Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 大氣科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101311
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor游政谷zh_TW
dc.contributor.advisorCheng-Ku Yuen
dc.contributor.author李寶怡zh_TW
dc.contributor.authorPOU I LEIen
dc.date.accessioned2026-01-14T16:10:20Z-
dc.date.available2026-01-15-
dc.date.copyright2026-01-14-
dc.date.issued2026-
dc.date.submitted2026-01-12-
dc.identifier.citation汪鳳如、李瑞麟(2002)。〈中央氣象局全球模式之淺積雲參數法的改進〉。《氣象學報》,44(4),1-1。
鄭秉恩,2022:颱風外圍雨帶的對流特徵及其與颮線的相似度。國立臺灣大學大氣科學研究所碩士論文,94頁。
Beck, H. E., E. F. Wood, M. Pan, C. K. Fisher, D. G. Miralles, A. I. J. M. van Dijk, T. R. McVicar, and R. F. Adler, 2019: MSWEP V2 Global 3-Hourly 0.1° Precipitation: Methodology and Quantitative Assessment. Bull. Amer. Meteor. Soc., 100, 473–500.
Bhatia, K., Baker, A., Yang, W. et al., 2022: A potential explanation for the global increase in tropical cyclone rapid intensification. Nat Commun 13, 6626.
Boehm, A. M., and M. M. Bell, 2021: Retrieved thermodynamic structure of Hurricane Rita (2005) from airborne multi–Doppler radar data. J. Atmos. Sci., 78, 1583–1605. BROOKES, C. P., 1922: THE LOCAL, OR HEAT, THUNDERSTORM. Mon. Wea. Rev., 50, 281–284.
Chen, S. S., J. A. Knaff, and F. D. Marks, 2006: Effects of Vertical Wind Shear and Storm Motion on Tropical Cyclone Rainfall Asymmetries Deduced from TRMM. Mon. Wea. Rev., 134, 3190–3208.
Chu, J.-H., Sampson, C. R., Levine, A. S., & Fukada, E., 2002: The Joint Typhoon Warning Center tropical cyclone best-tracks, 1945–2000 (Tech. Rep. NRL/MR/7540–02–16). Naval Research Laboratory.
Corbosiero, K. L., and J. Molinari, 2002: The Effects of Vertical Wind Shear on the Distribution of Convection in Tropical Cyclones. Mon. Wea. Rev., 130, 2110–2123.
Dac Da, N., G. R. Foltz, J. A. Zhang, and D. Zhang, 2025: Convective Cold Pools and Tropical Cyclones. Mon. Wea. Rev., 153, 1065–1083.
DeMaria, M., 1996: The effect of vertical shear on tropical cyclone intensity change. J. Atmos. Sci., 53, 2076–2088.
Frank, W. M., and E. A. Ritchie, 1999: Effects of Environmental Flow upon Tropical Cyclone Structure. Mon. Wea. Rev., 127, 2044–2061.
Frank, W. M., and E. A. Ritchie, 2001: Effects of vertical wind shear on the intensity and structure of numerically simulated hurricanes. Mon. Wea. Rev., 129, 2249–2269.
Petty, G. W. (2008). A first course in atmospheric thermodynamics. Sundog Publishing.
Geophysical Fluid Dynamics Laboratory. (n.d.). Global warming and hurricanes. National Oceanic and Atmospheric Administration.
Gray W. M., 1968: Global View of the Origin of Tropical Disturbances and Storms. Mon. Wea. Rev., 96, 669–700.
Guzman, O., Jiang, H., 2021: Global increase in tropical cyclone rain rate. Nat Commun 12, 5344.
Hence, D. A., and R. A. Houze Jr., 2011: Vertical structure of hurricane eyewalls as seen by the TRMM Precipitation Radar. J. Atmos. Sci., 68, 1637–1652.
Hence, D. A., and R. A. Houze, 2012: Vertical Structure of Tropical Cyclone Rainbands as Seen by the TRMM Precipitation Radar. J. Atmos. Sci., 69, 2644–2661.
Hersbach, H. et al., 2023: ERA5 hourly data on pressure levels from 1940 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS).
Hersbach, H. et al., 2023: ERA5 hourly data on single levels from 1940 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS).
Hill, K. A., and G. M. Lackmann, 2009: Influence of Environmental Humidity on Tropical Cyclone Size. Mon. Wea. Rev., 137, 3294–3315.
Holland, G. J., 1997: The Maximum Potential Intensity of Tropical Cyclones. J. Atmos. Sci., 54, 2519–2541.
Houze, R. A., 2010: Clouds in Tropical Cyclones. Mon. Wea. Rev., 138, 293–344.
Huffman, G.J., E.F. Stocker, D.T. Bolvin, E.J. Nelkin, Jackson Tan (2023): GPM IMERG Final Precipitation L3 Half Hourly 0.1 degree x 0.1 degree V07, Greenbelt, MD, Goddard Earth Sciences Data and Information Services Center (GES DISC).
IPCC, 2019: Summary for Policymakers. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate, Intergovernmental Panel on Climate Change, Geneva, Switzerland.
Jiang, H., C. Liu, and E. J. Zipser, 2011: A TRMM-Based Tropical Cyclone Cloud and Precipitation Feature Database. J. Appl. Meteor. Climatol., 50, 1255–1274.
Jones, S. C., 1995: The evolution of vortices in vertical shear. I: Initially barotropic vortices. Quart. J. Roy. Meteor. Soc., 121, 821–851.
Lee, C., S. J. Camargo, A. H. Sobel, and M. K. Tippett, 2020: Statistical–Dynamical Downscaling Projections of Tropical Cyclone Activity in a Warming Climate: Two Diverging Genesis Scenarios. J. Climate, 33, 4815–4834.
Lin, Y., Zhao, M. & Zhang, M., 2015: Tropical cyclone rainfall area controlled by relative sea surface temperature. Nat Commun, 6, 6591.
Molinari, J., D. M. Romps, D. Vollaro, and L. Nguyen, 2012: CAPE in Tropical Cyclones. J. Atmos. Sci., 69, 2452–2463.
Montgomery, M.T. and Kallenbach, R.J., 1997: A theory for vortex Rossby-waves andits application to spiral bands and intensity changes in hurricanes. Q.J.R. Meteorol. Soc., 123, 435-465.
Nguyen, L. T., R. F. Rogers, and P. D. Reasor, 2017: Thermodynamic and Kinematic Influences on Precipitation Symmetry in Sheared Tropical Cyclones: Bertha and Cristobal (2014). Mon. Wea. Rev., 145, 4423–4446.
Reasor, P. D., M. T. Montgomery, F. D. Marks, and J. F. Gamache, 2000: Low-Wavenumber Structure and Evolution of the Hurricane Inner Core Observed by Airborne Dual-Doppler Radar. Mon. Wea. Rev., 128, 1653–1680.
Reasor, P. D., R. Rogers, and S. Lorsolo, 2013: Environmental flow impacts on tropical cyclone structure diagnosed from airborne Doppler radar composites. Mon. Wea. Rev., 141, 2949–2969.
Rios-Berrios, R., P. M. Finocchio, J. J. Alland, X. Chen, M. S. Fischer, S. N. Stevenson, and D. Tao, 2024: A Review of the Interactions between Tropical Cyclones and Environmental Vertical Wind Shear. J. Atmos. Sci., 81, 713–741.
Rotunno, R., J. B. Klemp, and M. L. Weisman, 1988: A Theory for Strong, Long-Lived Squall Lines. J. Atmos. Sci., 45, 463–485.
Sharmila, S., Walsh, K.J.E., 2018: Recent poleward shift of tropical cyclone formation linked to Hadley cell expansion. Nature Clim Change 8, 730–736.
Tan, J., W. A. Petersen, and A. Tokay, 2016: A Novel Approach to Identify Sources of Errors in IMERG for GPM Ground Validation. J. Hydrometeor., 17, 2477–2491.
Tang, G., Clark, M. P., Papalexiou, S. M., Ma, Z., & Hong, Y., 2020: Have satellite precipitation products improved over last two decades? A comprehensive comparison of GPM IMERG with nine satellite and reanalysis datasets. Remote Sensing of Environment, 240, 111697.
Tropical Rainfall Measuring Mission (TRMM) (2011): TRMM (TMPA) Rainfall Estimate L3 3 hour 0.25 degree x 0.25 degree V7, Greenbelt, MD, Goddard Earth Sciences Data and Information Services Center (GES DISC).
Tu, S., Xu, J., Chan, J.C.L., 2021: Recent global decrease in the inner-core rain rate of tropical cyclones. Nat Commun 12, 1948.
Villarini et al., 2014: Sensitivity of Tropical Cyclone Rainfall to Idealized Global-Scale Forcings. J. Climate, 27, 4622–4641.
Wang, Y., 2009: How Do Outer Spiral Rainbands Affect Tropical Cyclone Structure and Intensity?. J. Atmos. Sci., 66, 1250–1273.
Weisman, M. L., and R. Rotunno, 2004: “A Theory for Strong Long-Lived Squall Lines” Revisited. J. Atmos. Sci., 61, 361–382.
Wingo, M. T., and D. J. Cecil, 2010: Effects of Vertical Wind Shear on Tropical Cyclone Precipitation. Mon. Wea. Rev., 138, 645–662.
Xin, L., G. Recuter, and B. Larochelle, 1997: Reflectivity-rain rate relationship for convective rainshowers in Edmonton. Atmos.-Ocean, 35, 513-521.
Yu, C., C. Lin, and J. Luo, 2019: Tracking a Long-Lasting Outer Tropical Cyclone Rainband: Origin and Convective Transformation. J. Atmos. Sci., 76, 3267–3283.
Yu, CK., Lin, CY., Cheng, LW. et al., 2018: The degree of prevalence of similarity between outer tropical cyclone rainbands and squall lines. Sci Rep 8, 8247.
Yu, CK., Lin, CY. & Pun, CH., 2023: Origin of outer tropical cyclone rainbands. Nat Commun 14, 7061.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101311-
dc.description.abstract熱帶氣旋伴隨的強降雨可引發洪水、土石流等嚴重災害,對人類社會構成重大威脅。在全球暖化所導致的氣候變遷背景下,了解近年熱帶氣旋降水的變化趨勢已成為重要的科學議題。儘管少數研究指出熱帶氣旋降水有逐年增加的趨勢,但其背後所隱含的物理及動力機制仍未被釐清。本研究利用多衛星降水產品-the Integrated Multi-satellitE Retrievals for GPM (IMERG) 的降水資料與聯合颱風警報中心(Joint Typhoon Warning Center, JTWC)所提供的熱帶氣旋最佳路徑數據,針對2000~2022年間508個生成於西北太平洋上的熱帶氣旋伴隨的降水進行分析。同時,配合歐洲中期天氣預報中心(European Centre for Medium-Range Weather Forecasts)的再分析資料ERA5進行環境分析,探討影響熱帶氣旋降雨趨勢的潛在環境因素。
結果顯示,熱帶氣旋平均降雨率呈些微上升趨勢,其中內核區域平均降雨率呈顯著的下降趨勢,而外圍區域則為上升趨勢。內(外)圍區域降水呈現逐年減少(增加)的趨勢,主要歸因於該區域對流性降水的減弱(增強)。環境因子分析顯示外圍區域的大氣靜力穩定度逐年上升,而對流可用位能與對流不穩定度呈現下降趨勢。這些熱力參數的變化一致顯示環境逐漸朝向不利於降水發展的方向演變,難以解釋外圍區域降水強度仍呈現逐年增加的現象。此外,熱帶氣旋環境風切(storm-scale vertical wind shear)雖有逐年增強趨勢,但降水增強的地方集中於風切左右兩側的外圍區域,而非先前研究所指出的下風切處,顯示外圍區域降水的增強可能並非由環境風切所引發的渦度平流或相關動力效應所致。然而,在外圍對流性降水區域,局部低層垂直風切與冷池強度之間的差異呈現逐漸縮小的趨勢。根據RKW理論(Rotunno–Klemp–Weisman theory),此情形代表該區環境正逐漸接近理論上的最佳化階段(optimal state),使上升運動得以加強,進而造成熱帶氣旋外圍降水的逐年增強。進一步分析顯示,局部低層垂直風切的增強可能與全球暖化下熱帶氣旋強度上升所伴隨的近地層入流加強有關;另一方面,冷池強度的逐年減弱則可能與環境對流不穩定度的降低有關。此外,分析結果顯示,儘管外圍區域之海氣熱力背景隨時間呈現增暖趨勢,海表面溫度的上升並非主導外圍區域降水增強的主要因素,亦未對降水之年際振盪產生直接影響。
zh_TW
dc.description.abstractHeavy rainfall associated with tropical cyclones (TCs) can lead to severe disasters such as flooding and landslides, posing substantial threats to human societies. Under climate change driven by global warming, understanding recent trends in TC precipitation is thus an important scientific issue. In this study, we analyze precipitation associated with 508 tropical cyclones that formed over the northwestern Pacific Ocean between 2000 and 2022, using the multi-satellite precipitation product, the Integrated Multi-satellitE Retrievals for GPM (IMERG). Best track data from Joint Typhoon Warning Center (JTWC) and the reanalysis data from the fifth-generation European Centre for Medium-Range Weather Forecasts (ECMWF) (ERA5) are also used to investigate environmental characteristics potentially influencing long-term TC rainfall trends. The results indicate that the average rainfall rate of TCs shows a modest increasing trend. The rainfall rate within the inner-core is characterized by a prominent decreasing trend, whereas the outer rainfall shows a slightly increasing trend. The year-to-year decrease (increase) of rainfall in the inner (outer) region is mainly attributed to the weakening (strengthening) of convective precipitation in those respective regions.
Environmental analyses indicate that the atmospheric dry static stability in the outer region has been gradually increasing, while convective available potential energy (CAPE) and equivalent potential temperature deficit have shown decreasing trends. In theory, these changes should be unfavorable for precipitation development; however, the statistical results reveal that rainfall in the outer region continues to increase, implying that other dynamical or physical processes may be playing a key role. Moreover, although storm-scale vertical wind shear has gradually strengthened, the enhanced precipitation is concentrated in the outer region on both sides of the shear vector, rather than on the downshear side as suggested by previous studies. This indicates that the increasing outer rainfall is unlikely to be caused by shear-induced vorticity advection or related dynamical effects.
Nevertheless, within the convective outer region, the difference between low-level vertical wind shear (LVWS) and cold-pool strength has been progressively decreasing. According to the Rotunno–Klemp–Weisman (RKW) theory, this evolving relationship suggests that the environment in this region is approaching the theoretical “optimal state”, where enhanced vertical motion can be more easily sustained, thereby contributing to the observed long-term increase in outer region precipitation. Further analysis suggests that the increase in LVWS may be associated with enhanced near-surface inflow resulting from the strengthening of TCs under global warming. In contrast, the gradual weakening of the cold-pool appears to be related to a long-term reduction in environmental convective instability. In addition, the analysis indicates that although the air-sea thermodynamic background in the outer region has warmed over time, the increase in sea surface temperature is not the primary driver of the enhancement of outer region precipitation, nor does it have a direct impact on the interannual oscillation of precipitation.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2026-01-14T16:10:20Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2026-01-14T16:10:20Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
摘要 iii
Abstract v
目次 vii
圖次 ix
表次 xiii
第一章 前言 1
第一節 文獻回顧 1
第二節 研究動機 3
第二章 資料來源與分析方法 4
第一節 資料來源 4
第二節 分析方法與衛星資料比較 5
第三章 降水分析 9
第一節 平均降雨率隨時間之變化 9
第二節 不同降雨形態隨時間之變化 10
第四章 環境因子對降水變化之影響 12
第一節 熱力參數 12
第二節 動力參數 14
第三節 海表面溫度 20
第五章 結論與未來展望 22
第一節 結論 22
第二節 未來展望 24
參考文獻 25
表 30
圖 33
-
dc.language.isozh_TW-
dc.subject熱帶氣旋-
dc.subject長期降水趨勢-
dc.subject衛星降水產品-
dc.subject冷池-
dc.subject局部低層垂直風切-
dc.subjectRKW理論-
dc.subjecttropical cyclones-
dc.subjectprecipitation trends-
dc.subjectsatellite precipitation products-
dc.subjectcold-pool-
dc.subjectlow-level vertical wind shear-
dc.subjectRotunno–Klemp–Weisman theory-
dc.title西北太平洋上熱帶氣旋降水的近期趨勢zh_TW
dc.titleRecent Trends of Tropical Cyclone Precipitation over the Northwest Pacificen
dc.typeThesis-
dc.date.schoolyear114-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee盧孟明;梁禹喬zh_TW
dc.contributor.oralexamcommitteeMong-Ming Lu;Yu-Chiao Liangen
dc.subject.keyword熱帶氣旋,長期降水趨勢衛星降水產品冷池局部低層垂直風切RKW理論zh_TW
dc.subject.keywordtropical cyclones,precipitation trendssatellite precipitation productscold-poollow-level vertical wind shearRotunno–Klemp–Weisman theoryen
dc.relation.page65-
dc.identifier.doi10.6342/NTU202600077-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2026-01-13-
dc.contributor.author-college理學院-
dc.contributor.author-dept大氣科學系-
dc.date.embargo-lift2026-01-15-
顯示於系所單位:大氣科學系

文件中的檔案:
檔案 大小格式 
ntu-114-1.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
12.34 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved