1128/AEM.67.7.3086-3091.2001.
Hawkins LK, Mylroie JE, Oliveira DA, Smith JS, Ozkan S, Windham GL, Williams WP, Warburton ML. Characterization of the maize chitinase genes and their effect on Aspergillus flavus and aflatoxin accumulation resistance. PLoS One. 2015;10(6):e0126185. doi:10.1371/journal.pone.0126185.
Hugo C, Bernardet J-F, Nicholson A, Kämpfer P. Chryseobacterium in: Bergey's manual of systematics of archaea and bacteria. John Wiley & Sons; 2015. p. 1-107. doi:10.1002/9781118960608.gbm01170.
Hussain I, Anwar J. A study on contamination of aflatoxin M1 in raw milk in the Punjab province of Pakistan. Food Control. 2008;19(4):393-395. doi:10.1016/j.foodcont.2007.04.019.
Hussein HS, Brasel JM. Toxicity, metabolism, and impact of mycotoxins on humans and animals. Toxicology. 2001;167(2):101-134. doi:10.1016/s0300-483x(01)00471-1.
Iqbal SZ, Jinap S, Pirouz AA, Faizal ARA. Aflatoxin M1 in milk and dairy products, occurrence and recent challenges: a review. Trends Food Sci Technol. 2015;46(1):110-119. doi:10.1016/j.tifs.2015.08.005.
Iram W, Anjum T, Iqbal M, Ghaffar A, Abbas M. Structural elucidation and toxicity assessment of degraded products of aflatoxin B1 and B2 by aqueous extracts of Trachyspermum ammi. Front Microbiol. 2016;7:346. doi:10.3389/fmicb.2016.00346.
Jiang T, Li F, Li F, Xie C, Liu D, Yao D. Degradation of aflatoxin B1 by the Armillariella tabescens-derived aldo-keto reductase AtAKR. Food Biosci. 2024;58:103768. doi:10.1016/j.fbio.2024.103768.
Jowsey IR, Jiang Q, Itoh K, Yamamoto M, Hayes JD. Expression of the aflatoxin B1-8,9-epoxide-metabolizing murine glutathione S-transferase A3 subunit is regulated by the Nrf2 transcription factor through an antioxidant response element. Mol Pharmacol. 2003;64(5):1018-28. doi.org/10.1124/mol.64.5.1018.
Kavitha P, Mounika N, Ramana JV, Sreedevi B. Aflatoxicosis in livestock and poultry. J Anim Feed Sci Technol. 2015;3:21-26.
Khan R. Mycotoxins in food: Occurrence, health implications, and control strategies-a comprehensive review. Toxicon. 2024;248:108038. doi:10.1016/j.toxicon.2024.108038.
Klich MA. Aspergillus flavus: the major producer of aflatoxin. Mol Plant Pathol. 2007;8(6):713-22. doi:10.1111/j.1364-3703.2007.00436.x.
Köppen R, Koch M, Siegel D, Merkel S, Maul R, Nehls I. Determination of mycotoxins in foods: current state of analytical methods and limitations. Appl Microbiol Biotechnol. 2010;86(6):1595-612. doi:10.1007/s00253-010-2535-1.
Kumar P, Mahato DK, Kamle M, Mohanta TK, Kang SG. Aflatoxins: a global concern for food safety, human health and their management. Front Microbiol. 2017;7:2170. doi:10.3389/fmicb.2016.02170.
Kutasi K, Recek N, Zaplotnik R, Mozetič M, Krajnc M, Gselman P, Primc G. Approaches to inactivating aflatoxins - a review and challenges. Int J Mol Sci. 2021;22(24):13322. doi:10.3390/ijms222413322.
Kutsuna R, Mashima I, Miyoshi-Akiyama T, Muramatsu Y, Tomida J, Kawamura Y. Chryseobacterium lecithinasegens sp. nov., a siderophore-producing bacterium isolated from soil at the bottom of a pond. Int J Syst Evol Microbiol. 2021;71(12). doi:10.1099/ijsem.0.005135.
Lahtinen SJ, Haskard CA, Ouwehand AC, Salminen SJ, Ahokas JT. Binding of aflatoxin B1 to cell wall components of Lactobacillus rhamnosus strain GG. Food Addit Contam. 2004;21(2):158–164. doi:10.1080/02652030310001639551.
Latham RL, Boyle JT, Barbano A, Loveman WG, Brown NA. Diverse mycotoxin threats to safe food and feed cereals. Essays Biochem. 2023;67(5):797-809. doi:10.1042/EBC20220221.
Leggieri MC, Battilani P, Pietri A, Toscano P. Modelling aflatoxin risk in maize under climate change scenarios in Europe. World Mycotoxin J. 2021;14(2):139-150. doi:10.3920/WMJ2020.2639.
Liang C, Nie Y, Mu X, Xu Y. Gene mining-based identification of aldo–keto reductases for highly stereoselective reduction of bulky ketones. Bioresour Bioprocess. 2018;5(1):33. doi:10.1186/s40643-018-0219-4.
Liew WP, Mohd-Redzwan S. Mycotoxin: its impact on gut health and microbiota. Front Cell Infect Microbiol. 2018;8:60. doi:10.3389/fcimb.2018.00060.
Mangini V, Rosini E, Caliandro R, Mangiatordi GF, Delre P, Sciancalepore AG, Pollegioni L, Haidukowski M, Mazzorana M, Sumarah MW, Renaud JB. DypB peroxidase for aflatoxin removal: new insights into the toxin degradation process. Chemosphere. 2024;349:140826. doi:10.1016/j.chemosphere.2023.140826.
McKenzie KS, Kubena LF, Denvir AJ, Rogers TD, Hitchens GD, Bailey RH, et al. Aflatoxicosis in Turkey poults is prevented by treatment of naturally contaminated corn with ozone generated by electrolysis. Poult Sci. 1998;77(8):1094-102. doi:10.1093/ps/77.8.1094.
Medina A, Akbar A, Baazeem A, Rodriguez A, Magan N. Climate change, food security and mycotoxins: challenges and opportunities. Curr Opin Food Sci. 2017;17:120-125. doi:10.1016/j.cofs.2017.10.008.
Meissonnier GM, Pinton P, Laffitte J, et al. Immunotoxicity of aflatoxin B1: impairment of the cell-mediated response to vaccine antigen and modulation of cytokine expression. Toxicol Appl Pharmacol. 2008;231(2):142-9. doi:10.1016/j.taap.2008.04.004.
Mitchell NJ, Bowers E, Hurburgh C, Wu F. Potential economic losses to the US corn industry from aflatoxin contamination. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2016;33(3):540-550. doi:10.1080/19440049.2016.1138544.
Mughal MJ, Peng X, Kamboh AA, Chen P, Zhou Y, Fang J. Aflatoxin B1 induced systemic toxicity in poultry and rescue effects of selenium and zinc. Biol Trace Elem Res. 2017;178(2):292-300. doi:10.1007/s12011-016-0923-9.
Mwakinyali SE, Ming Z, Xie H, Zhang Q, Li P. Investigation and characterization of Myroides odoratimimus strain 3J2MO aflatoxin B1 degradation. J Agric Food Chem. 2019;67(16):4595-602. doi:10.1021/acs.jafc.8b06810.
Ni Y, Li CX, Ma HM, Zhang J, Xu JH. Biocatalytic properties of a recombinant aldo-keto reductase with broad substrate spectrum and excellent stereoselectivity. Appl Microbiol Biotechnol. 2011;89(4):1111-8. doi:10.1007/s00253-010-2895-9.
Ning M, Zhang S, Xie Y, Wang W, Gao Y. Aflatoxin B1 removal by three bacterial strains and optimization of fermentation process parameters. Biotechnol Appl Biochem. 2019;66(6):930-8. doi:10.1002/bab.1807.
Ogwuegbu MC, Mthiyane DMN. Molecular antioxidant and immunological mechanisms of phytogenics in the mitigation of aflatoxicosis in poultry. J Appl Poult Res. 2024;33(3):100457. doi:10.1016/j.japr.2024.100457.
Omotayo OP, Omotayo AO, Mwanza M, Babalola OO. Prevalence of mycotoxins and their consequences on human health. Toxicol Res. 2019;35(1):1-7. doi:10.5487/TR.2019.35.1.001.
Owuor Lalah J, Omwoma S, Orony DAO. Aflatoxin B1: chemistry, environmental and diet sources and potential exposure in human in Kenya. IntechOpen; 2020. doi:10.5772/intechopen.88773.
Payne GA. Process of contamination by aflatoxin-producing fungi and their impact on crops. Mycotoxins in agriculture and feed safety. In: The Toxicology of Aflatoxins. Academic Press. 1998.
Peles F, Sipos P, Győri Z, Pfliegler WP, Giacometti F, Serraino A, et al. Adverse effects, transformation and channeling of aflatoxins into food raw materials in livestock. Front Microbiol. 2019;10:2861. doi:10.3389/fmicb.2019.02861.
Peng Z, Chen L, Zhu Y, Huang Y, Hu X, Wu Q, et al. Current major degradation methods for aflatoxins: a review. Trends Food Sci Technol. 2018;80:155-66. doi:10.1016/j.tifs.2018.08.009.
Petchkongkaew A, Taillandier P, Gasaluck P, Lebrihi A. Isolation of Bacillus spp. from Thai fermented soybean (Thua-nao): screening for aflatoxin B1 and ochratoxin A detoxification. J Appl Microbiol. 2008;104(5):1495-502. doi:10.1111/j.1365-2672.2007.03700.x.
Phillips TD, Lemke SL, Grant PG. Characterization of clay-based enterosorbents for the prevention of aflatoxicosis. Adv Exp Med Biol. 2002;504:157-71. doi:10.1007/978-1-4615-0629-4_16.
Pitt JI, Wild CP, Baan RA, Gelderblom WCA, Miller JD, Riley RT, Wu F, editors. Improving public health through mycotoxin control. IARC Scientific Publication No. 158. Lyon: International Agency for Research on Cancer; 2012.
Popescu RG, Borda D, Spinu M, Sandru CD. Aflatoxins in feed: types, metabolism, health consequences in swine and mitigation strategies. Toxins (Basel). 2022;14(12):853. doi:10.3390/toxins14120853.
Probst C, Njapau H, Cotty PJ. Outbreak of an unusual aflatoxin-producing strain of Aspergillus in Kenya. Appl Environ Microbiol. 2012;78(18):6796-8. doi:10.1128/AEM.01212-12.
Qin X, Su X, Tu T, Zhang J, Wang X, Wang Y, Wang Y, Bai Y, Yao B, Luo H, Huang H. Enzymatic degradation of multiple major mycotoxins by dye-decolorizing peroxidase from Bacillus subtilis. Toxins (Basel). 2021;13(6):429. doi:10.3390/toxins13060429.
Raksha Rao K, Vipin AV, Hariprasad P, Anu Appaiah KA, Venkateswaran G. Biological detoxification of aflatoxin B1 by Bacillus licheniformis CFR1. Food Control. 2017;71:234-41. doi:10.1016/j.foodcont.2016.06.040.
Raruang Y, Omolehin O, Hu D, Wei Q, Han ZQ, Rajasekaran K, et al. Host-induced gene silencing targeting Aspergillus flavus aflM reduced aflatoxin contamination in transgenic maize under field conditions. Front Microbiol. 2020;11:754. doi:10.3389/fmicb.2020.00754.
Raters M, Matissek R. Thermal stability of aflatoxin B1 and ochratoxin A. Mycotoxin Res. 2008;24(3):130–134. doi:10.1007/s12550-008-0015-5.
Rustom IY. Aflatoxin in food and feed: occurrence, legislation and inactivation by physical methods. Food Chem. 1997;59:57-67. doi.org/10.1016/S0308-8146(96)00096-9.
Samarajeewa U, Sen AC, Cohen MD, Wei CI. Detoxification of aflatoxins in foods and feeds by physical and chemical methods. J Food Prot. 1990;53(6):489-501. doi:10.4315/0362-028X-53.6.489.
Sánchez-Bravo P, Noguera-Artiaga L, Gómez-López VM, Carbonell-Barrachina ÁA, Gabaldón JA, Pérez-López AJ. Impact of non-thermal technologies on the quality of nuts: a review. Foods (Basel). 2022;11:3891.doi: 10.3390/foods11233891.
Sargeant K, Sheridan A, O'Kelly J, Carnaghan RB. Toxicity associated with certain samples of groundnuts. Nature. 1961;192:1096-7. doi:10.1038/1921096a0.
Sen Y, Onal-Ulusoy B, Mutlu M. Detoxification of hazelnuts by different cold plasmas and gamma irradiation treatments. Innov Food Sci Emerg Technol. 2019;54:252-9. doi:10.1016/j.ifset.2019.05.002.
Shu X, Wang Y, Zhou Q, Li M, Hu H, Ma Y, et al. Biological degradation of aflatoxin B1 by cell-free extracts of Bacillus velezensis DY3108 with broad pH stability and excellent thermostability. Toxins (Basel). 2018;10(8):330. doi:10.3390/toxins10080330.
Singh J, Mehta A. The main aflatoxin B1 degrading enzyme in Pseudomonas putida is thermostable lipase. Heliyon. 2022;8(10):e10809. doi:10.1016/j.heliyon.2022.e10809.
Sipos P, Peles F, Brassó DL, Béri B, Pusztahelyi T, Pócsi I, Győri Z. Physical and chemical methods for reduction in aflatoxin content of feed and food. Toxins (Basel). 2021;13(3):204. doi:10.3390/toxins13030204.
Smela ME, Currier SS, Bailey EA, Essigmann JM. The chemistry and biology of aflatoxin B(1): from mutational spectrometry to carcinogenesis. Carcinogenesis. 2001;22(4):535-45. doi:10.1093/carcin/22.4.535.
Tessari ENC, Oliveira CAF, Cardoso ALSP, Ledoux DR, Rottinghaus GE. Effects of aflatoxin B1 and fumonisin B1 on blood biochemical parameters in broilers. Toxicon. 2006;48(6):643-9.
Thakare D, Zhang J, Wing RA, Cotty PJ, Schmidt MA. Aflatoxin-free transgenic maize using host-induced gene silencing. Sci Adv. 2017;3(3):e1602382. doi:10.1126/sciadv.1602382.
Thakur S, Singh RK, De PS, Dey A. Aflatoxins in feeds: issues and concerns with safe food production. Indian J Anim Health. 2022;61(1):1-13. doi:10.36062/ijah.2022.14421-411.
Toopaang W, Panyawicha K, Srisuksam C, Hsu WC, Lin CC, Tanticharoen M, et al. Metabolomic analysis demonstrates the impacts of polyketide synthases PKS14 and PKS15 on the production of beauvericins, bassianolide, enniatin A, and ferricrocin in entomopathogen Beauveria bassiana. Metabolites. 2023;13(3):425. doi:10.3390/metabo13030425.
U.S. Food and Drug Administration. CPG Sec. 683.100 Action levels for aflatoxins in animal feeds. 2024.
van Egmond HP, Schothorst RC, Jonker MA. Regulations relating to mycotoxins in food: perspectives in a global and European context. Anal Bioanal Chem. 2007;389(1):147-57. doi:10.1007/s00216-007-1317-9.
Varga J, Frisvad JC, Samson RA. Two new aflatoxin producing species, and an overview of Aspergillus section Flavi. Stud Mycol. 2011;69(1):57-80. doi:10.3114/sim.2011.69.05.
Vekiru E, Fruhauf S, Rodrigues I, Ottner F, Krska R, Schatzmayr G, et al. In vitro binding assessment and in vivo efficacy of several adsorbents against aflatoxin B1. World Mycotoxin J. 2015;8(4):477-88. doi:10.3920/WMJ2014.1800.
Verheecke C, Liboz T, Mathieu F. Microbial degradation of aflatoxin B1: current status and future advances. Int J Food Microbiol. 2016;237:1-9. doi:10.1016/j.ijfoodmicro.2016.07.028. Wang L, Wu J, Liu Z, Shi Y, Liu J, Xu X, et al. Aflatoxin B1 degradation and detoxification by Escherichia coli CG1061 isolated from chicken cecum. Front Pharmacol. 2018;9:1548. doi:10.3389/fphar.2018.01548.
Wang X, Bai Y, Huang H, Tu T, Wang Y, Wang Y, et al. Degradation of aflatoxin B1 and zearalenone by bacterial and fungal laccases in the presence of mediators. Toxins (Basel). 2019;11(10):609. doi:10.3390/toxins11100609.
Wang YD, Song CG, Yang J, Zhou T, Zhao YY, Qin JC, et al. Accurate identification of degraded products of aflatoxin B1 under UV irradiation based on UPLC-Q-TOF-MS/MS and NMR Analysis. Front Chem. 2021;9:789249. doi:10.3389/fchem.2021.789249.
Williams JH, Phillips TD, Jolly PE, Stiles JK, Jolly CM, Aggarwal D. Human aflatoxicosis in developing countries: a review of toxicology, exposure, potential health consequences, and interventions. Am J Clin Nutr. 2004;80(5):1106-22. doi:10.1093/ajcn/80.5.1106.
Yue X, Ren X, Fu J, Wei N, Altomare C, Haidukowski M, et al. Characterization and mechanism of aflatoxin degradation by Trichoderma reesei CGMCC3.5218. Front Microbiol. 2022;13:1003039. doi:10.3389/fmicb.2022.1003039.
Zhang C, Qu Z, Hou J, Yao Y. Contamination and control of mycotoxins in grain and oil crops. Microorganisms. 2024;12(3):567. doi:10.3390/microorganisms12030567.
Zhang Y, Wang P, Kong Q, Cotty PJ. Biotransformation of aflatoxin B1 by Lactobacillus helveticus FAM22155 in wheat bran by solid-state fermentation. Food Chem. 2021;341(Pt 1):128180. doi:10.1016/j.foodchem.2020.128180.
Zhang A, Yang J. A review of research progress on the microbial or enzymatic degradation and mechanism of aflatoxin B1. J Microbiol Biotechnol. 2025 Aug 18;35:e2504044. doi: 10.4014/jmb.2504.04044.
Chung TK, Erdman JW Jr, Baker DH. Hydrated sodium calcium aluminosilicate: effects on zinc, manganese, vitamin A, and riboflavin utilization. Poult Sci. 1990;69(8):1364-70. doi:10.3382/ps.0691364.
Tomasevic-Canovic M, Dakovic A, Markovic V, Radosavljevic-Mihajlovic A, Vukicevic J. Adsorption effects of mineral adsorbents, Part III: adsorption behaviour in the presence of vitamin B6 and microelements. Acta Vet (Beograd). 2000;50:23-30.
Velayutham K, Madhava AK, Pushparaj M, Thanarasu A, Devaraj T, Periyasamy K, Subramanian S. Biodegradation of Remazol Brilliant Blue R using isolated bacterial culture (Staphylococcus sp. K2204). Environ Technol. 2018;39(22):2900-2907. doi:10.1080/09593330.2017.1369579.
Wang Y, Zhao C, Zhang D, Zhao M, Zheng D, Lyu Y, et al. Effective degradation of aflatoxin B1 using a novel thermophilic microbial consortium TADC7. Bioresour Technol. 2017;224:166-73. doi:10.1016/j.biortech.2016.11.033.
Zhao C, Dong L, Zhang F, Luo Y, Yang Z, Zhang X, et al. Screening and characterization of a salt-tolerant aflatoxin B1-degrading strain isolated from Doubanjiang, a Chinese typical red pepper paste. Food Sci Technol. 2022;42:e122621. doi:10.1590/fst.122621.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101313-
dc.description.abstract黃麴毒素B1(aflatoxin B1, AFB1)因其在呿喃環雙鍵形成環氧化物而具有強烈肝致癌性,是食品與飼料中危害性最高的黴菌毒素之一。相較於物理或化學解毒方法,微生物細胞外且有耐熱成分的生物解毒方式更具有應用潛力。本研究首先分離並鑑定具有AFB1去除能力的菌株,並進一步篩選出其中一株菌株Chryseobacterium timonianum c4a,其胞外產物具有耐熱性且有AFB1降解活性。
本研究利用香豆素選擇性培養基,從雞盲腸內容物與富含羽毛之土壤樣本篩選具AFB1降解能力菌株。在篩選出的菌株中,c4a具有最佳AFB1活性降解效果。c4a在營養瓊脂上的菌落呈亮黃色、flexirubin反應陽性、表面光滑且常帶有淡淡果香、為革蘭氏陰性、不產孢子的短桿菌,且不具運動性。API 生化試驗顯示其吲哚酶、尿素酶、氧化酶、esculin 與明膠水解均為陽性,並能同化葡萄糖、甘露糖、麥芽糖、檸檬酸、苦杏仁苷、海藻糖、澱粉、肝醣及 gentiobiose 等多種碳源。16S rRNA之初步親緣分析及利用rpoB、gyrB、rpoD家族基因進行的串聯 MLSA 分析皆顯示c4a歸屬於Chryseobacterium timonianum之近緣支系。
c4a之AFB1降解活性在其胞外培養上清液中,胞內與細胞壁幾乎不具活性。在明膠蛋白胨與牛肉萃取物比例為4:1的營養培養基中,添加1 ppm AFB1,於 60°C、pH 8 並補充 Mn²⁺ 或 Mg²⁺ 的條件下,c4a上清液於72小時內可降低約93%的AFB1活性。c4a上清液降解AFB1活性能力可耐受高壓滅菌,但在加入蛋白酶混合物或 SDS 後即完全喪失,顯示其為蛋白質。UPLCESI MS/MS 解析含 c4a 上清液與AFB1的反應混合物,偵測到一種水加成於呿喃環雙鍵之水合代謝物(m/z 331.08),其細胞毒性遠低於AFB1。
利用c4a全基因體定序資料進行分析,並根據抗AFB1活性基因篩選,其中一個漆酶(laccase)與三個醛酮還原酶(aldoketo reductase, AKR)為目標基因。c4a 細胞亦可脫色 Remazol brilliant blue,顯示其可能具有氧化還原相關酶。所有目標基因皆成功以 pET32 Xa/LIC 進行克隆,但於 Rosettagami 2(DE3)pLysS 的表現中,即使補充銅離子,漆酶仍無法完整表現。其中 AKR 15_78 能順利表現與純化,偏好 NADPH作為輔酶,其最適活性條件為 30°C、pH 7。然而,AKR 15_78 對 AFB1、玉米赤黴烯酮(zearalenone)及去氧雪腐鐵鏽菌烯醇(deoxynivalenol)皆無活性,但可還原體積較大的酮類化合物。由 AKR 15_78 催化反應所得的手性產物,多數不適合作為藥物前驅物,惟乙基苯甲醯乙酸為例外。
總而言之,C. timonianum c4a具構成性、胞外且耐熱的AFB1生物轉化能力,但其中包含的基因與酵素之分析,需利用如Pichia pastoris或Kluyveromyces marxianus等真核表現系統進一步研究。同時,AKR 15_78催化形成的手性醇,仍需藉由不同手性色譜管柱與標準品進一步分析其立體選擇性與應用潛力。
zh_TW
dc.description.abstractAflatoxin B1 (AFB1) ranks among the most hazardous mycotoxins in food and feed chains, owing to its potent hepatocarcinogenicity arising from epoxide formation at the furan ring double bond. Microbial detoxification strategies, especially those involving extracellular and thermostable components, provide practical benefits over physical or chemical alternatives. This thesis detailed the isolation and characterization of bacterial strains for AFB1 removal, with further characterization of the AFB1-degrading activity of the Chryseobacterium timonianum strain c4a, which was found to be thermostable.
A coumarin-selective medium was used to screen AFB1-degrading strains from chicken cecal digesta and feather-enriched soil samples. Out of the selected AFB1-degrading strains, c4a degraded AFB1 most effectively. Colonies of the c4a strain on nutrient agar were bright yellow, flexirubin-positive, smooth, and often had a faint fruity odor. Cells stained Gram-negative, appeared as non-motile rods lacking endospores. Biochemical tests via API systems were positive for indole, urease, oxidase, esculin, and gelatin hydrolysis, with assimilation of glucose, mannose, maltose, citrate, amygdalin, trehalose, starch, glycogen, and gentiobiose, among others. Initial 16S rRNA phylogenetic analysis, as well as concatenated MLSA analysis of housekeeping genes (rpoB, gyrB, rpoD), revealed that the c4a strain is closely related to Chryseobacterium timonianum.
