Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 共同教育中心
  3. 統計碩士學位學程
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101199
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor胡明哲zh_TW
dc.contributor.advisorMing-Che Huen
dc.contributor.author郭沛辰zh_TW
dc.contributor.authorPei-Chen Guoen
dc.date.accessioned2025-12-31T16:17:47Z-
dc.date.available2026-01-01-
dc.date.copyright2025-12-31-
dc.date.issued2025-
dc.date.submitted2025-11-13-
dc.identifier.citation[1] D. A. Bowen, M. C. Hutchinson, and N. O’Sullivan. Pairs trading: Does volatility timing matter? Journal of Empirical Finance, 34:97–116, 2015.
[2] Z. Dai, C. W. Chen, and E. M. Cheng. Pairs Trading with Stocks and Options under a Trend-Stationary Price Spread. SSRN Electronic Journal, 2024. Available at SSRN: https://ssrn.com/abstract=4682496.
[3] C. L. Dunis, J. Laws, and U. Schilling. Pairs trading with a time-varying parameter Kalman filter. The European Journal of Finance, 17(7):579–595, 2011.
[4] I. P. Fernandes. Pair Trading Strategies and Performance. Msc dissertation, Universidade de Coimbra, March 2024. Dissertação no âmbito do Mestrado em Métodos Quantitativos em Finanças.
[5] A. Frazzini and L. H. Pedersen. Does Pairs Trading Still Work in the Era of High Frequency Trading? Working paper, AQR Capital Management, 2010.
[6] E. Gatev, W. N. Goetzmann, and K. G. Rouwenhorst. Pairs Trading: Performance of a Relative-Value Arbitrage Rule. The Review of Financial Studies, 19(3):797–827, 2006.
[7] G. K. Haddad and H. Talebi. The profitability of pair trading strategy in stock markets: Evidence from Toronto Stock Exchange. International Journal of Finance Economics, 2021. An earlier version might be referenced as 2020 or 2021 depending on the publication stage.
[8] F. Jia, J. Chen, and Y. Li. Pairs trading based on financial network community detection. Physica A: Statistical Mechanics and its Applications, 626:129088, 2023.
[9] C.-H. Ko, C.-H. Chang, and W.-C. Lin. Pairs trading in the cryptocurrency market: a novel approach utilizing NSGA-II. Applied Economics, pages 1–18, 2025.
[10] C. Krauss. Statistical Arbitrage Pairs Trading Strategies: Review and Outlook. Journal of Economic Surveys, 31(2):513–545, 2017.
[11] R. Q. Liew and Y. Wu. Pairs trading: A copula approach. Journal of Derivatives Hedge Funds, 19:12–30, 2013. Published online: 21 February 2013.
[12] R. Q. Liew and Y. Wu. Dynamic Copula Framework for Pairs Trading. In EFMA 2017 Annual Meetings, 2017. Available at SSRN: https://ssrn.com/abstract=2974633.
[13] T.-Y. Lin, C. W. Chen, and F.-Y. Syu. Multi-asset pair-trading strategy: A statistical learning approach. North American Journal of Economics and Finance, 55:101295, 2021.
[14] S. Mudchanatongsuk, J. A. Primbs, and W. S. Wong. An Optimal Pairs-Trading Rule. Technical report, Working Paper, Stanford University, 2008. Available at SSRN: https://ssrn.com/abstract=1114210.
[15] J. M. Sarmento and N. Horta. A data-driven market-neutral strategy for pairs trading using machine learning. Expert Systems with Applications, 158:113441, 2020.
[16] R. T. Smith and X. Xu. A good pair: alternative pairs-trading strategies. Financial Markets and Portfolio Management, 31:1–26, 2017.
[17] J. Stübinger and S. Endres. Statistical arbitrage with vine copulas. Journal of Banking & Finance, 96:146–163, 2018.
[18] M. Tadi and J. Witzany. Copula-based trading of cointegrated cryptocurrency Pairs. Financial Innovation, 11(40), 2025. Published online: 13 January 2025.
