請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101282完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 許正一 | zh_TW |
| dc.contributor.advisor | Zeng-Yei Hseu | en |
| dc.contributor.author | 黃思穎 | zh_TW |
| dc.contributor.author | Zzu-Ying Huang | en |
| dc.date.accessioned | 2026-01-13T16:12:19Z | - |
| dc.date.available | 2026-01-14 | - |
| dc.date.copyright | 2026-01-13 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-12-31 | - |
| dc.identifier.citation | 中華民國內政部戶政司。2024。人口統計資料專區。民國114年5月24日,取自:https://www.ris.gov.tw
吳卓穎。2023。母質及化育作用對土壤稀土元素含量及分佈的影響。國立臺灣大學農業化學系研究所博士論文。 吳睿元。2022。金門烈嶼不同母職土壤之化育作用。國立臺灣大學農業化學系研究所碩士論文。 范惠珍。2022。磺嘴山周邊火山高原安山岩質熔岩及凝灰角礫岩母質土壤的化育過程。國立臺灣大學農業化學系研究所碩士論文。 楊家語。2025。蛇紋岩土壤化育作用與鉻、鎳礦物特性的關係。國立臺灣大學農業化學系研究所博士論文。 廖玟銨。2021。稀土元素在時間序列土壤中的分布。國立臺灣大學農業化學系研究所碩士論文。 衛生福利部食品藥物管理署。2023。國人膳食營養素攝取資料庫 (National Food Consumption Database in Taiwan, NFCDT)。民國114年3月21日,取自:https://www.fda.gov.tw Adeel, M., Lee, J. Y., Zain, M., Rizwan, M., Nawab, A., Ahmad, M. A., Shafiq, M., Yi, H., Jilani, G., Javed, R., Horton, R., Rui, Y., Tsang, D. C. W., Xing, B., 2019. Cryptic footprints of rare earth elements on natural resources and living organisms. Environment International, 127, 785-800. Agathokleous, E., Kitao, M., Calabrese, E. J., 2019. Hormetic dose responses induced by lanthanum in plants. Environmental Pollution, 244, 332-341. Akagi, T., Edanami, K., 2017. Sources of rare earth elements in shells and soft-tissues of bivalves from Tokyo Bay. Marine Chemistry, 194, 55-62. Alemu, A. K., Zhang, K., Ernst, D. M., Bau, M., 2025. Rare earth elements and yttrium in Polish rivers and the input of anthropogenic gadolinium into the Baltic Sea. Environmental Pollution, 126370. Alfaro, M. R., do Nascimento, C. W. A., Biondi, C. M., da Silva, Y. J. A. B., da Silva, Y. J. A. B., de Aguiar Accioly, A. M., Estevez, J., 2018. Rare-earth-element geochemistry in soils developed in different geological settings of Cuba. Catena, 162, 317-324. Arciszewska, Ż., Gama, S., Leśniewska, B., Malejko, J., Nalewajko-Sieliwoniuk, E., Zambrzycka-Szelewa, E., Godlewska-Żyłkiewicz, B., 2022. The translocation pathways of rare earth elements from the environment to the food chain and their impact on human health. Process Safety and Environmental Protection, 168, 205-223. Balaram, V., 2019. Rare earth elements: A review of applications, occurrence, exploration, analysis, recycling, and environmental impact. Geoscience Frontiers, 10, 1285-1303. Balaram, V., 2023. Potential future alternative resources for rare earth elements: Opportunities and challenges. Minerals, 13, 425. Babula, P., Adam, V., Kizek, R., 2013. Lanthanides, Rare Earth Elements, and Protective Thiols. In: Kretsinger, R.H., Uversky, V.N., Permyakov, E.A. (eds) Encyclopedia of Metalloproteins. Springer, New York, NY. Barrat, J. A., Bayon, G., 2024. Practical guidelines for representing and interpreting rare earth abundances in environmental and biological studies. Chemosphere, 141487. Bhat, A., Kumar, A., 2008. Application of the Crystal Ball® software for uncertainty and sensitivity analyses for predicted concentration and risk levels. Environmental Progress, 27, 289. Briant, N., Le Monier, P., Bruzac, S., Sireau, T., Araújo, D. F., Grouhel, A., 2021. Rare earth element in bivalves’ soft tissues of French metropolitan coasts: Spatial and temporal distribution. Archives of Environmental Contamination and Toxicology, 1-12. Brioschi, L., Steinmann, M., Lucot, E., Pierret, M. C., Stille, P., Prunier, J., Badot, P. M., 2013. Transfer of rare earth elements (REE) from natural soil to plant systems: implications for the environmental availability of anthropogenic REE. Plant and Soil, 366, 143-163. Brito, P., Caetano, M., Martins, M. D., Caçador, I., 2021. Effects of salt marsh plants on mobility and bioavailability of REE in estuarine sediments. Science of the Total Environment, 759, 144314. Brouziotis, A. A., Giarra, A., Libralato, G., Pagano, G., Guida, M., Trifuoggi, M., 2022. Toxicity of rare earth elements: An overview on human health impact. Frontiers in Environmental Science, 1617. Chen, C., Zhang, P., Chai, Z., 2001. Distribution of some rare earth elements and their binding species with proteins in human liver studied by instrumental neutron activation analysis combined with biochemical techniques. Analytica Chimica Acta, 439, 19-27. Chen, Z. Y., Zhu, X. D., 2008. Accumulation of rare earth elements in bone and its toxicity and potential hazard to health. Journal of Ecology and Rural Environment, 24, 88-91. Chen, Z. S., Hseu, Z. Y., Tsai, C. C., 2015. Soil Survey, Information System, and Soil Classification. The Soils of Taiwan. Springer Netherlands. Chen, H., Chen, Z., Chen, Z., Ou, X., Chen, J., 2020. Calculation of toxicity coefficient of potential ecological risk assessment of rare earth elements. Bulletin of Environmental Contamination and Toxicology, 104, 582-587. Cheng, J., Ding, C., Li, X., Zhang, T., Wang, X., 2015. Rare earth element transfer from soil to navel orange pulp (Citrus sinensis Osbeck cv. Newhall) and the effects on internal fruit quality. PLoS One, 10, e0120618. Cocker, M.D., 2014. Lateritic, supergene rare earth element (REE) deposits. In Proceedings of the 48th Annual Forum on the Geology of Industrial Minerals, Phoenix, AZ, USA, pp. 1–18. Crump, K. S., 1984. A new method for determining allowable daily intakes. Toxicological Sciences, 4, 854-871. Dai, Y., Sun, S., Li, Y., Yang, J., Zhang, C., Cao, R., Zhang, H., Chen, J. and Geng, N., 2022. Residual levels and health risk assessment of rare earth elements in Chinese resident diet: A market- based investigation. Science of The Total Environment, 828, 154119. d’Aquino, L., De Pinto, M. C., Nardi, L., Morgana, M., Tommasi, F., 2009. Effect of some light rare earth elements on seed germination, seedling growth and antioxidant metabolism in Triticum durum. Chemosphere, 75, 900-905. Dang, D. H., Filella, M., Omanović, D., 2021. Technology-critical elements: an emerging and vital resource that requires more in-depth investigation. Archives of Environmental Contamination and Toxicology, 87, 517-520. Dushyantha, N., Batapola, N., Ilankoon, I. M. S. K., Rohitha, S., Premasiri, R., Abeysinghe, B., Dissanayake, K., 2020. The story of rare earth elements (REEs): Occurrences, global distribution, genesis, geology, mineralogy and global production. Ore Geology Reviews, 122, 103521. Fang, J., Wen, B., Shan, X. Q., Wang, H. H., Lin, J. M., Zhang, S. Z., 2007. Evaluation of bioavailability of light rare earth elements to wheat (Triticum aestivum L.) under field conditions. Geoderma, 141, 53-59. Feng, M. H., Shan, X. Q., Zhang, S., Wen, B., 2005. A comparison of the rhizosphere-based method with DTPA, EDTA, CaCl2, and NaNO3 extraction methods for prediction of bioavailability of metals in soil to barley. Environmental Pollution, 137, 231-240. Fei, G., Maosheng, G., Guohua, H., Sen, L., Jing, W., 2017. Source tracing of rare earth elements: A case study of core 07 on the southern coast of Laizhou Bay. Continental Shelf Research, 136, 29-38. Fiering, M. B., Wilson, R., Kleiman, E., Zeise, L., 1984. Statistical distributions of health risks. Civil Engineering Systems, 1, 129-138. Figueiredo, C., Oliveira, R., Lopes, C., Brito, P., Caetano, M., Raimundo, J., 2022. Rare earth elements biomonitoring using the mussel Mytilus galloprovincialis in the Portuguese coast: Seasonal variations. Marine Pollution Bulletin, 175, 113335. Food and Agriculture Organization Corporate Statistical (FAOSTAT), 2022. Food balance sheets. Available at: https://www.fao.org/faostat/en/#data/FBS. Accessed on 22 July 2024. Fushiki, T., 2011. Estimation of prediction error by using K-fold cross-validation. Statistics and Computing, 21, 137-146. Franke, B. M., Gremaud, G., Hadorn, R., Kreuzer, M., 2005. Geographic origin of meat—elements of an analytical approach to its authentication. European Food Research and Technology, 221, 493-503. Galhardi, J. A., Leles, B. P., de Mello, J. W., Wilkinson, K. J., 2020. Bioavailability of trace metals and rare earth elements (REE) from the tropical soils of a coal mining area. Science of The Total Environment, 717, 134484. Gaman, L., Radoi, M. P., Delia, C. E., Luzardo, O. P., Zumbado, M., Rodriguez-Hernandez, A., Henríquez-Hernández, L. A., 2021. Concentration of heavy metals and rare earth elements in patients with brain tumours: Analysis in tumour tissue, non-tumour tissue, and blood. International Journal of Environmental Health Research, 31, 741-754. Gardner, W. H., 1986. Water content. Methods of soil analysis: Part 1 physical and mineralogical methods, 5, 493-544. Gkika, D. A., Chalaris, M., Kyzas, G. Z., 2024. Review of methods for obtaining rare earth elements from recycling and their impact on the environment and human health. Processes, 12, 1235. Gong, B., He, E., Qiu, H., Li, J., Ji, J., Peijnenburg, W. J., Cao, X., 2019. The cation competition and electrostatic theory are equally valid in quantifying the toxicity of trivalent rare earth ions (Y3+ and Ce3+) to Triticum aestivum. Environmental Pollution, 250, 456-463. González, N., Domingo, J. L., 2024. Levels of Rare Earth Elements in Food and Human Dietary Exposure: A Review. Biological Trace Element Research, 1-17. Gwenzi, W., Mangori, L., Danha, C., Chaukura, N., Dunjana, N., Sanganyado, E., 2018. Sources, behaviour, and environmental and human health risks of high-technology rare earth elements as emerging contaminants. Science of The Total Environment, 636, 299-313. Han, R., Zhang, Q., Wang, D., Zhong, Q., Han, G., 2025. Discrimination of brewing technologies and assessment of health risks based on rare earth elements: Evidence of fingerprint in Chinese famous vinegars. Food Chemistry, 464, 141539. Hao, Z., Li, Y., Li, H., Wei, B., Liao, X., Liang, T., Yu, J., 2015. Levels of rare earth elements, heavy metals and uranium in a population living in Baiyun Obo, Inner Mongolia, China: A pilot study. Chemosphere, 128, 161-170. Hirano, S., Suzuki, K. T., 1996. Exposure, metabolism, and toxicity of rare earths and related compounds. Environmental Health Perspectives, 104, 85-95. Henderson, P., 1984. General geochemical properties and abundances of the rare earth elements. Rare Earth Element Geochemistry. Elsevier, Amsterdam, Netherlands, pp. 1-32. Hu, Z., Haneklaus, S., Sparovek, G., Schnug, E., 2006. Rare earth elements in soils. Communications in Soil Science and Plant Analysis, 37, 1381-1420. Huang, H., Lin, C., Yu, R., Yan, Y., Hu, G., Wang, Q., 2019. Spatial distribution and source appointment of rare earth elements in paddy soils of Jiulong River Basin, Southeast China. Journal of Geochemical Exploration, 200, 213-220. Huang, Z. Y., Wu, C. Y., Hseu, Z. Y., 2023. Rare earth elements in tea garden soils and their bioavailability to tea buds in Taiwan. Science of The Total Environment, 893, 164895. Huluka, G., Miller, R., 2014. Particle size determination by hydrometer method. Southern Cooperative Series Bulletin, 419, 180-184. Ichihashi, H., Morita, H., Tatsukawa, R., 1992. Rare earth elements (REEs) in naturally grown plants in relation to their variation in soils. Environmental Pollution, 76, 157-162. Imran, M., Nguyen, A., Sultanbawa, Y., 2023. Quantification of rare earth elements in Australian and imported rice samples from different origins using ICP-MS. Science of The Total Environment, 895, 164865. Jiang, D. G., Yang, J., Zhang, S., Yang, D. J., 2012. A survey of 16 rare earth elements in the major foods in China. Biomedical and Environmental Sciences, 25, 267-271. Jiao, Y., Yang, L., Kong, Z., Shao, L., Wang, G., Ren, X., Liu, Y., 2021. Evaluation of trace metals and rare earth elements in mantis shrimp Oratosquilla oratoria collected from Shandong Province, China, and its potential risks to human health. Marine Pollution Bulletin, 162, 111815. Kabata-Pendias, A., 2011. Trace Elements in Soils and Plants. CRC Press, Taylor and Francis Group, Boca Raton, FL, 147-165. Kanazawa, Y., Kamitani, M., 2006. Rare earth minerals and resources in the world. Journal of Alloys and Compounds, 408, 1339-1343. Katerinopoulou, K., Kontogeorgos, A., Salmas, C. E., Patakas, A., Ladavos, A., 2020. Geographical origin authentication of agri-food products: A review. Foods, 9, 489. Khan, A. M., Yusoff, I., Abu Bakar, N. K., Abu Bakar, A. F., Alias, Y., Mispan, M. S., 2017. Accumulation, uptake and bioavailability of rare earth elements (REEs) in soil grown plants from ex-mining area in Perak, Malaysia. Applied Ecology and Environmental Research, 15, 117-133. Kilmer, V. J., Alexander, L. T., 1949. Methods of making mechanical analyses of soils. Soil Science, 68, 15-24. Kim, J. M., Baars, O., Morel, F. M., 2015. Bioavailability and electroreactivity of zinc complexed to strong and weak organic ligands. Environmental Science & Technology, 49, 10894-10902. Kouhail, Y., Dror, I., Berkowitz, B., 2019. Current knowledge on transport and reactivity of technology-critical elements (TCEs) in soil and aquifer environments. Environmental Chemistry, 17, 118-132. Kotelnikova, A., Fastovets, I., Rogova, O., Volkov, D. S., Stolbova, V., 2019. Toxicity assay of lanthanum and cerium in solutions and soil. Ecotoxicology and Environmental Safety, 167, 20-28. Kovaříková, M., Tomášková, I., Soudek, P., 2019. Rare earth elements in plants. Biologia Plantarum, 63, 20-32. Laveuf, C., Cornu, S., 2009. A review on the potentiality of rare earth elements to trace pedogenetic processes. Geoderma, 154, 1-12. Li, F., Shan, X., Zhang, S., 2001. Evaluation of single extractants for assessing plant availability of rare earth elements in soils. Communications in Soil Science and Plant Analysis, 32, 2577-2587. Li, X., Chen, Z., Chen, Z., Zhang, Y., 2013. A human health risk assessment of rare earth elements in soil and vegetables from a mining area in Fujian Province, Southeast China. Chemosphere, 93, 1240-1246. Li, X. F., Chen, Z. B., Chen, Z. Q., 2014. Distribution and fractionation of rare earth elements in soil–water system and human blood and hair from a mining area in southwest Fujian Province, China. Environmental Earth Sciences, 72, 3599-3608. Li, M., Zhuang, L., Zhang, G., Lan, C., Yan, L., Liang, R., Wang, B., 2021. Association between exposure of light rare earth elements and outcomes of in vitro fertilization-embryo transfer in North China. Science of The Total Environment, 762, 143106. Lian, Z., Han, Y., Zhao, X., Xue, Y., Gu, X., 2022. Rare earth elements in the upland soils of northern China: Spatial variation, relationships, and risk assessment. Chemosphere, 307, 136062. Liang, T., Shiming, D., Wenchong, S., Chong, Z., Zhang, C., Haitao, L., 2008. A review of fractionations of rare earth elements in plants. Journal of Rare Earths, 26, 7-15. Liu, D., Wang, X., Chen, Z., 2012. Effects of rare earth elements and REE-binding proteins on physiological responses in plants. Protein and Peptide Letters, 19, 198-202. Liu, W. S., Zheng, H. X., Liu, C., Guo, M. N., Zhu, S. C., Cao, Y., Tang, Y. T., 2021a. Variation in rare earth element (REE), aluminium (Al) and silicon (Si) accumulation among populations of the hyperaccumulator Dicranopteris linearis in southern China. Plant and Soil, 461, 565-578. Liu, C., Liu, W. S., van Der Ent, A., Morel, J. L., Zheng, H. X., Wang, G. B., Qiu, R. L., 2021b. Simultaneous hyperaccumulation of rare earth elements, manganese and aluminum in Phytolacca americana in response to soil properties. Chemosphere, 282, 131096. Liu, S. L., Fan, H. R., Liu, X., Meng, J., Butcher, A. R., Yann, L., Yang, K.F., Li, X. C., 2023. Global rare earth elements projects: New developments and supply chains. Ore Geology Reviews, 105428. Liu, Q., Shi, H., An, Y., Ma, J., Zhao, W., Qu, Y., Wu, F., 2023. Source, environmental behavior and potential health risk of rare earth elements in Beijing urban park soils. Journal of Hazardous Materials, 445, 130451. Loell, M., Reiher, W., Felix‐Henningsen, P., 2011. Contents and bioavailability of rare earth elements in agricultural soils in Hesse (Germany). Journal of Plant Nutrition and Soil Science, 174, 644-654. Lu, A., Zhang, S., Shan, X. Q., Wang, S., Wang, Z., 2003. Application of microwave extraction for the evaluation of bioavailability of rare earth elements in soils. Chemosphere, 53, 1067-1075. Luykx, D. M., Van Ruth, S. M., 2008. An overview of analytical methods for determining the geographical origin of food products. Food Chemistry, 107, 897-911. Ma, G., Zhang, Y., Zhang, J., Wang, G., Chen, L., Zhang, M., Lu, C., 2016. Determining the geographical origin of Chinese green tea by linear discriminant analysis of trace metals and rare earth elements: Taking Dongting Biluochun as an example. Food Control, 59, 714-720. Malakar, A., Snow, D. D., Rudnick, D., Maharjan, B., Kaiser, M., Ray, C., 2024. Natural Reactive Iron Dynamics in the Agricultural Soil of Semiarid to Arid Systems. ACS Agricultural Science & Technology, 4, 307-316. Malhotra, N., Hsu, H. S., Liang, S. T., Roldan, M. J. M., Lee, J. S., Ger, T. R., Hsiao, C. D., 2020. An updated review of toxicity effect of the rare earth elements (REEs) on aquatic organisms. Animals, 10, 1663. Martinez, R. E., Pourret, O., Faucon, M. P., Dian, C., 2018. Effect of rare earth elements on rice plant growth. Chemical Geology, 489, 28-37. Martino, C., Chianese, T., Chiarelli, R., Roccheri, M. C., Scudiero, R., 2022. Toxicological Impact of Rare Earth Elements (REEs) on the Reproduction and Development of Aquatic Organisms Using Sea Urchins as Biological Models. International Journal of Molecular Sciences, 23, 2876. McCready, S., Birch, G. F., Taylor, S. E., 2003. Extraction of heavy metals in Sydney Harbour sediments using 1M HCl and 0.05 M EDTA and implications for sediment‐quality guidelines. Australian Journal of Earth Sciences, 50, 249-255. McLean, E.O., 1982. Soil pH and lime requirement. In: Page, A.L., Miller, R.H., Keeney, D.R., (Eds.), Methods of Soil Analysis (Part 2, 2nd ed., pp. 199-224). American Society of Agronomy and Soil Science Society of America, Madison, WI. McLachlan, G. J., 2005. Discriminant analysis and statistical pattern recognition. John Wiley & Sons. Mehra, O.P., Jackson, M. L., 1960. Iron oxides removal from soils and clays by a diothionite-citrate system buffered with sodium bicarbonate. Clays and Clay Minerals, 7, 317-327. Mesa-Pérez, M. A., Rizo, O. D., Tavella, M. J., Baqué, D., Sanchez-Perez, J. M., 2018. Soil-to-Plant Transfer Factors of Rare Earth Elements in Rice (Oryza sativa L.). Revista Ciencias Técnicas Agropecuarias, 27, 2071-0054. Mędyk, M., Falandysz, J., Nnorom, I. C., 2023. Scandium, yttrium, and lanthanide occurrence in Cantharellus cibarius and C. minor mushrooms. Environmental Science and Pollution Research, 30, 41473-41484. McCready, S., Birch, G. F., Taylor, S. E., 2003. Extraction of heavy metals in Sydney Harbour sediments using 1M HCl and 0.05 M EDTA and implications for sediment‐quality guidelines. Australian Journal of Earth Sciences, 50, 249-255. Mihajlovic, J., Rinklebe, J., 2018. Rare earth elements in German soils-A review. Chemosphere, 205, 514-523. Miranda, K. M., Espey, M. G., Wink, D. A., 2001. A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite. Nitric Oxide, 5, 62-71. Naidu, R., Kookana, R.S., Rogers, S., Bolan, N.S., Adriano, D., 2003. Bioavailability of metals in the soil–plant environment and its potential role in risk assessment. In: Naidu, R., Gupta, V.V.S.R., Rogers, S., Kookana, R.S., Bolan, N.S., Adriano, D., (Eds.), Bioavailability, Toxicity, and Risk Relationships in Ecosystems. Science Publishers, Inc., Enfield, New Hampshire, pp. 46-81. National Research Council (NRC). Risk Assessment in the Federal Government Managing the Process. National Academy Press. Washington, D. C. 1983. Pagano, G., Thomas, P. J., Di Nunzio, A., Trifuoggi, M., 2019. Human exposures to rare earth elements: Present knowledge and research prospects. Environmental Research, 171, 493-500. Pan, X. D., Han, J. L., Shen, H. T., 2024. Distribution and risk assessment of multiple elements in rice from southeast China using Monte Carlo simulation. Journal of Food Composition and Analysis, 129, 106103. Pirsaheb, M., Hadei, M., Sharafi, K., 2021. Human health risk assessment by Monte Carlo simulation method for heavy metals of commonly consumed cereals in Iran-Uncertainty and sensitivity analysis. Journal of Food Composition and Analysis, 96, 103697. Qiao, X., Cui, W., Gao, S., Zhi, Q., Li, B., Fan, Y., Tan, H., 2022. Occupational exposure to rare earth elements: Assessment of External and Internal Exposure. Environmental Pollution, 309, 119801. Ramos, S. J., Dinali, G. S., Oliveira, C., Martins, G. C., Moreira, C. G., Siqueira, J. O., Guilherme, L. R., 2016. Rare earth elements in the soil environment. Current Pollution Reports, 2, 28-50. Rautela, R., Arya, S., Vishwakarma, S., Lee, J., Kim, K. H., Kumar, S., 2021. E-waste management and its effects on the environment and human health. Science of The Total Environment, 773, 145623. Resende, L. V., and Morais, C. A., 2010. Study of the recovery of rare earth elements from computer monitor scraps–Leaching experiments. Minerals Engineering, 23, 277-280. Rezapour, S., Azhah, H., 2017. Effect of Long-term Agricultural Practices on Soil Iron Oxides Forms and Mineralogy in the Vertisols of the Piranshahr Region. Water and Soil, 31, 943-955. Rhoades, J.D., 1982. Cation exchange capacity. In: Page A.L., Miller R.H., Keeney D.R. (Eds.), Methods of Soil Analysis (Part 2, 2nd ed., pp.149-157). Agronomy Monograph, 9. Soil Science Society of America and American Society of Agronomy, Madison, WI. Ruffolo, P., Brouziotis, A. A., Di Natale, G., Pagano, G., Giarra, A., Marano, A., Trifuoggi, M., 2024. Rare earth elements in flour samples. A potential transfer from cricket food to the human level through the trophic chain. Journal of Food Composition and Analysis, 129, 106072. Santos, A. C., Souza, L. A., Araujo, T. G., de Rezende, C. E., Hatje, V., 2023. Fate and trophic transfer of rare earth elements in a tropical estuarine food web. Environmental Science & Technology, 57, 2404-2414. Shi, Z., Yong, L., Liu, Z., Wang, Y., Sui, H., Mao, W., Song, Y., 2022. Risk assessment of rare earth elements in fruits and vegetables from mining areas in China. Environmental Science and Pollution Research, 29, 48694-48703. Shin, S. H., Kim, H. O., Rim, K. T., 2019. Worker safety in the rare earth elements recycling process from the review of toxicity and issues. Safety and Health at Work, 10, 409-419. Sposito, G., 2008. The Chemistry of Soils, Oxford University Press, United states, New York. Šmuc, N. R., Dolenec, T., Serafimovski, T., Dolenec, M., Vrhovnik, P., 2012. Geochemical characteristics of rare earth elements (REEs) in the paddy soil and rice (Oryza sativa L.) system of Kočani Field, Republic of Macedonia. Geoderma, 183, 1-11. Squadrone, S., Brizio, P., Battuello, M., Nurra, N., Sartor, R. M., Benedetto, A., Abete, M. C., 2017. A first report of rare earth elements in northwestern Mediterranean seaweeds. Marine Pollution Bulletin, 122, 236-242. Stegen, K. S., 2015. Heavy rare earths, permanent magnets, and renewable energies: An imminent crisis. Energy Policy, 79, 1-8. Tadayon, Y., Davranche, M., Vantelon, D., Dia, A., Gigault, J., 2024. Iron-organic matter colloid control rare earth element environmental mobility. Current Opinion in Colloid & Interface Science, 101859. Tao, Y., Shen, L., Feng, C., Yang, R., Qu, J., Ju, H., Zhang, Y., 2022. Distribution of rare earth elements (REEs) and their roles in plant growth: A review. Environmental Pollution, 298, 118540. Taylor, S.R., McLennan, S.M., 1985. The Continental Crust: its Composition and Evolution. Blackwell Scientific Publication, Oxford, p. 312. TERA (Toxicology Excellence for Risk Assessment). 1999. Development of Reference Doses and Reference Concentrations for Lanthanides. Prepared for: U.S. Bureau of Land Management, National Applied Resource Sciences Center. Tessier, A. P. G. C., Campbell, P. G., Bisson, M. J. A. C., 1979. Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry, 51, 844-851. Thompson, K. M., Burmaster, D. E., Crouch, E. A., 1992. Monte Carlo techniques for quantitative uncertainty analysis in public health risk assessments. Risk Analysis, 12, 53-63. Tommasi, F., Thomas, P. J., Pagano, G., Perono, G. A., Oral, R., Lyons, D. M., Trifuoggi, M., 2021. Review of rare earth elements as fertilizers and feed additives: a knowledge gap analysis. Archives of Environmental Contamination and Toxicology, 81, 531-540. Turra, C., De Nadai Fernandes, E. A., Bacchi, M. A., Sarriés, G. A., Júnior, F. B., Reyes, A. E. L., 2013. Rare earth elements in citrus production systems. Journal of Plant Nutrition, 36, 762-771. Tyler, G., 2004. Ionic charge, radius, and potential control root/soil concentration ratios of fifty cationic elements in the organic horizon of a beech (Fagus sylvatica) forest podzol. Science of the Total Environment, 329, 231-239. Tyler, G., 2004. Rare earth elements in soil and plant systems-A review. Plant and Soil, 267, 191-206. U.S. EPA. Provisional Peer-Reviewed Toxicity Values for Praseodymium Chloride (Stable, Nonradioactive). U.S. Environmental Protection Agency, Washington, DC, EPA/690/R-09/048F, 2009a. U.S. EPA. Provisional Peer-Reviewed Toxicity Values for Neodymium Chloride (Stable, Nonradioactive). U.S. Environmental Protection Agency, Washington, DC, EPA/690/R-09/035F, 2009b. U.S. EPA. Provisional Peer-Reviewed Toxicity Values for Samarium Nitrate (Stable, Nonradioactive). U.S. Environmental Protection Agency, Washington, DC, EPA/690/R-09/051F, 2009c. U.S. EPA. Provisional Peer-Reviewed Toxicity Values for Lanthanum. U.S. Environmental Protection Agency, Washington, DC, EPA/690/R-18/004, 2018a. U.S. EPA. Provisional Peer-Reviewed Toxicity Values for Stable (Nonradioactive) Gadolinium. U.S. Environmental Protection Agency, Washington, DC, EPA/690/R-18/001, 2018b. U.S. EPA. Provisional Peer-Reviewed Toxicity Values for Stable (Nonradioactive) Soluble Lutetium. U.S. Environmental Protection Agency, Washington, DC, EPA/690/R-18/003, 2018c. U.S. EPA. Guidelines for Exposure Assessment. U.S. Environmental Protection Agency, Washington, DC, EPA/600/Z-92/001, 1992. U.S. EPA. Guidelines for Human Exposure Assessment. U.S. Environmental Protection Agency, Washington, DC, EPA/100/B-19/001, 2019. U.S. EPA. Guidance for Assessing Chemical Contaminant Data for Use in Fish Advisories, 2000. Volume 2 Risk Assessment and Fish Consumption Limits, Third Edition. Vázquez-Ortega, A., Perdrial, J., Harpold, A., Zapata-Ríos, X., Rasmussen, C., McIntosh, J., Chorover, J., 2015. Rare earth elements as reactive tracers of biogeochemical weathering in forested rhyolitic terrain. Chemical Geology, 391, 19-32. Vukojević, V., Đurđić, S., Stefanović, V., Trifković, J., Čakmak, D., Perović, V., Mutić, J., 2019. Scandium, yttrium, and lanthanide contents in soil from Serbia and their accumulation in the mushroom Macrolepiota procera (Scop.) Singer. Environmental Science and Pollution Research, 26, 5422-5434. Wang, B., Yan, L., Huo, W., Lu, Q., Cheng, Z., Zhang, J., Li, Z., 2017. Rare earth elements and hypertension risk among housewives: a pilot study in Shanxi Province, China. Environmental Pollution, 220, 837-842. Wang, X. N., Gu, Y. G., Wang, Z. H., 2022. Rare earth elements in different trophic level marine wild fish species. Environmental Pollution, 292, 118346. Wang, W., Yang, Y., Wang, D., Huang, L., 2024. Toxic effects of rare earth elements on human health: a review. Toxics, 12, 317. Wei, B., Li, Y., Li, H., Yu, J., Ye, B., Liang, T., 2013. Rare earth elements in human hair from a mining area of China. Ecotoxicology and Environmental Safety, 96, 118-123. Wilkin, R. T., Lee, T. R., Ludwig, R. D., Wadler, C., Brandon, W., Mueller, B., Edwards, T., 2020. Rare-earth elements as natural tracers for in situ remediation of groundwater. Environmental Science & Technology, 55, 1251-1259. World Health Organization (WHO), 2022. Data by country: Age distribution of population. Available at: https://data.who.int/countries. Accessed on 8 August 2024. Wu, C. Y., Chu, M. F., Huang, K. F., Hseu, Z. Y., 2022. Rare earth elements associated with pedogenic iron oxides in humid and tropical soils from different parent materials. Geoderma, 423, 115966. Wu, C. Y., Hseu, Z. Y., 2023. Pedochemical behaviors of rare earth elements in soil profiles along a lithosequence in eastern Taiwan. Catena, 225, 107047. Wu, C. Y., Zehetner, F., Chen, Z. S., Jien, S. H., Hseu, Z. Y., 2024. Fractionation of rare earth elements in soil profiles along an elevation gradient in central Taiwan. Catena, 235, 107659. Wu, C. Y., Yang, C. Y., Cascante, M. D., Liao, W. A., Hum, H. Z., Wu, J. Y., Hseu, Z. Y., 2025. Geochemical signatures and contamination levels of rare earth elements in soil profiles controlled by parent rock and soil properties. Environmental Science and Pollution Research, 1-16. Yang, L., Wang, X., Nie, H., Shao, L., Wang, G., Liu, Y., 2016. Residual levels of rare earth elements in freshwater and marine fish and their health risk assessment from Shandong, China. Marine Pollution Bulletin, 107, 393-397. Yang, X., Li, Y., Zhao, S., Zhang, P., Zhao, Y., 2024. Geographical Origin Authentication of Agricultural Products in the China–Eu Geographical Indications Agreement: A Comprehensive Review of Chinese Products. Trends in Food Science & Technology, 104679. Yuan, M., Guo, M. N., Liu, W.S., Liu, C., van der Ent, A., Morel, J. L., Qiu, R.L., 2017. The accumulation and fractionation of Rare Earth Elements in hydroponically grown Phytolacca americana L. Plant and Soil, 421, 67-82. Yuan, Z. K., Liu, Y., Yu, H. Q., 2003. Study on relationship between rare earth level in blood and health condition of residents. Chinese Journal of Public Health, 19, 133-135. Zadokar, A., Negi, S., Kumar, P., Bhargava, B., Sharma, R., Irfan, M., 2023. Molecular insights into rare earth element (REE)-mediated phytotoxicity and its impact on human health. Environmental Science and Pollution Research, 30, 84829-84849. Zaichick, S., Zaichick, V., Karandashev, V., Nosenko, S., 2011. Accumulation of rare earth elements in human bone within the lifespan. Metallomics, 3, 186-194. Zhang, Z., Bai, W., Zhang, L., He, X., Ma, Y., Liu, Y., Chai, Z., 2012. Effects of rare earth elements La and Yb on the morphological and functional development of zebrafish embryos. Journal of Environmental Sciences, 24, 209-213. Zhang, Q., Han, G., Liu, M., Wang, L., 2019. Geochemical characteristics of rare earth elements in soils from puding karst critical zone observatory, Southwest China. Sustainability, 11, 4963. Zhang, W., Noble, A., Yang, X., Honaker, R., 2020. A comprehensive review of rare earth elements recovery from coal-related materials. Minerals, 10, 451. Zhao, C., Yang, J., Zhang, X., Fang, X., Zhang, N., Su, X., Pang, H., Li, W., Wang, F., Pu, Y., Xia, Y., 2023. A human health risk assessment of rare earth elements through daily diet consumption from Bayan Obo Mining Area, China. Ecotoxicology and Environmental Safety, 266, 115600. Zhao, H., Hong, J., Yu, X., Zhao, X., Sheng, L., Ze, Y., Hong, F., 2013. Oxidative stress in the kidney injury of mice following exposure to lanthanides trichloride. Chemosphere, 93, 875-884. Zhao, H., Tang, J., Yang, Q., 2021. Effects of geographical origin, variety, harvest season, and their interactions on multi-elements in cereal, tuber, and legume crops for authenticity. Journal of Food Composition and Analysis, 100, 103900. Zicari, M. A., d’Aquino, L., Paradiso, A., Mastrolitti, S., Tommasi, F., 2018. Effect of cerium on growth and antioxidant metabolism of Lemna minor L. Ecotoxicology and Environmental Safety, 163, 536-543. Zhou, W., Han, G., Liu, M., Song, C., Li, X., 2020. Geochemical distribution characteristics of rare earth elements in different soil profiles in Mun River Basin, Northeast Thailand. Sustainability, 12, 457. Zhuang, M., Xie, H., Jiang, Y., Xiao, P., Wang, K., Chu, Z., Zhao, J. and Zhang, T., 2023. Probabilistic assessment of dietary rare earth elements intake among people living near a rare earth ore. Science of The Total Environment, 856, 159141. Zhuang, M., Wang, L., Wu, G., Wang, K., Jiang, X., Liu, T., Chu, Z., 2017. Health risk assessment of rare earth elements in cereals from mining area in Shandong, China. Scientific Reports, 7, 9772. Zhu, J. G., Xing, G. X., 1992. Forms of Rare Earth Elements in Soils: Ⅰ. Distribution. Pedosphere, 2, 125-134. Zhu, Q. H., Huang, D. Y., Liu, S. L., Luo, Z. C., Zhu, H. H., Zhou, B., Cao, X. L., 2012. Assessment of single extraction methods for evaluating the immobilization effect of amendments on cadmium in contaminated acidic paddy soil. Plant, Soil and Environment, 58, 98-103. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101282 | - |
| dc.description.abstract | 稀土元素 (rare earth elements, REEs) 是由鑭系元素及釔所組成的一群元素之統稱。依有效離子半徑,可再區分為輕稀土元素 (light rare earth elements, LREEs) 及重稀土元素 (heavy rare earth elements, HREEs) 兩個亞族。REEs 被廣泛應用於高科技、能源、農業與工業領域,並逐漸成為全球重要的戰略性資源。隨著 REEs 的使用日益增加,可能透過排放與累積流佈於環境中,自土壤轉移至植物,再經由食物鏈對人類健康造成潛在影響。然而,目前針對 REEs 在環境中的分佈及其潛在的暴露及風險,仍舊欠缺系統性的研究。稻米 (Oryza sativa L.) 為全球主要糧食來源之一,是人類暴露 REEs 的重要途徑。本研究藉由探討 REEs 在水田及其生長的稻米中 REEs 之含量及其生物有效性,瞭解 REEs 在土壤與稻米系統中的累積與轉移趨勢。進一步地,針對攝食稻米之途徑,假設每日食用米的情況下,評估不同年齡與性別藉由攝食米對 REEs 潛在的暴露劑量及其非致癌風險。此外,由於 REEs 的分化特徵可反映區域性的地球化學背景,本研究透過比較臺灣不同母質所生長的稻米中 REEs 之組成與分化,初步評估 REEs 作為地理溯源工具的可行性。本研究採集臺灣本島各縣市主要類型的水田土壤和稻米樣品 (n = 85),分析土壤中的 REEs 近似全量濃度,並以三個單一試劑有效性萃取法,包括 0.05 M EDTA、0.10 M HCl 和 0.01 M CaCl2,萃取土壤中潛在可被利用的 REEs,以及分析所有稻米樣品中的 REEs 濃度。針對健康風險評估,本研究採集臺灣各縣市 265 個稻米樣品,以蒙地卡羅模擬法,評估不同年齡層與性別族群透過稻米攝食所暴露的 REEs 劑量與非致癌風險。而藉由不同母質所採集的 265 個稻米樣品,透過 REEs 的分化指標、常態化特徵圖形及主成分分析等,探討 REEs 作為地理溯源工具之應用性。結果顯示,臺灣水田土壤和稻米中總 REEs 的含量分別為 16.2-137 mg kg-1 和 2.25-13.6 μg kg-1,皆以 LREEs 的濃度較 HREEs 高。三個單一試劑萃取的結果顯示,0.05 M EDTA 與 0.10 M HCl 萃取法,可能作為評估稻米中 REEs 的潛在參考指標。其中,HREEs 因具有較小的離子半徑和較高的電荷密度,使其在酸性環境中可能具有較高的生物有效性,而 REEs 的生物有效性主要受到土壤性質如 pH、有機碳、游離鐵等影響。暴露及風險評估結果顯示,臺灣男性藉由攝食米所暴露的 REEs 較女性高,且 0–3 歲的兒童,其暴露量及非致癌風險為其他年齡層的兩倍之高。敏感性分析結果指出,控制暴露量和風險的因素主要為攝食率、體重以及稻米中特定 REEs (La, Ce, Eu 和 Y) 的濃度。此外,利用 REEs 及其分化指標、以上部大陸地殼進行常態化後的特徵圖形與多變量統計分析,結果顯示,片岩沖積土壤所生長稻米中的 REEs 組成和分化特徵明顯異於砂頁岩、黏板岩沖積土和第四紀洪積母質的土壤所生長稻米中的 REEs。綜上所述,本研究釐清新興污染物——REEs 在土壤與稻米系統中的環境行為,並首次量化 REEs 在主要飲食途徑的潛在暴露風險,亦展現 REEs 在農產品地理來源判別上的應用性。本研究成果針對未來面臨環境與食品中的暴露及風險溝通和管理奠定基礎,同時彰顯 REEs 作為農產品安全與溯源工具的前瞻性價值。 | zh_TW |
| dc.description.abstract | Rare earth elements (REEs), comprising the lanthanides and yttrium, represent a group of technology-critical elements with growing strategic importance worldwide. Based on their ionic radii, REEs are commonly divided into light REEs (LREEs; La–Eu) and heavy REEs (HREEs; Gd–Lu and Y). As their use continues to increase, REEs may be released into and accumulated within the environment, transferred from soils to plants, and subsequently enter the human body through the food chain. However, systematic investigations of their environmental distribution, dietary exposure, and potential health risks remain limited. Rice (Oryza sativa L.), a major staple food worldwide, is considered a major dietary source of REE exposure for humans. This study investigated REE concentrations and bioavailability in paddy soils, their accumulation and transfer to rice grains, and the associated non-carcinogenic health risks through rice consumption. In addition, given that REE fractionation patterns can reflect regional geochemical signatures, this study further evaluated the feasibility of using REEs as tracers for geographical origin authentication of rice. Soil and rice samples were collected from 85 paddy fields across Taiwan. Total REE concentrations in soils were determined using aqua regia digestion, while potentially available REE pools were assessed using three single-extractant methods: 0.05 M EDTA, 0.10 M HCl, and 0.01 M CaCl2. REEs in all rice samples were also quantified. For exposure and risk assessment, 265 rice samples from major rice-producing counties in Taiwan were analyzed. A probabilistic framework based on Monte Carlo simulations was applied to estimate daily exposure doses and non-carcinogenic risks across different age and gender groups under daily rice consumption scenarios. Total REE concentrations ranged from 16.2–137 mg kg-1 in soils and 2.25–13.6 μg kg-1 in rice grains, with LREEs dominating over HREEs. Results from single extractions suggested that 0.10 M HCl and 0.05 M EDTA may serve as suitable indicators for predicting rice REE uptake. HREEs exhibited relatively higher bioavailability, attributable to their smaller ionic radii and higher charge density, while soil properties, such as pH, organic carbon, and iron oxides, were key factors controlling REE bioavailability. Dietary exposure assessment revealed that males generally exhibited higher exposure doses than females, and children aged 0–3 years had approximately twice the exposure and non-carcinogenic risk compared with other age groups. Sensitivity analysis identified rice intake rate, body weight, and rice concentrations of specific REEs (La, Ce, Eu, and Y) as the dominant contributors to total exposure and risk. Multivariate analysis further showed that rice grown on schist-derived alluvial soils exhibited REE compositions and fractionation patterns distinctly different from those grown on soils derived from sand shale, clay slate, or Quaternary deposit, supporting the potential of REEs and their fractionation indices as provenance indicators. Overall, this study clarifies the environmental behavior of REEs within the soil–rice system, provides the first quantitative assessment of dietary REE exposure and associated risks in Taiwan, and demonstrates the applicability of REEs in geographical origin authentication of rice. These findings offer a scientific basis for future risk management and communication regarding emerging contaminants in food systems, and highlight the forward-looking value of REEs for food safety and provenance verification. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2026-01-13T16:12:19Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2026-01-13T16:12:19Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 謝辭 i
摘要 ii Abstract iv 目次 vi 圖次 viii 表次 ix 第一章、前言 1 第二章、文獻回顧 4 2.1 何謂稀土元素 4 2.2 稀土元素的應用及潛在對生物之影響 5 2.3 稀土元素的來源與分佈 7 2.3.1 土壤中的稀土元素 7 2.3.2 稀土元素之生物有效性 8 2.3.3 生物體中的稀土元素 10 2.3.4 稀土元素的常態化指標及地理溯源之應用 15 2.4 健康風險評估 18 第三章、材料與方法 21 3.1 樣品採集和前處理 21 3.2 土壤物化性質分析 22 3.2.1 水分含量 22 3.2.2 土壤反應 (pH值) 22 3.2.3 土壤質地 22 3.2.4 土壤有機碳 24 3.2.5 陽離子交換容量 24 3.2.6 單一試劑有效性萃取 25 3.2.7 游離鐵萃取 26 3.2.8 全量分析 26 3.3 植體分析 27 3.4 品質保證與品質管理 27 3.5 健康風險評估 37 3.5.1 暴露評估 37 3.5.2非致癌風險評估 39 3.5.3 蒙地卡羅模擬 42 3.6 主成分分析 44 3.7 統計分析 44 第四章、結果與討論 45 4.1 水田土壤中稀土元素的生物有效性及其在稻米中的吸收 45 4.2 土壤性質對土壤和稻米中稀土元素的累積和分化之影響 58 4.3 評估攝食米之途徑所暴露稀土元素的劑量與健康風險 72 4.4 探討稀土元素作為農產品示蹤劑之應用 88 第五章、結論 93 第六章、參考文獻 94 附錄 110 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 科技關鍵元素 | - |
| dc.subject | 生物有效性 | - |
| dc.subject | 分化特徵 | - |
| dc.subject | 食品安全 | - |
| dc.subject | 人類健康 | - |
| dc.subject | 機率式風險評估 | - |
| dc.subject | 來源鑑別 | - |
| dc.subject | Technology-critical elements (TCEs) | - |
| dc.subject | Bioavailability | - |
| dc.subject | Fractionation pattern | - |
| dc.subject | Food security | - |
| dc.subject | Human health | - |
| dc.subject | Probabilistic risk assessment | - |
| dc.subject | Origin authentication | - |
| dc.title | 臺灣水田土壤與稻米中稀土元素之含量分佈與人類潛在健康風險評估 | zh_TW |
| dc.title | Distribution and potential human health risk of rare earth elements in paddy soils and rice grains in Taiwan | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 114-1 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.oralexamcommittee | 簡伶朱;陳柏青;許健輝;莊愷瑋;席行正;簡士濠 | zh_TW |
| dc.contributor.oralexamcommittee | Ling-Chu Chien;Bo-Ching Chen;Chien-Hui Syu;Kai-Wei Juang;Hsing-Cheng Hsi;Shih-Hao Jien | en |
| dc.subject.keyword | 科技關鍵元素,生物有效性分化特徵食品安全人類健康機率式風險評估來源鑑別 | zh_TW |
| dc.subject.keyword | Technology-critical elements (TCEs),BioavailabilityFractionation patternFood securityHuman healthProbabilistic risk assessmentOrigin authentication | en |
| dc.relation.page | 145 | - |
| dc.identifier.doi | 10.6342/NTU202504855 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-12-31 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 農業化學系 | - |
| dc.date.embargo-lift | 2026-01-14 | - |
| 顯示於系所單位: | 農業化學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-114-1.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 12.42 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
