請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10127
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 傅楸善(Chiou-Shann Fuh) | |
dc.contributor.author | Jun-Hong Yu | en |
dc.contributor.author | 余浚弘 | zh_TW |
dc.date.accessioned | 2021-05-20T21:03:58Z | - |
dc.date.available | 2011-07-26 | |
dc.date.available | 2021-05-20T21:03:58Z | - |
dc.date.copyright | 2011-07-26 | |
dc.date.issued | 2011 | |
dc.date.submitted | 2011-07-11 | |
dc.identifier.citation | [1] B. E. Bayer, “Color imaging array,” U.S. Patent# 3 971 065 (1976).
[2] R. Ramanath, W. E. Snyder, G. L. Bilbro, and W. A. Sander III, “Demosaicking methods for Bayer color arrays,” J. of Electronic Imaging, 11(3), 306–315 (2002). [3] B. K. Gunturk, J. Glotzbach, Y. Altunbasak, R. W. Schafer, and R. M. Mersereau, “Demosaicking: Color filter array interpolation,” IEEE Signal Processing Magazine, 22(1), 44–54, (2005). [4] K. H. Chung and Y. H. Chan,“Color demosaicking using variance of color differences,” IEEE Trans. Image Processing, 15(10), 2944–2955 (2006). [5] H. J. Trussell and R. E. Hartwig, “Mathematics for demosaicking,” IEEE Trans. Image Processing, 11(4), 485–492 (2002). [6] X. Li, “Demosaicing by successive approximation,” IEEE Trans. Image Processing, 14(3), 370–379, (2005). [7] D. D. Muresan and T. W. Parks, “Demosaicing using optimal recovery,” IEEE Trans. Image Processing, 14(2), 267–278 (2005). [8] D. Alleysson, S. Susstrunk, and J. Herault, “Linear demosaicing inspired by the human visual system,” IEEE Trans. Image Processing, 14(4), 439–449 (2005). [9] E. Dubois, “Frequency-domain methods for demosaicking of bayer-sampled-color images,” IEEE Signal Processing Letters, 12(12), 847–850 (2005). [10] D. Menon and G. Calvagno, “Regularization approaches to demosaicking,” IEEE Trans. Image Processing, 19(10), 2209–449 (2009). 31 [11] B. Gunturk, Y. Altunbasak, and R. Mersereau, “Color plane interpolation using alternating projections,” IEEE Trans. Image Processing, 11(9), 997–1013 (2002). [12] J. S. J. Li and S. Randhawa, “Color filter array demosaicking using high-order interpolation techniques with a weighted median filter for sharp color edge preservation,” IEEE Trans. Image Processing, 18(9), 1946–1957 (2009). [13] T. Sakamoto, C. Nakanishi, and T. Hase, “Software pixel interpolation for digital still cameras suitable for a 32-bit MCU,” IEEE Trans. Consumer Electronics, 44(4), 1342–1352 (1998). [14] D. R. Cok, “Signal processing method and apparatus for producing interpolated chrominance values in a sampled color image signal,” U.S. Patent# 4 642 678 (1987). [15] W. T. Freeman, “Median filter for reconstructing missing color samples,” U.S. Patent# 4 724 395 (1988). [16] H. Hibbard, “Apparatus and method for adaptively interpolating a full color image utilizing luminance gradients,” U.S. Patent# 5 382 976 (1995). [17] J. E. Adams and J. F. Hamilton, “Adaptive color plan interpolation in single sensor color electric camera,” U.S. Patent# 5 506 619 (1996). [18] J. F. Hamilton and J. E. Adams, “Adaptive color plane interpolation in single sensor color electronic camera,” U.S. Patent# 5 629 734 (1997). [19] Y. Hel-Or and D. Keren, “Image demosaicing method utilizing directional smoothing,” U.S. Patent# 6 404 918 (2002). [20] R. Ramanath and W. E. Snyder, “Adaptive demosaicking,” J. of Electronic Imaging, 12(4), 633–642 (2003). [21] R. Lukac and K. N. Plataniotis, “Normalized color-ratio modeling for CFA interpolation,” IEEE Trans. Consumer Electronics, 50(2), 737–745 (2004). 32 [22] S. C. Pei and I. K. Tam, “Effective color interpolation in CCD color filter arrays using signal correlation,” IEEE Trans. Circuits and Systems for Video Technology, 13(6), 503–513 (2003). [23] W. Lu and Y. P. Tang, “Color filter array demosaicking: new method and performance measures,” IEEE Trans. Image Processing, 12(10), 1194–1210 (2003). [24] R. Lukac, K. N. Plataniotis, D. Hatzinakos, and M. Aleksic, “A novel cost effective demosaicing approach,” IEEE Trans. Consumer Electronics, 50(1), 256–261 (2004). [25] X. Wu and N. Zhang, “Primary-consistent soft-decision color demosaicing for digital cameras (patent pending),” IEEE Trans. Image Processing, 13(9), 1263–1274 (2004). [26] L. Zhang and X.Wu, “Color demosaicking via directional linear minimum mean square-error interpolation,” IEEE Trans. Image Processing, 14(12), 2167–2178 (2005). [27] L. Chang and Y. P Tan, “Hybrid color filter array demosaicking for effective artifact suppression,” J. of Electronic Imaging, 15(1), 013003 (2006). [28] H. A. Chang and H. H. Chen, “Stochastic color interpolation for digital cameras,” IEEE Trans. Circuits and Systems for Video Technology, 17(8), 964–973 (2007). [29] K. L. Chung, W. J. Yang, W. M. Yan, and C. C. Wang, “Demosaicing of color filter array captured images using gradient edge detection masks and adaptive heterogeneity-projection,” IEEE Trans. Image Processing, 17(12), 2356–2367 (2008). [30] R. G. Keys, “Cubic convolution interpolation for digital image processing,” IEEE Trans. Acoustics, Speech Signal Processing, 29(6), 1153–1160 (1981). [31] S. E. Reichenbach and F. Geng, “Two-dimensional cubic convolution,” IEEE Trans. Image Processing, 12(8), 857–865 (2003). 33 [32] J. W. Hwang and H. S. Lee, “Adaptive image interpolation based on local gradient features,” IEEE Signal Processing Letters, 11(3), 356–362 (2004). [33] S. Battiato, G. Gallo, and F. Stanco, “A locally adaptive zooming algorithm for digital images,” Image and Vision Computing, 20(11), 805–812 (2002). [34] R. Lukac and K. N. Plataniotis, “Digital camera zooming on the color filter array,” Electronics Letters, 39(25), 1806–1807 (2003). [35] R. Lukac, K. N. Plataniotis, and D. Hatzinakos, “Color image zooming on the Bayer pattern,” IEEE Trans. Circuits and Systems for Video Technology, 15(11), 1475–1492 (2005). [36] R. Lukac and K. N. Platataniotis, “Digital zooming for color filter array,” Real-Time Imaging, 11(2), 129–138 (2005). [37] R. Gonzalez and R. Woods, Digital Image Processing, Addison Wesley, New York (1992). [38] R. Lukac, K. Martin, and K. N. Plataniotis, “Demosaicked image postprocessing using local color ratios,”IEEE Trans. Circuits and Systems for Video Technology, 14(6), 914–920 (2004). [39] [Online]. Available: http://www.site.uottawa.ca/ edubois/demosaicking/. [40] R. W. G. Hunt, Measuring Colour, 2nd Ed., Ellis Horwood, Chichester, U.K. (1995). [41] [Online]. Available: http://140.118.175.164/WJYang/paper/ZoomCFA/. [42] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Trans. Image processing, 13(4), 600–612, (2004). | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10127 | - |
dc.description.abstract | 大部分的數位相機為了降低製造成本,使用了單一個CCD/CMOS 陣列,並搭配一個色彩濾波陣列(CFA) 來取得數位影像。此論文提出了一個嶄新的高品質放大演算法。首先根據此適應性異質性投影遮罩及植基於索貝爾及內插的遮罩,我們可以更精準地抽取馬賽克影像上的邊資訊,像是變化方向及梯度資訊等。我們可以根據這些資訊先將影像的綠色部分放大。接下來再根據色差平面結合內插的方法可以將影像的紅色和藍色部分放大。我們用了二十四張常被使用的測試影像來進行實驗。實驗結果顯示,以PSNR 及CPSNR 這兩個量度標準來看,我們的演算法所產出之放大影像品質較幾個先前發表的放大演算法要好,同時色彩瑕疵也更少。 | zh_TW |
dc.description.abstract | Mosaic images are captured by a single charge-coupled device/complementary metal-oxide-semiconductor (CCD/CMOS) sensor with the Bayer color filter array. In this paper, a new quality-effective zooming algorithm for mosaic images is presented. First, based on adaptive heterogeneity projection masks and the Sobel- and lumi-nance estimation-based (SL-Based) masks, more accurate gradient information can be extracted from the mosaic image directly. According to the extracted more accurate gradient information, the mosaic green (G) channel is first zoomed. In order to reduce color artifacts, instead of directly moving the original red (R) value to its right position and the blue (B) value to its lower position in the previous approach, the color difference interpolation is utilized to expand the G-R and G-B color difference values. Finally, the zoomed mosaic R and B channels can be constructed by using the zoomed G channel and the two expanded color difference values; afterward, the zoomed mosaic image is obtained. Based on twenty-four popular test mosaic images, experimental results are demonstrated to show that the proposed zooming algorithm has more than 1.79 dB quality improvement when compared with two previous zooming algorithms, one by Battiato et al. and the other by Lukac et al. | en |
dc.description.provenance | Made available in DSpace on 2021-05-20T21:03:58Z (GMT). No. of bitstreams: 1 ntu-100-R96944026-1.pdf: 1608892 bytes, checksum: dff9641ec9e8c8b3ce202cbcb8b6b3d5 (MD5) Previous issue date: 2011 | en |
dc.description.tableofcontents | 1 INTRODUCTION 1
2 Extracting Gradient Information from Mosaic Images 4 3 The Proposed Zooming Algorithm for Mosaic Images 7 3.1 Zooming the mosaic G channel 7 3.2 Zooming the mosaic R and B channels 15 4 EXPERIMENTAL RESULTS 18 5 CONCLUSION 30 REFERENCES 31 Appendix I 35 | |
dc.language.iso | en | |
dc.title | 針對色彩濾波陣列之高效能放大演算法 | zh_TW |
dc.title | New A Novel Quality-Effective Zooming Algorithm for CFA Image | en |
dc.type | Thesis | |
dc.date.schoolyear | 99-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 顏文明,鐘國亮,黃詠淮,楊偉楨 | |
dc.subject.keyword | 色彩濾波陣列(CFA),適應性異質性投影,色差平面,數位相機,邊資訊,梯度資訊,馬賽克影像,索貝爾算子,放大, | zh_TW |
dc.subject.keyword | Color difference,Color filter array,Gradient information,Mosaic im- ages,PSNR,Sobel operator,Zooming algorithm, | en |
dc.relation.page | 35 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2011-07-11 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 資訊網路與多媒體研究所 | zh_TW |
顯示於系所單位: | 資訊網路與多媒體研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-100-1.pdf | 1.57 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。