[19] K. S. Tan and S. Zhu. Optimal Pairs Trading with a Mean-Reverting Price Spread under Limited Loss Control. SIAM Journal on Financial Mathematics, 14(4):1005–1032, 2023.
[20] S. Valeyre et al. Pairs Trading Using Fractional Cointegration Approach and Its Comparison with Cointegration Approach. Available at SSRN 2928825, 2017.
[21] Z. Zhang and M. Lipa. A completely model-free pairs trading framework based on deep learning. arXiv preprint arXiv:2403.04754, 2024.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101199-
dc.description.abstract本研究旨在探討並比較不同複雜度的配對交易(Pairs Trading)策略在現代金融市場中的有效性與穩健性。傳統的配對交易策略多依賴於共整合等線性模型,然而此類模型在描述金融資產間普遍存在的非線性及尾部相依性時,存在其理論局限性。為此,本研究的核心目的在於,驗證引入更先進的非線性模型(Copula 函數)以及結合趨勢動量指標(SuperTrend)作為過濾器,是否能顯著提升傳統配對交易策略的績效。 本研究以 2015 年至 2024 年的美國 S&P500 指數成分股為研究對象,首先建立了一套包含單根檢定、共整合分析與赫斯特指數檢定的多層次篩選流程,以識別具備長期穩定關係的股票配對。在此基礎上,本研究設計並比較了六種策略組合,核心模型涵蓋了固定閾值 Z-score、最適化 Z-score 以及基於多種函數家族的 Copula 模型。為客觀評估策略績效,本研究採用了滾動窗口回測框架,以 4 年為形成期、1 年為交易期進行年度滾動測試。 實證結果顯示,在長達六年的樣本外測試期間,結合了 Copula 函數與 SuperTrend 趨勢過濾的策略,在核心的風險調整後報酬指標(平均夏普比率)上表現最為優越,證明了精確捕捉資產間非線性相依性結構的價值。研究亦發現,對交易參數進行動態優化,以及引入趨勢過濾機制,均能顯著提升基礎模型的表現與穩健性。 本研究的結論證實,相較於傳統線性模型,採用能夠捕捉複雜相依性結構的 Copula 模型,並輔以合理的風險過濾機制,能有效提升配對交易策略的穩健性與獲利能力,為統計套利領域的實證研究提供了一個更為全面、嚴謹的評估框架與新的探索方向。zh_TW
dc.description.abstractThis study aims to investigate and compare the effectiveness and robustness of pairs trading strategies of varying complexities in modern financial markets. Traditional pairs trading strategies often rely on linear models such as cointegration; however, such models have theoretical limitations in describing the non-linear and tail dependence commonly present in financial assets. Therefore, the primary objective of this research is to verify whether the introduction of a more advanced non-linear model (Copula functions), combined with a trend-momentum indicator (SuperTrend) as a filter, can significantly enhance the performance of traditional pairs trading strategies. Utilizing the constituent stocks of the U.S. S&P 500 index from 2015 to 2024 as its research universe, this study first establishes a multi-stage screening process that includes unit root tests, cointegration analysis, and Hurst exponent testing to identify stock pairs with stable long-term relationships. On this basis, six strategy combinations are designed and compared, with core models encompassing a fixed-threshold Z-score, an optimized Z-score, and Copula models based on various function families. To objectively evaluate performance, this study employs a rolling-window backtesting framework, utilizing a four-year formation period and a one-year trading period, rolled annually. The empirical results demonstrate that, over a six-year out-of-sample testing period, the strategy based on Copula functions combined with the SuperTrend trend filter exhibited the most superior risk-adjusted return (average Sharpe Ratio), demonstrating the value of accurately capturing the non-linear dependence structure between assets. The study also finds that both dynamic parameter optimization and the introduction of a trend filtering mechanism significantly enhance the performance and robustness of the base models. The conclusions of this study confirm that, compared to traditional linear models, adopting Copula models capable of capturing complex dependence structures, supplemented with a reasonable risk-filtering mechanism, can effectively improve the robustness and profitability of pairs trading strategies. This provides a more comprehensive, rigorous evaluation framework and new directions for empirical research in the field of statistical arbitrage.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-12-31T16:17:47Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-12-31T16:17:47Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書 i
致謝 iii
摘要 v
Abstract vii
目次 ix
圖目次 xiii
表目次 xv
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機 2
1.3 研究目的 3
1.4 研究架構 4
第二章 文獻回顧 5
2.1 距離法:基礎與侷限 5
2.2 共整合法:理論的深化與演進 6
2.3 廣義赫斯特指數(GHE)與Copula方法 6
2.4 參數優化與其他考慮因素 6
第三章 研究方法 9
3.1 股票配對的系統性篩選流程 9
3.1.1 第一階段:個股的定態特性分析 9
3.1.2 第二階段:候選配對的初步形成 11
3.1.3 第三階段:共整合關係的檢定 11
3.1.4 第四階段:動態特性與穩定性分析 12
3.1.5 最終決策 14
3.2 結合趨勢過濾的動態Z-score交易策略模型 15
3.2.1 SuperTrend 指標的構建 15
3.2.2 動態價差與Z-score計算 17
3.2.3 交易訊號與部位管理 17
3.3 Copula 函數的相對價值模型 18
3.3.1 理論基礎:Copula函數與相依性結構 20
3.3.2 模型建構與訊號生成 22
3.4 回測框架與績效指標 24
3.4.1 樣本內外測試與模型比較設計 24
3.4.2 績效評估指標 25
3.5 本章總結 26
第四章 實證設計、結果與分析 27
4.1 資料來源、期間與處理 27
4.2 實證研究設計 28
4.3 績效歸因之分析 29
4.4 SuperTrend 參數選擇 31
4.5 配對篩選之實證結果 33
4.6 交易策略績效之主要結果 34
4.7 與市場基準(S&P500)之績效比較 38
4.7.1 熊市環境下的防禦能力(2022年) 38
4.7.2 危機事件中的風險控制(2020年) 39
4.7.3 牛市環境下的表現 39
4.8 敏感度分析 40
4.8.1 敏感度分析結果 40
4.8.2 結果討論 40
第五章 結論與未來方向 43
5.1 結論 43
5.2 未來方向 44
參考文獻 45
附錄A—本研究使用之公式 49
A.1 技術指標公式 49
A.2 績效指標公式 50
-
dc.language.isozh_TW-
dc.subject配對交易-
dc.subject統計套利-
dc.subject共整合-
dc.subjectCopula函數-
dc.subjectSuperTrend指標-
dc.subjectPairs Trading-
dc.subjectStatistical Arbitrage-
dc.subjectCointegration-
dc.subjectCopula Functions-
dc.subjectSuperTrend Indicator-
dc.titleCopula 函數與趨勢指標在配對交易策略上之應用研究zh_TW
dc.titleAn Applied Study of Copula Functions and Trend Indicators on Pairs Trading Strategiesen
dc.typeThesis-
dc.date.schoolyear114-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee溫在宏;何率慈;陳郁蕙zh_TW
dc.contributor.oralexamcommitteeTzai-Hung WEN;Shuai-Tsyr Ho;Yu-Hui Chenen
dc.subject.keyword配對交易,統計套利共整合Copula函數SuperTrend指標zh_TW
dc.subject.keywordPairs Trading,Statistical ArbitrageCointegrationCopula FunctionsSuperTrend Indicatoren
dc.relation.page50-
dc.identifier.doi10.6342/NTU202504673-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-11-13-
dc.contributor.author-college共同教育中心-
dc.contributor.author-dept統計碩士學位學程-
dc.date.embargo-lift2026-01-01-
顯示於系所單位:統計碩士學位學程

文件中的檔案:
檔案 大小格式 
ntu-114-1.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
1.03 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved