請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101253完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 王泰俐 | zh_TW |
| dc.contributor.advisor | Tai-Li Wang | en |
| dc.contributor.author | 許佑娟 | zh_TW |
| dc.contributor.author | Yu-Chuan Hsu | en |
| dc.date.accessioned | 2026-01-13T16:06:13Z | - |
| dc.date.available | 2026-01-14 | - |
| dc.date.copyright | 2026-01-13 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2026-01-06 | - |
| dc.identifier.citation | 一、中文文獻
于文浩(2023年8月8日)。AI新聞主播興起 媒體面臨生死存亡風險。科技島。https://www.technice.com.tw/issues/ai/62466 天下編輯部(2023年7月18日)。天下雜誌每日報「國際新聞掃描」功能全新上線。天下雜誌。 王泰俐 (2006)。電視新聞感官主義對閱聽人接收新聞的影響。新聞學研究,86,91–133。 王紹蓉(2023)。生成式AI的傳播研究趨勢與展望。中華傳播學刊,44,95–105。 王旭、莫季雍、湯允一(1999)。媒介表現:關於新聞可信度的討論與測量。1999年中華傳播學會年會暨論文研討會論文。 王雲東(2007)。社會研究方法:量化與質性取向及其應用(初版)。威仕曼文化。 中央通訊社(2025年2月12日)。AI浪潮來襲 杭州用機器人播報新聞零失誤引熱議。中央通訊社。https://www.cna.com.tw/news/acn/202502120188.aspx 台灣媒體觀察教育基金會(2019)。2019台灣新聞媒體可信度研究。中嘉網路股份有限公司。 江宜珊(2005)。電視新聞主播播報風格對觀眾接收新聞內容之影響。國立臺灣大學新聞研究所碩士論文。 尹一尹、羅文輝、盧鴻毅、魏然(2020)。2016年臺灣總統選舉年輕族群之第三人效果研究。傳播研究與實踐,10(1),141–172。 左宗宏、李俊憲(2010)。台灣報紙選舉新聞偏差報導現象研究:2000與2004年總統大選的比較分析。傳播與社會學刊,11,141–163。 李怡志(2023)。生成式人工智慧的傳播產業實務影響與應用。中華傳播學刊,44,103–113。 李怡志(2024)。新聞媒體對於生成式人工智慧的感知風險、規範與實踐。新聞學研究,160,1–66。https://doi.org/10.30386/MCR.202407.0013 李宗憲(2023年6月26日)。印尼電視台AI主播報新聞 學者:若沒人管理很危險[影]。中央通訊社。https://www.cna.com.tw/news/ait/202306260274.aspx 李雅靖、宋怡萱(2005)。報紙新聞報導的主播形象對觀眾收視行為之影響。廣播與電視,25,59–83。 何織羽(2024)。AI技術的導入如何解決新聞台人才困境。國立臺灣大學事業經營碩士在職專班碩士論文。 杜麗芳(1984)。台灣地區民眾收看電視新聞與氣象報告的動機與行為研究。國立政治大學新聞研究所碩士論文。 吳明隆(2014)。論文寫作與量化研究(第四版)。五南。 林俊孝(2014)。台灣大學生對網路影音新聞可信度之影響因素研究。國立政治大學新聞研究所碩士論文。 邱宓祺(2021)。跨出社會污名——愛滋病新聞的說服效果研究。國立臺灣大學新聞研究所碩士論文。 周樹華、闞岩(2015)。媒體可信度研究:起源、發展、機會和挑戰。傳播與社會學刊,33,255–297。 周昆璋、廖執善、蔣旭政(2021)。人工智慧科技在臺灣新聞傳播領域之運用與發展。臺灣東亞文明研究學刊,18(1),43–88。https://doi.org/10.6163/TJEAS.202106_18(1).0002 周霈翎(2023)。人工智慧對新聞產業影響研析。台灣經濟研究月刊,46(9),96–102。 周麗娟(2005)。閱聽人政治參與對電視新聞可信度影響之研究。佛光大學傳播研究所碩士論文。 唐士哲(2024)。生成式人工智慧、新聞室自動化與變遷中的新聞樣貌。文化:政策・管理・創新,3(1),9–27。 施美玲(譯)(1997)。大眾傳播研究方法。五南。(原著 Singletary, M., 1998) 翁秀琪(2020)。大眾傳播理論與實證(四版)。三民。 張祺淯(2025)。AI虛擬新聞主播擬人化程度對閱聽人的新聞態度與新聞觀看意圖之影響。國立政治大學傳播學院碩士學位學程碩士論文。 張瑞雄(2024年10月18日)。AI主播的興起與應用。閱政治。https://www.readgov.com/19153/ 張勤(1991)。電視新聞。三民出版社。 陳正昌、賈俊平(2016)。統計分析與R(初版)。五南。 國家通訊傳播委員會(2024)。113年度電視使用行為及滿意度調查研究報告。華威行銷研究股份有限公司。 敖國珠(2010)。我國電視新聞主播養成之研究。國立臺灣師範大學圖文傳播研究所碩士論文。 徐婉寧、林阡郡(2023年7月28日)。AI播報風潮吹進新聞圈 顛覆觀眾視聽印象。公視新聞網。https://news.pts.org.tw/article/648630 黃新生(1994)。電視新聞。遠流。 黃郁涵(2018)。專業性消息來源與內容呈現形式影響新聞可信度之研究。國立臺灣師範大學圖文傳播學系碩士論文。 彭賢恩、張郁敏(2008)。政治置入性新聞對新聞可信度之影響。新聞學研究,95,55–110。 葉恆芬(2000)。網路媒體可信度及其影響因素初探研究:以台灣地區網路使用者為例。國立中正大學電訊傳播研究所碩士論文。 劉弘達(2020)。社會統計學:理論與應用(第四版)。雙葉書廊。 羅文輝、陳世敏(1993)。新聞媒介可信度之研究(國科會專題研究計畫成果報告,NSC 81-0301-H-004-501)。政治大學新聞研究所。 羅文輝(2004)。選擇可信度:1992及2002年報紙與電視新聞可信度的比較研究。新聞學研究,80,1–50。 羅文輝、林文琪、牛隆光、蔡卓芬(2003)。媒介依賴與媒介使用對選舉新聞可信度的影響:五種媒介的比較。新聞學研究,74,19–44。 羅文輝(2008)。報紙與電視新聞的可信度:1993、1998及2003的比較研究。台灣社會變遷調查第十一次研討會論文,中央研究院社會學研究所。 羅文輝、孔艷穎、黃素軒、劉暢、高鹿洋子、樊菲菲(2013)。大陸、香港、台灣電視新聞主播可信度的比較研究。傳播與社會學刊,24(4),93–118。https://doi.org/10.30180/CS.201304_(24).0005 廖禹揚(2020年11月29日)。韓國首名AI主播上工 對新聞業是助力還是壓力。中央通訊社。https://www.cna.com.tw/news/firstnews/202011190310.aspx 薛宇珊(2005)。大學生對電視新聞主播形象之評估。國立政治大學新聞研究所碩士論文。 謝濟真(2024年11月12日)。中國AI虛擬主播登場 首開全球先例。公視新聞網。https://news.pts.org.tw/article/412820 謝旭洲(2008)。社會統計與資料分析。威仕曼文化。 蘇蘅(2017年6月24日)。不同世代的網路新聞分享與訊息可信度的關聯分析 〔會議論文〕。中華傳播學刊2017年會議論文集。http://www.tcataiwan.org/paperdetail.asp?HP_ID=1859 二、英文文獻 Ajzen, I. (1991). The theory of planned behavior. Organizational Behavior and Human Decision Processes, 50(2), 179–211. https://doi.org/10.1016/0749-5978(91)90020-T Carlson, M. (2014). The robotic reporter: Automated journalism and the redefinition of labor, compositional forms, and journalistic authority. Digital Journalism, 3(3), 416–431. https://doi.org/10.1080/21670811.2014.976412 Clerwall, C. (2014). Enter the robot journalist: Users’ perceptions of automated content. Journalism Practice, 8(5), 519–531.https://doi.org/10.1080/17512786.2014.883116 Fishbein, M., & Ajzen, I. (1975). Belief, attitude, intention, and behavior: An introduction to theory and research. Addison-Wesley. Flanagin, A. J., & Metzger, M. J. (2007). The role of site features, user attributes, and information verification behaviors on the perceived credibility of web-based information. New Media & Society, 9(2), 319–342.https://doi.org/10.1177/1461444807075015 Freeman, K. S., & Spyridakis, J. H. (2004). An examination of factors that affect the credibility of online health information. Technical Communication, 51(2), 239–263. Gaziano, C., & McGrath, K. (1986). Measuring the concept of credibility. Journalism Quarterly, 63, 45–62. Gondwe, G. (2023). Exploring the multifaceted nature of generative AI in journalism studies: A typology of scholarly definitions. SSRN. https://doi.org/10.2139/ssrn.4465446 Gong, L., & Nass, C. (2007). When a talking face computer agent is half-human and half-humanoid: Human identity and consistency preference. Human Communication Research, 33(2), 163–193. Graefe, A., Haim, M., Haarmann, B., & Brosius, H. B. (2018). Readers’ perception of computer-generated news: Credibility, expertise, and readability. Journalism, 19(5), 595–610. https://doi.org/10.1177/1464884916641269 Hovland, C. I., & Weiss, W. (1951). The influence of source credibility on communication effectiveness. Public Opinion Quarterly, 15, 635–650. Hovland, C. I., Janis, I. L., & Kelley, H. H. (1953). Communication and persuasion: Psychological studies of opinion change. Yale University Press. Hong, J.-W., Chang, H.-C. H., & Tewksbury, D. (2024). Can AI become Walter Cronkite? Testing the machine heuristic, the hostile media effect, and political news written by artificial intelligence. Digital Journalism. https://doi.org/10.1080/21670811.2024.2323000 Johnson, T. J., & Kaye, B. K. (1998). Cruising is believing? Comparing internet and traditional sources on media credibility measures. Journalism & Mass Communication Quarterly, 75(2), 325–340. Jung, J., Song, H., Kim, Y., Im, H., & Oh, S. (2017). Intrusion of software robots into journalism: The public’s and journalists’ perceptions of news written by algorithms and human journalists. Computers in Human Behavior, 71, 291–298.https://doi.org/10.1016/j.chb.2017.02.022 Kennedy, M. (2018). AI news anchor makes debut in China. NPR. https://www.npr.org/2018/11/09/666239216/ai-news-anchor-makes-debut-in-china Kim, J., Xu, K., & Merrill, K. Jr. (2022). Man vs. machine: Human responses to an AI newscaster and the role of social presence. The Social Science Journal. https://doi.org/10.1080/03623319.2022.2027163 Lee, K. M., Peng, W., Jin, S. A., & Yan, C. (2006). Can robots manifest personality? An empirical test of personality recognition, social responses, and social presence in human–robot interaction. Journal of Communication, 56(4), 754–772. https://doi.org/10.1111/j.1460-2466.2006.00318.x Lee, S., Chung, D. S., & Nah, S. (2020). Predicting AI news credibility: Communicative or social capital or both? Communication Studies. https://doi.org/10.1080/10510974.2020.1779769 Levy-Landesberg, H., & Cao, X. (2025). Anchoring voices: The news anchor’s voice. in China from television to AI. Media, Culture & Society, 47(2), 229–251. https://doi.org/10.1177/01634437241270937 Lin, X., Rainear, A. M., Spence, P. R., & Lachlan, K. A. (2018). Don’t sleep on it: An examination of storm naming and potential heuristic effects on Twitter. Weather, Climate, and Society, 10(4), 769–779. https://doi.org/10.1175/WCAS-D-18-0008.1 Martí-Danés, A., Besalú, R., & Gómez-Puertas, L. (2023). Analysis of news credibility in the digital press: Source types have a limited effect, while age, gender, and education are differential factors. Journalism. Advance online publication. https://doi.org/10.1177/14648849231215190 Mertel, J. (2012). Credibility on cable news: An examination of the factors that establish credibility in newscasters (Master’s thesis). Rochester Institute of Technology. Meyer, P. (1988). Defining and measuring credibility of newspapers: Developing an index. Journalism Quarterly, 65(3), 567–574, 588. Metzger, M. J., Flanagin, A. J., Eyal, K., Lemus, D. R., & McCann, R. M. (2003). Credibility for the 21st century: Integrating perspectives on source, message, and media credibility in the contemporary media environment. Communication Yearbook, 27, 293–336. Miller, A., & Kurpius, D. (2010). A citizen-eye view of television news source credibility. American Behavioral Scientist, 54(2), 137–156. Miroshnichenko, A. (2018). AI to bypass creativity: Will robots replace journalists? The answer is yes. Information, 9(7), 183. https://doi.org/10.3390/info9070183 Molyneux, L., & Coddington, M. (2019). Aggregation, clickbait and their effect on perceptions of journalistic credibility and quality. Journalism Practice, 14(4), 429–446. https://doi.org/10.1080/17512786.2019.1628658 Ndlovu, M. (2024). Audience perceptions of AI-driven news presenters: A case of Alice in Zimbabwe. Media, Culture & Society, 46(8), 1692–1706. https://doi.org/10.1177/01634437241270982 Niu, Y. (2025). From human anchors to AI anchors: A review of technology, ethics, and audience response in audiovisual media transformation. International Theory and Practice in Humanities and Social Sciences, 2(2), 361–372. Peifer, J. T., & Meisinger, J. (2021). The Value of Explaining the Process:How Journalistic Transparency and Perceptions of News Media Importance Can (Sometimes) Foster Message Credibility and Engagement Intentions. Journalism & Mass Communication Quarterly, 98(3), 828-853. Putnam, R. D. (1995). Bowling alone: America’s declining social capital. Journal of Democracy, 6(1), 65–78. Reips, U.-D. (Ed.). (2000). The web experiment method: Advantages, disadvantages, and solutions. Academic Press. Schweiger, W. (2000). Media credibility: Experience or image? A survey on the credibility of the World Wide Web in Germany in comparison to other media. European Journal of Communication, 15(1), 37–59. Spence, P. R., Lachlan, K. A., & Griffin, D. R. (2007). Crisis communication, race, and natural disasters. Journal of Black Studies, 37(4), 539–554. https://doi.org/10.1177/0021934706296192 Stroud, N., & Lee, J. (2008). Politics and cable news credibility. Conference Papers – International Communication Association, 1–30. Sun, M., Hu, W., & Wu, Y. (2024). Public perceptions and attitudes towards the application of artificial intelligence in journalism: From a China-based survey. Journalism Practice, 18(3), 548–570. https://doi.org/10.1080/17512786.2022.2055621 Sundar, S. S. (2020). Rise of machine agency: A framework for studying the psychology of human–AI interaction. Journal of Computer-Mediated Communication, 25(1), 74–88. https://doi.org/10.1093/jcmc/zmz026 Tandoc, E. C., Yao, L. J., & Wu, S. (2020). Man vs. machine? The impact of algorithm authorship on news credibility. Digital Journalism, 8(4), 548–562. https://doi.org/10.1080/21670811.2020.1762102 Toff, B., & Simon, F. M. (2024). Or they could just not use it? The dilemma of AI disclosure for audience trust in news. The International Journal of Press/Politics, 30(4), 881–903. https://doi.org/10.1177/19401612241308697 Waddell, T. F. (2019). Attribution practices for the man–machine marriage: How perceived human intervention, automation metaphors, and byline location affect the perceived bias and credibility of purportedly automated content. Journalism Practice, 13(10), 1255–1272. https://doi.org/10.1080/17512786.2019.1585197 Wang, X., & Zhu, F. (2021). The application of artificial intelligence in AI news anchor. 2021 International Conference on Big Data Analytics for Cyber-Physical System in Smart City, 1093–1100. Washington Post PR. (2016, August 5). The Washington Post experiments with automated storytelling to help power 2016 Rio Olympics coverage. The Washington Post. https://www.washingtonpost.com/pr/wp/2016/08/05/the-washington-post-experiments-with-automated-storytelling-to-help-power-2016-rio-olympics-coverage/ Westley, B. H., & Severin, W. J. (1964). Some correlates of media credibility. Journalism Quarterly, 41(3), 325–335.https://doi.org/10.1177/107769906404100301 Wojcieszak, M., Thakur, A., Gonçalves, J. F. F., Casas, A., Menchen-Trevino, E., & Boon, M. (2021). Can AI enhance people’s support for online moderation and their openness to dissimilar political views? Journal of Computer-Mediated Communication, 26(4), 223–243. https://doi.org/10.1093/jcmc/zmab006 Wölker, A., & Powell, T. E. (2018). Algorithms in the newsroom? News readers’ perceived credibility and selection of automated journalism. Journalism. Advance online publication. https://doi.org/10.1177/1464884918757072 World Association of News Publishers. (2023). Gauging generative AI's impact on newsrooms. https://www.wan-ifra.org/generative-ai-newsrooms Wu, H., Chen, Z., Huang, Y., & Tu, H. (2024). Research on the uncanny valley effect in artificial intelligence news anchors. Multimedia Tools and Applications, 83, 62581–62606. https://doi.org/10.1007/s11042-023-18073-z Xue, K., Li, Y., & Jin, H. (2022). What do you think of AI? Research on the influence of AI news anchor image on watching intention. Behavioral Sciences, 12(11), 465. https://doi.org/10.3390/bs12110465 三、影片 AI主播倪珍Nikki (2025年2月20日)。NOWnews新聞AI主播倪珍Nikki 24小時直播 。[網路直播]。YouTube。https://www.youtube.com/@NOWnews-sp2di TVBS NEWS (2025年3月28日)。范斯訪格陵蘭引抗議 行程大縮減! 普欽警告美國是認真的|彭惠筠|FOCUS全球新聞20250328 @TVBSNEWS01 [影片] 。YouTube。https://www.youtube.com/watch?v=5wL_CB-sZ_M 三立iNEWS(2023年6月30日)。三立首位AI主持人週六晚間11點"48台"登場! AI主播熱席捲全球 突破傳統新聞面貌.流利對答 陳斐娟:AI技術突破。[影片] 。YouTube。https://www.youtube.com/watch?v=vS8D5h7oUU0 民視新聞網(2023年6月26日)。全台首位!民視「AI科技主播」誕生甜美報氣象 首播影片看這-民視新聞。[影片]。YouTube。https://www.youtube.com/watch?v=lTG1qqwEihk&lc=UgzsqIMPyeqY5btfZZp4AaABAg | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101253 | - |
| dc.description.abstract | 隨著生成式人工智慧技術快速發展,AI虛擬新聞主播走進閱聽人的視野,成為電視新聞中新興的傳播方式。然而,AI虛擬新聞主播是否能獲得與真人主播相同的信任與傳遞資訊的效果,仍是值得深入探討的議題。本研究旨在比較閱聽人對「真人電視新聞主播」 、 「AI虛擬新聞主播」的可信度與收視行為意圖差異,並進一步了解媒介使用習慣與人口變項對此關係的影響。
本研究以線上問卷實驗法進行,透過便利抽樣法在社群平台招募受測者,共取得506份有效樣本。受測者隨機觀看不同(真人/ AI)主播播報的國際新聞影片,並填寫可信度、收視意圖、媒介使用頻率量表,以分析不同主播的播報方式對閱聽人認知與收視行為的影響。 研究結論顯示,閱聽人對真人電視新聞主播的可信度與收視意圖均明顯高於AI虛擬新聞主播,不論 AI主播是否附加標籤,皆無法達到與真人主播相同的可信度、收視行為效果。整體而言,受測者仍較依賴真人主播的真實感、口語呈現與專業形象,並更願意持續觀看真人主播播報的內容。另一方面,媒介使用頻率雖與可信度評價有正相關,但並未明顯改變不同主播類型之間的可信度差異;人口變項部分,僅年齡對可信度具有顯著影響,年齡越高的閱聽人越傾向信任真人主播。 AI虛擬新聞主播雖具備技術創新與高效率等優勢,但在閱聽人信任的建立上仍有挑戰。未來新聞業若欲推動 AI主播的應用,需強化其語音自然度、表情真實感與肢體協調度,以逐步提升受眾的接受度與信任感。 | zh_TW |
| dc.description.abstract | With the rapid advancement of generative artificial intelligence technologies, AI virtual anchors have increasingly entered the public sphere, emerging as a new form of news delivery in television journalism. However, whether AI virtual news anchors can achieve the same level of trust and informational effectiveness as human news anchors remains an important question. This study aims to compare audience perceptions of credibility and viewing intentions toward human television news anchors and AI virtual news anchors, and to further examine how media usage habits and demographic variables influence this relationship.
An online experiment was conducted using a convenience sampling method, yielding 506 valid responses. Participants were randomly assigned to watch an international news video presented either by a human or an AI anchor and subsequently completed scales measuring credibility, viewing intentions, and media usage frequency. The study examines how different types of anchors influence audience cognition and viewing behavior. The results indicate that audiences rate human news anchors significantly higher in both credibility and viewing intention compared to AI virtual news anchors. Regardless of whether the AI anchor was labeled, its perceived credibility and viewing effectiveness did not reach the level of a human anchor. Overall, participants relied more on the authenticity, natural speech delivery, and professional appearance of human anchors and were more willing to continue watching their content. Although media usage frequency showed a positive correlation with credibility evaluations, it did not significantly affect the credibility gap between different anchor types. Among demographic factors, only age had a significant effect—older viewers tended to place greater trust in human anchors. While AI virtual news anchors provide benefits such as technological innovation and increased efficiency, building audience trust remains a significant challenge. For AI virtual news anchors to achieve broader adoption in the future, improvements in speech naturalness, facial expressiveness, and body coordination will be essential to enhancing audience acceptance and trust. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2026-01-13T16:06:13Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2026-01-13T16:06:13Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員審定書 i
謝誌 ii 中文摘要 iii 英文摘要 iv 目次 v 圖次 vii 表次 viii 第壹章 緒論 1 第一節 研究背景 1 第二節 研究動機與目的 2 第三節 研究程序 4 第貳章 文獻回顧 6 第一節 生成式人工智慧在新聞產業的應用 6 第二節 新聞可信度研究 10 第三節 新聞主播可信度與收視行為相關研究 15 第四節 AI新聞的信任建構與挑戰 23 第五節 小結 26 第參章 研究方法 28 第一節 研究架構圖 28 第二節 研究方法 29 第三節 研究假設與問題 31 第四節 實驗與操作型定義 32 第五節 實驗設計與步驟 42 第肆章 研究前測與實驗設計 46 第一節 虛擬新聞主播外表吸引力—前測結果 46 第二節 AI虛擬新聞主播與真人主播可信度差異—前測結果 51 第三節 AI虛擬新聞主播與真人主播可信度差異—正式測驗結果 56 第伍章 結論與建議 78 第一節 研究發現與討論 78 第二節 學術與實務貢獻 83 第三節 研究限制與未來建議 84 參考文獻 86 附錄一 AI虛擬新聞主播與真人主播可信度差異---問卷 99 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 電視主播 | - |
| dc.subject | 虛擬新聞主播 | - |
| dc.subject | 人工智慧 | - |
| dc.subject | 可信度 | - |
| dc.subject | AI 標籤 | - |
| dc.subject | 收視行為 | - |
| dc.subject | television news anchor | - |
| dc.subject | virtual news anchor | - |
| dc.subject | AI | - |
| dc.subject | credibility | - |
| dc.subject | AI labeling | - |
| dc.subject | viewing intention | - |
| dc.title | 視而信之?閱聽人對 AI 虛擬新聞主播與真人新聞主播可信度差異研究 | zh_TW |
| dc.title | Seeing Is Believing ? Study on Audience Perceptions of Credibility Differences Between AI Virtual News Anchors and Human News Anchors | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 114-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.coadvisor | 劉好迪 | zh_TW |
| dc.contributor.coadvisor | Adrian Rauchfleisch | en |
| dc.contributor.oralexamcommittee | 林佳欣 | zh_TW |
| dc.contributor.oralexamcommittee | Chia-Shin Lin | en |
| dc.subject.keyword | 電視主播,虛擬新聞主播人工智慧可信度AI 標籤收視行為 | zh_TW |
| dc.subject.keyword | television news anchor,virtual news anchorAIcredibilityAI labelingviewing intention | en |
| dc.relation.page | 106 | - |
| dc.identifier.doi | 10.6342/NTU202504852 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2026-01-07 | - |
| dc.contributor.author-college | 社會科學院 | - |
| dc.contributor.author-dept | 新聞研究所 | - |
| dc.date.embargo-lift | 2026-01-14 | - |
| 顯示於系所單位: | 新聞研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-114-1.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 73.87 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