AFB1 activity was localized to the extracellular supernatant, while the intracellular and cell wall fractions showed negligible activity. With nutrient broth at a 4:1 gelatin peptone: beef extract ratio, 1 ppm AFB1 at 60°C, pH 8, plus Mn²⁺ or Mg²⁺, the c4a supernatant showed ~93% loss in 72 h. This activity survived autoclaving yet was abolished by protease cocktails or SDS, implying its proteinic nature. UPLC-ESI MS/MS analysis of the reaction mixture containing c4a supernatant and AFB1 showed a hydrated metabolite (m/z 331.08) from water addition across the furan double bond, which is reported to be significantly low in cytotoxicity compared to the original AFB1. Gene mining using whole genome sequencing data of the c4a strain revealed one laccase and three aldo-keto reductase (AKR) target genes, which are reported to be active against AFB1. Strain c4a cells also decolorized Remazol brilliant blue. pET-32 Xa/LIC cloning of all target genes succeeded, but Rosetta-gami 2(DE3)pLysS expression was incomplete in the case of laccase, despite copper supplementation. AKR 15_78, which was expressed and purified, preferred NADPH, with optimal activity at 30°C and pH 7, and was inactive against mycotoxins AFB1, zearalenone, and deoxynivalenol. However, it reduced bulky ketones. Chiral products formed after enzymatic reactions with AKR 15_78 were undesirable as pharmaceutical precursors, except for the case of the substrate ethyl benzoyl acetate.
Overall, C. timonianum strain c4a exhibited constitutive, extracellular, and thermostable AFB1 biotransformation, yet pinpointing the underlying genes and enzymes will likely require eukaryotic expression (e.g., Pichia pastoris / Kluyveromyces marxianus); in parallel, the putative AKR 15_78 mediated chiral alcohol transformation requires further investigation using alternative chiral HPLC columns and authentic reference standards.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2026-01-14T16:11:24Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2026-01-14T16:11:24Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsCONTENTS

ACKNOWLEDGEMENTS………………………………..……………..…... i
ABSTRACT (Chinese version)……………...……………………………… iii
ABSTRACT (English version)…….………………………………………… v
CONTENTS………………………………………………………………… vii
LIST OF FIGURES…………………………………………………………..xi
LIST OF TABLES………………………………...………………………...xiv
CHAPTER I…………………………………………………………………...1
Introduction…………..………………………………………………………. 1
Mycotoxins……………………………………………………….……….. 1
Aflatoxins ……………………………………………………….………... 4
Permissible Limits ……………..……………..……………..……………..8
Environmental and Geographical Distribution of Aflatoxins……………...9
Aflatoxin B1………….………………………...……………….……….. 10
Mechanism of DNA Damage and Immunogenicity………………....……11
Species Specific Toxicity of AFB1 …………..…………………………..12
Review of Aflatoxin B1 Degradation Strategies…………………………13
Chemical Methods……………………………………………..…………13
Physical methods……………………………………………..……….…..14
Biological methods…………………………………………………....…..15
CHAPTER II…………………………………………………........................20
Screening and Characterization of Chryseobacterium timonianum Strain with Aflatoxin B1 Removal Ability…………………….........................................20
Abstract…………………....…………………….......…………..………..… 21
Introduction……………………....…………………….......…………..…… 22
Materials and methods …………...………………...….......…………..…… 24
Chemicals and Media ………….....……….……........…………..…… 24
Experimental Samples …………......…..……..….......…………..……24
Bacterial Screening and Isolation ……………..….…………..……..…. 24
AFB1 Removal Activities of the Isolated Bacterial Strains...……..…… 25
AFB1 Removal Activities of the Extracellular Supernatant, Intracellular Extract, and Cell Wall Fraction of the c4a Strain………..….....…..…… 25
HPLC Analysis of AFB1 Concentrations………….......…………..…… 26
Phenotypic and Biochemical Characterization of the c4a Strain…..…… 27
Phylogenetic Characterization of the c4a Strain…………………………27
Effect of Growth Medium Composition on AFB1 Removal Activity of the c4a Strain……….......……….......………………….…..……………..… 28

Effects of Reaction Temperature and pH, Mineral Ions, Heat Treatment, Protease Inhibitors, and SDS on AFB1 Removal Activity of the Extracellular Supernatant of the c4a Strain……………………………. 29
Analysis of AFB1 Degradation Metabolites………......……...…..….… 30
Statistical Analyses..…………......…………..….......……………….….30
Results……………………………………………………………………….31
Isolation of Bacterial Strains with Potential for Removal of AFB1…….31
Phenotypic, Biochemical, and Genomic Characteristics of the c4a Strain..31
Effect of Growth Medium Composition on AFB1 Removal Activity of the c4a Strain...............................…………................................…………….32

Effect of Reaction Temperature on AFB1 Removal Activity of the Extracellular Supernatant of the c4a Strain……........................................33

Effect of Reaction pH on AFB1 Removal Activity of the Extracellular Supernatant of the c4a Strain……............................……..........................33

Effect of Mineral Ions on AFB1 Removal Activity of the Extracellular Supernatant of the c4a Strain........................……....... ..............................33

Effect of Protease Inhibitors, SDS, and Autoclaved Treatments on AFB1 Removal Activity of the Extracellular Supernatant of the c4a Strain…….34
Analysis of AFB1 Degradation Metabolites………………….………….34
Discussion……………………………………………………………….……34
CHAPTER III……………………………………………………………….. 50
Unpublished Data……………………………..………………………..…… 50
Materials and Methods …………...………………...….......…………..….…50
Genome Sequencing and Assembly………..………………………….…50
Native Activity Assay of Strain c4a…………...…….………….………. 51
Identification of Anti-Mycotoxin Genes………….………….……….… 51
Cloning of Target Genes…………..………………...…………….......... 52
Recombinant Protein Expression and Purification………………….….. 53
Enzyme Assays and Functional Characterization…………...………….. 54
Results …………………………………………………………………..….. 55
Genome Assembly and Annotation………….…………………….……. 55
Native activity assay outcomes………………..…………….………….. 56
Identification and in silico Characterization Of Anti-Mycotoxin Candidates……...……………………….…………………………….… 56
Cloning Verification……………………………………………….…......56
Recombinant Protein Expression…………………………….…………..57
Biochemical Characterization of AKR 15_78…………………….…......58
Functional Assays…………….……………………….………………... 59
Protein Sequences of c4a Strain Used In This Study In FASTA Format ..............................................................................87
CHAPTER IV………………………………………………………………..88
Concluding remarks………………………………………………………….88
References……………………………………………………………………91
Appendix…………………………………………….………………….……98
-
dc.language.isoen-
dc.subject黃麴毒素 B1(AFB1)-
dc.subjectChryseobacterium timonianum c4a-
dc.subject胞外耐熱性生物轉化-
dc.subject代謝產物分析-
dc.subject基因體探勘-
dc.subjectAflatoxin B1 (AFB1)-
dc.subjectChryseobacterium timonianum c4a-
dc.subjectextracellular thermostable biotransformation-
dc.subjectmetabolite analysis-
dc.subjectgenome mining-
dc.title具去除黃麴毒素B1能力之 Chryseobacterium timonianum 菌株的篩選與特性分析zh_TW
dc.titleScreening and Characterization of a Chryseobacterium timonianum Strain with Aflatoxin B1 Removal Abilityen
dc.typeThesis-
dc.date.schoolyear114-1-
dc.description.degree博士-
dc.contributor.oralexamcommittee劉啟德;鄭光成;陳仁治;吳偉愷zh_TW
dc.contributor.oralexamcommitteeChi-Te Liu;Kuan-Chen Cheng;Jen-Chih Chen;Wei-Kai Wuen
dc.subject.keyword黃麴毒素 B1(AFB1),Chryseobacterium timonianum c4a胞外耐熱性生物轉化代謝產物分析基因體探勘zh_TW
dc.subject.keywordAflatoxin B1 (AFB1),Chryseobacterium timonianum c4aextracellular thermostable biotransformationmetabolite analysisgenome miningen
dc.relation.page113-
dc.identifier.doi10.6342/NTU202600056-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2026-01-13-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept生物科技研究所-
dc.date.embargo-lift2026-01-15-
顯示於系所單位:生物科技研究所

文件中的檔案:
檔案 大小格式 
ntu-114-1.pdf5.45 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved