Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電子工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101243
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉宗德zh_TW
dc.contributor.advisorTsung-Te Liuen
dc.contributor.author蘇筠淳zh_TW
dc.contributor.authorYun-Chun Suen
dc.date.accessioned2025-12-31T16:26:56Z-
dc.date.available2026-01-01-
dc.date.copyright2025-12-31-
dc.date.issued2025-
dc.date.submitted2025-11-18-
dc.identifier.citation[1] J.-C. Chien, S. W. Baker, H. T. Soh, and A. Arbabian, “Design and Analysis of a Sample-and-Hold CMOS Electrochemical Sensor for Aptamer-Based Therapeutic Drug Monitoring,” IEEE J. Solid-State Circuits, vol. 55, no. 11, pp. 2914–2929, Nov. 2020.
[2] C. Chen, S. Zhou, Y. Cai, and F. Tang, “Nucleic acid aptamer application in diagnosis and therapy of colorectal cancer based on cell-SELEX technology,” Npj Precis. Oncol., vol. 1, no. 1, p. 37, Nov. 2017.
[3] J. A. Doudna and E. Charpentier, “The new frontier of genome engineering with CRISPR-Cas9,” Science, vol. 346, no. 6213, p. 1258096, Nov. 2014.
[4] Y. Dai, R. A. Somoza, L. Wang, J. F. Welter, Y. Li, A. I. Caplan, and C. C. Liu, “Exploring the Trans‐Cleavage Activity of CRISPR‐Cas12a (cpf1) for the Development of a Universal Electrochemical Biosensor,” Angew. Chem., vol. 131, no. 48, pp. 17560–17566, Nov. 2019.
[5] Y.-T. Hsiao, S.-Y. Chuang, H.-Y. Hou, Y.-C. Su, H.-C. Yeh, H.-T. Song, Y.-J. Chang, W.-Y. Weng, Y.-C. Tsai, P.-Y. Lin, S.-Y. Chen, Y.-J. Lin, M.-W. Lin, and J.-C. Chien, “A CMOS/Microfluidics Point-of-Care SoC employing Square-Wave Voltcoulometry for Biosensing with Aptamers and CRISPR-Cas12a Enzymes,” in 2023 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits), Kyoto, Japan, 2023, pp. 1–2.
[6] T. Kang, S. Lee, S. Song, M. R. Haghighat, and M. P. Flynn, “A Multimode 157 μ W 4-Channel 80 dBA-SNDR Speech Recognition Frontend With Direction-of-Arrival Correction Adaptive Beamformer,” IEEE J. Solid-State Circuits, vol. 59, no. 6, pp. 1794–1808, June 2024.
[7] T. Caldwell, D. Alldred, and Z. Li, “A Reconfigurable $\Delta\Sigma$ ADC With Up to 100 MHz Bandwidth Using Flash Reference Shuffling,” IEEE Trans. Circuits Syst. Regul. Pap., vol. 61, no. 8, pp. 2263–2271, Aug. 2014.
[8] S. O’Driscoll, K. V. Shenoy, and T. H. Meng, “Adaptive Resolution ADC Array for an Implantable Neural Sensor,” IEEE Trans. Biomed. Circuits Syst., vol. 5, no. 2, pp. 120–130, Apr. 2011.
[9] X. Tang, X. Yang, W. Zhao, C.-K. Hsu, J. Liu, L. Shen, A. Mukherjee, W. Shi, S. Li, D. Pan, and N. Sun, “A 13.5-ENOB, 107-μW Noise-Shaping SAR ADC With PVT-Robust Closed-Loop Dynamic Amplifier,” IEEE J. Solid-State Circuits, vol. 55, pp. 3248–3259, 2020.
[10] B. Razavi, “The Bootstrapped Switch [A Circuit for All Seasons],” IEEE Solid-State Circuits Mag., vol. 7, no. 3, pp. 12–15, 2015.
[11] P. Wang, G. Csaba, W. Porod, and T. Ytterdal, “A differential inverter-based switched-capacitor oscillator in 65 nm CMOS technology,” in 2015 European Conference on Circuit Theory and Design (ECCTD), Trondheim, Norway, 2015, pp. 1–4.
[12] B. Verbruggen, K. Deguchi, B. Malki, and J. Craninckx, “A 70 dB SNDR 200 MS/s 2.3 mW dynamic pipelined SAR ADC in 28nm digital CMOS,” in 2014 Symposium on VLSI Circuits Digest of Technical Papers, Honolulu, HI, USA, 2014, pp. 1–2.
[13] J.-H. Tsai, H.-H. Wang, Y.-C. Yen, C.-M. Lai, Y.-J. Chen, P.-C. Huang, P.-H. Hsieh, H. Chen, and C.-C. Lee, “A 0.003 mm$^{2}$ 10 b 240 MS/s 0.7 mW SAR ADC in 28 nm CMOS With Digital Error Correction and Correlated-Reversed Switching,” IEEE J. Solid-State Circuits, vol. 50, no. 6, pp. 1382–1398, June 2015.
[14] Y.-T. Hsiao, Y.-C. Tsai, W. Foo, H.-Y. Hou, Y.-C. Su, Y. L. Li, and J.-C. Chien, “20.3 An RFID-Inspired One-Step Packaged Multimode Bio-Analyzer with Vacuum Microfluidics for Point-of-Care Diagnostics,” in 2025 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA, 2025, pp. 352–354.
[15] C.-C. Chen and C.-C. Hsieh, “A 12-ENOB Second-Order Noise Shaping SAR ADC with PVT-insensitive Voltage-Time-Voltage Converter,” in 2021 IEEE Asian Solid-State Circuits Conference (A-SSCC), Busan, Korea, Republic of, 2021, pp. 1–3.
[16] K.-C. Cheng, S.-J. Chang, C.-C. Chen, and S.-H. Hung, “9.7 A 94.3dB SNDR 184dB FoMs 4th -Order Noise-Shaping SAR ADC with Dynamic-Amplifier-Assisted Cascaded Integrator,” in 2024 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA, 2024, pp. 180–182.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101243-
dc.description.abstract本論文分為三個部分:其一為在一結合 CRISPR-Cas12a 酵素與結構切換適體之電化學生物感測平台中,完成CRISPR-Cas12a 轉切割反應實驗設計與量測;其二則為一雜訊整形逐次逼近型類比數位轉換器;最後則是自訂式記憶體儲存系統。
在第一個部分中,我們設計實驗以探討不同濃度的DNA適體對CRISPR-Cas12a 酵素轉切割活性(trans-cleavage activity)的影響,並量測待測適體的電流訊號以量化切割程度。於0 nM、0.65 nM與6.5 nM三種轉化生長因子(TGF-β1)DNA適體濃度下,觀察到電流訊號分別下降2.5%、11%與27.3%,成功以團隊所設計之系統晶片量測到不同濃度對應轉切割反應程度之變化。
為了解析更多種類的適體產生的微小電流變化,本研究第二部分設計一具備三種模式(SAR、一階積分、二階積分)的雜訊整形逐次逼近型類比數位轉換器,採用CIFF(Cascaded Integrators with Feed-Forward)架構,並加入可調變之積分時間與低功耗、低雜訊之電路設計。於每秒一千萬次取樣(10 MS/s)下,SAR模式可達到60.1 dB的信噪比(SNDR);在100 kHz頻寬內,一階和二階積分模式分別可達到82 dB和95.9 dB的信噪比,對應功耗分別為53.4 μW、98.3 μW及137.7μW。
最後,為配合系統之控制與資料儲存需求,本論文亦提出一套具備10k-bits容量的自訂式靜態隨機存取記憶體架構,支援資料儲存與讀取功能,並透過量測驗證其操作穩定性。相較於標準編譯式記憶體,得以根據應用需求調整設計,在功耗與面積上進行優化,提升其在無線供電系統晶片中的適用性。
第二部分的類比數位轉換器採用TSMC 28-nm CMOS製程,而記憶體電路則是採用TSMC 180-nm CMOS製程。
zh_TW
dc.description.abstractThis thesis is divided into three sections. The first section describes the experimental design which tests CRISPR-Cas12a trans-cleavage activity through an electrochemical biosensing system that unites structure-switching aptamers. The thesis presents a noise-shaping successive approximation register (SAR) analog-to-digital converter in the second section. The third section introduces a custom static random-access memory (SRAM) storage system.
The first section included experimental designs to investigate how varying DNA aptamer concentrations affected the trans-cleavage activity of CRISPR-Cas12a. The reporter aptamer's electrochemical current measurement serves to determine how much cleavage has occurred. The DNA aptamer concentrations of 0 nM, 0.65 nM and 6.5 nM for transforming growth factor-β1 (TGF-β1) produced signal decreases of 2.5%, 11% and 27.3% respectively. The experimental results prove that the custom-designed system-on-a-chip (SoC) platform successfully detects trans-cleavage activity changes at different DNA aptamer concentrations.
To resolve the small current variations generated by various types of aptamers, the second section introduces a noise-shaping SAR ADC that supports three operating modes—SAR, first-order integration, and second-order integration. The ADC employs the cascaded integrators with feed-forward (CIFF) architecture and integrates tunable integration time as well as low-power, low-noise circuit design. At a sampling rate of 10 MS/s, the SAR mode achieves a signal-to-noise and distortion ratio (SNDR) of 60.1 dB. Within a 100 kHz bandwidth, the first-order and second-order integration modes achieve SNDR of 82 dB and 95.9 dB, respectively. The corresponding power consumptions for the SAR, first-order, and second-order modes are 53.4 μW, 98.3 μW, and 137.7 μW, respectively.
The third section presents a customized 10-kbit static random-access memory (SRAM) which functions as system control memory and data storage. The custom implementation allows specific application-based optimization of power and area which makes it suitable for wirelessly powered system-on-a-chip (SoC) platforms beyond what standard memory-compiler macros offer. The memory array supports standard read and write operations, and measurement tests confirmed its operational stability.
While the SRAM was implemented using TSMC 180-nm CMOS technology, the analog-to-digital converter was manufactured using the TSMC 28-nm CMOS process.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-12-31T16:26:56Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-12-31T16:26:56Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
中文摘要 iii
ABSTRACT iv
CONTENTS vi
LIST OF FIGURES viii
LIST OF TABLES xi
Chapter 1 Introduction 1
1.1 Structure-Switching Aptamers 1
1.2 Square-wave voltammetry (SWV) 2
1.3 CRISPR/Cas Technology 4
Chapter 2 CRISPR-Cas12a Detection 8
2.1 System Architecture 8
2.2 Detection Preparation 8
2.3 Experimental Setups and Photos 11
2.4 Measurement Results 12
Chapter 3 A Multi-mode Noise-Shaping SAR ADC Readout Circuit 14
3.1 Motivation 14
3.2 System Architecture 17
3.2.1 SAR mode 20
3.2.2 1st-order NS-SAR mode 22
3.2.3 2nd-order NS-SAR mode 23
3.3 Circuit Design details 25
3.3.1 Design Specifications 25
3.3.2 Sampling switch 26
3.3.3 OTA design 28
3.3.4 Dynamic Comparator 31
3.3.5 Capacitive Digital-To-Analog Converter (CDAC) 34
3.3.6 SAR Logic and Serializer 37
3.4 Simulation Results 37
3.4.1 Performance summary 38
3.4.2 Power breakdown 40
3.4.3 Noise breakdown 41
3.4.4 Die Photo and Comparison table 42
Chapter 4 A 10k-bits Custom Memory Circuits 44
4.1 Motivation 44
4.2 System Block Diagram 45
4.3 Timing Diagram 47
4.4 Experimental Result 50
Chapter 5 Conclusion 52
REFERENCE 53
-
dc.language.isoen-
dc.subject靜態隨機存取記憶體-
dc.subject核酸適體-
dc.subjectCRISPR-
dc.subject雜訊整形連續漸進式類比至數位轉換器-
dc.subjectSRAM-
dc.subjectAptamer-
dc.subjectCRISPR-
dc.subjectNoise-Shaping SAR ADC-
dc.title應用於核酸適體及CRISPR-Cas12a酶電化學生物感測之讀出與記憶體電路zh_TW
dc.titleReadout and Memory Circuits for Aptamers and CRISPR-Cas12a Enzymes Electrochemical Biosensingen
dc.typeThesis-
dc.date.schoolyear114-1-
dc.description.degree碩士-
dc.contributor.coadvisor簡俊超zh_TW
dc.contributor.coadvisorJun-Chau Chienen
dc.contributor.oralexamcommittee陳信樹;廖育德zh_TW
dc.contributor.oralexamcommitteeHsin-Shu Chen;Yu-Te Liaoen
dc.subject.keyword靜態隨機存取記憶體,核酸適體CRISPR雜訊整形連續漸進式類比至數位轉換器zh_TW
dc.subject.keywordSRAM,AptamerCRISPRNoise-Shaping SAR ADCen
dc.relation.page55-
dc.identifier.doi10.6342/NTU202504689-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-11-19-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept電子工程學研究所-
dc.date.embargo-lift2030-11-18-
顯示於系所單位:電子工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-114-1.pdf
  未授權公開取用
5.98 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved