請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101287| 標題: | 基於實體-屬性二象性的異質圖建模 Entity-Attribute Duality for Heterogeneous Graph Modeling |
| 作者: | 林少恩 Shao-En Lin |
| 指導教授: | 林澤 Che Lin |
| 關鍵字: | 異質資訊網路,異質圖神經網路圖神經網路圖表徵學習深度學習 Heterogeneous Information Networks,Heterogeneous Graph Neural NetworksGraph Neural NetworksGraph Representation LearningDeep Learning |
| 出版年 : | 2025 |
| 學位: | 碩士 |
| 摘要: | 異質資訊網路(Heterogeneous Information Networks, HINs)提供了一個具有表現力的框架,能夠整合不同類型的實體與關係,通常定義於一個固定的綱要(schema)之下。然而,現有研究多倚賴預設的綱要結構,忽略了資料在不同建模選擇下呈現的差異,進而對下游任務造成潛在影響。
本研究提出「實體與屬性二象性(entity–attribute duality)」的概念:屬性可以被原子化為具關聯的實體,而實體亦可作為其他實體的屬性。此原則啟發我們設計出 atomic HIN 的範式,旨在系統性地規範結構建模選擇,並提升異質圖模型的表達能力。 在此基礎上,我們進一步提出一個任務導向的綱要最佳化(schema refinement)框架,能將既有資料集視為某一特定設計選擇下的產物,並系統性地探索更適合下游任務的綱要結構。實驗結果顯示,在結合 schema refinement 後,僅使用一個簡化版的關係圖卷積網(simplified Relational GCN, sRGCN),即可於八個涵蓋節點層級與邊層級任務的資料集上達到當前最佳(state-of-the-art)表現;進一步使用先進的異質圖神經網路(HGNNs)則可進一步提升效果。這表明,異質圖的結構建模選擇對於學習表現具有關鍵性影響。 最後,我們公開 atomic HINs 的最佳化結構與完整框架,為建立更具原則性的模型評分奠定基礎,並為未來在綱要感知式學習(schema-aware learning)、自動結構探索(automated structure discovery)以及下一代 HGNNs 的研究提供新方向。 Heterogeneous Information Networks (HINs) provide a powerful framework for modeling multi-typed entities and relations, typically defined under a fixed schema. Yet, most research assumes this structure is given, overlooking the fact that alternative designs can emphasize different aspects of the data and substantially influence downstream performance. As a theoretical foundation for such designs, we introduce the principle of entity-attribute duality: attributes can be atomized as entities with their associated relations, while entities can, in turn, serve as attributes of others. This principle motivates atomic HIN, a canonical representation that makes all modeling choices explicit and achieves maximal expressiveness. Building on this foundation, we propose a systematic framework for task-specific schema refinement. Within this framework, we demonstrate that widely used benchmarks correspond to heuristic refinements of the atomic HIN—often far from optimal. Across eight datasets, refinement alone enables a simplified Relational GCN (sRGCN) to reach state-of-the-art performance on node- and link-level tasks, with further gains from advanced HGNNs. These results highlight schema design as a key dimension in heterogeneous graph modeling. By releasing the atomic HINs, searched schemas, and refinement framework, we enable principled benchmarking and open the way for future work on schema-aware learning, automated structure discovery, and next-generation HGNNs. |
| URI: | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101287 |
| DOI: | 10.6342/NTU202504725 |
| 全文授權: | 同意授權(限校園內公開) |
| 電子全文公開日期: | 2027-11-26 |
| 顯示於系所單位: | 電信工程學研究所 |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-114-1.pdf 未授權公開取用 | 2.26 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
