Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 園藝暨景觀學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101185
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林書妍zh_TW
dc.contributor.advisorShu-Yen Linen
dc.contributor.author呂昱蓁zh_TW
dc.contributor.authorYu-Chen Luen
dc.date.accessioned2025-12-31T16:14:50Z-
dc.date.available2026-01-01-
dc.date.copyright2025-12-31-
dc.date.issued2025-
dc.date.submitted2025-12-08-
dc.identifier.citation林詠洲、陳邦華、蔡雲鵬. 2013. 柑橘生長與栽培管理. 農業部農業試驗所. 臺中.
張汶肇、林明瑩、卓家榮. 2009. 優質茂谷柑栽培管理技術. 臺南區農業改良場技術專刊 142:1-37.
莊浚釗. 2019. 北部縣市土壤性質與柑桔施肥推薦參考資訊, p. 52-78. 刊於:黃維廷、陳柱中、李艷琪、郭鴻裕主編. 作物土壤管理與施肥技術-果樹與茶作篇. 農業部農業試驗所. 臺中.
黃維廷、陳柱中. 2019. 中部縣市土壤性質與柑桔施肥推薦參考資訊, p. 17-51. 刊於:黃維廷、陳柱中、李艷琪、郭鴻裕主編. 作物土壤管理與施肥技術-果樹與茶作篇. 農業部農業試驗所. 臺中.
農業部. 2025. 113年主要農產品種植面積. 農業統計資料查詢系統. < https://agrstat.moa.gov.tw/sdweb/public/book/Book.aspx>.
Adair, E.C., S.E. Hobbie, and R.K. Hobbie. 2010. Single-pool exponential decomposition models: potential pitfalls in their use in ecological studies. Ecology 91:1225-36.
Aljerib, Y.M., M. Geng, P. Xu, D. Li, M.S. Rana, and Q. Zhu. 2022. Equivalent incorporation of Chinese milk vetch and rice straw enhanced nutrientmineralization and reduced greenhouse gas emissions. Soil Sci. Plant Nutr. 68:167-174.
Al-Saif, A.M., H.F. Abdel-Aziz, S.M. Khalifa, I.A. Elnaggar, A.E.N.A. El-wahed, M.H. Farouk, and A.E. Hamdy. 2023. Pruning boosts growth, yield, and fruit quality of old valencia orange trees: a field study. Agriculture 13:1720.
Amelung, W, D. Bossio, W. de Vries, I. Kögel-Knabner, J. Lehmann, R. Amundson, R. Bol, C. Collins, R. Lal, J. Leifeld, B. Minasny, G. Pan, K. Paustian, C. Rumpel, J. Sanderman, J.W. van Groenigen, S. Mooney, B. van Wesemael, M. Wander, and A. Chabbi. 2020. Towards a global-scale soil climate mitigation strategy. Nat. Commun. 11:5427.
Angers, D.A. and S. Recous. 1997. Decomposition of wheat straw and rye residues as affected by particle size. 189:197-203.
Austin, A.T. and P.M. Vitousek. 2001. Precipitation, decomposition and litter decomposability of Metrosideros polymorpha in native forests on Hawai’i. J. Ecol. 88:129-138.
Bai, S.H., M.Gallart, K. Singh, G. Hannet, B. Komolong, D. Yinil, D.J. Field, B. Muqaddas, and H.M. Wallace. 2022. Leaf litter species affects decomposition rate and nutrient release in a cocoa plantation. Agric. Ecosyst. Environ. 324:107705.
Baldi, E., M. Toselli, G. Marcolini, M. Quartieri, E. Cirilli, A. Innocenti, and B. Marangoni. 2010. Compost can successfully replace mineral fertilizers in the nutrient management of commercial peach orchard. Soil Use Manag. 26:346-353.
Batjes, N.H. 1996. Total carbon and nitrogen in soils of the world. European J. Soil Sci. 47:151-163.
Bengtsson, G., P. Bengtson, and K.F. Månsson. 2003. Gross nitrogen mineralization-, immobilization-, and nitrification rates as a function of soil C/N ratio and microbial activity. Soil Biol. Biochem. 35:143-154.
Bhan, C., S.K Bairwa, D. Prasad, A.K. Srivastava, S. Chawla, and P. Kumar. 2025. Impact of various types of mulch materials on plant growth, yield and quality attributes of kinnow mandarin. Indian J. Agric. Res. 59:467-472.
Bhattacharyya, R., S.M.F. Rabbi, Y.Zhang, I.M. Young, A.R. Jones, P.G. Dennis, N.W. Menzies, P.M. Kopittke, and R.C. Dalal. 2021. Soil organic carbon is significantly associated with the pore geometry, microbial diversity and enzyme activity of the macro-aggregates under different land uses. Sci. Total Environ. 778:146826.
Cabrera-Pérez, C., J. Llorens, A. Escolà, A. Royo-Esnal, and J. Recasens. 2023. Organic mulches as an alternative for under-vine weed management in Mediterranean irrigated vineyards: Impact on agronomic performance. Eur. J. Agron. 145:126798.
Carmeis Filho, A.C., C.A.C. Crusciol, A.S. Nascente, M. Mauad, and R.A. Garcia. 2017. Influence of potassium levels on root growth and nutrient uptake of upland rice cultivars. Rev. Caatinga. 30:32-44.
Dad, J.M., S.A. Dand, and N.A. Pala. 2021. The effect of bi-culture cover crops on soil quality, carbon sequestration, and growth characteristics in apple orchards of North Western Himalayas. Agrofor. Syst. 95:1745-1758.
Damon, P.M., B. Bowden, T. Rose, and Z. Rengel. 2014. Crop residue contributions to phosphorus pools in agricultural soils: A review. Soil Biol. Biochem. 74:127-137.
Darwish, T., T. Atallah, M.E. Moujabber, and N. Khatib. 2005. Salinity evolution and crop response to secondary soil salinity in two agro-climatic zones in Lebanon. Agric. Water Manag. 78:152-164.
Das, K., S. Sau, T. Sarkar and P. Dutta. 2016. Effect of organic mulches on yield, physico-chemical qualities and leaf mineral composition of litchi cv. Bombai in Indo-Gangetic plain of West Bengal. J. Crop Weed. 12:67-69.
Dasberg, S. 1987. Nitrogen fertilization in citrus orchards. Plant and Soil. 100:1-9.
Demir, Z., N. Tursun, and D. Işik. 2019. Effects of different cover crops on soil quality parameters and yield in an apricot orchard. Int. J. Agric. Biol. 21:399-408.
Devêvre, O.C. and W.R. Horwáth. 2000. Decomposition of rice straw and microbial carbon use effciency under different soil temperatures and moistures. Soil Biol. Biochem. 32:1773-1785.
Dong, Ni., G. Hu, Y. Zhang, J. Qi, Y. Chen, and Y. Hao. 2021. Effects of green-manure and tillage management on soil microbial community composition, nutrients and tree growth in a walnut orchard. Sci. Rep. 11:16882.
Dyjakon, A., J. Boer., P. Bukowski, F. Adamczyk, and P. Frąckowiak. 2016. Wooden biomass potential from apple orchards in Poland. Drewno. 59:73-86.
Edwards, A.P., and J.M. Bremner. 1967. Microaggregates in soils. Eur. J. Soil Sci. 18:64-73.
El-taweel, A.A. and A.A. Farag. 2015. Mulching implication on productivity and fruit quality of pomegranate grown in a sandy soil. Egypt. J. Hort. 42:367-388.
FAO. 2024. Land statistics 2001-2022-Global, regional and country trends. FAOSTAT Analytical Briefs, No. 88. https://doi.org/10.4060/cd1484en
Fasth, B.G., M.E. Harmon, and J. Sexton. 2011. Decomposition of fine woody debris in a deciduous forest in North Carolina. J. Torrey Bot. Soc. 138:192-206.
Fernández, F.J., J.L. Laduxa, and P.S. Searles. 2015. Dynamics of shoot and fruit growth following fruit thinning in olive trees: Same season and subsequent season responses. Sci. Hortic. 192:320-330.
Ferrara, G., M. Fracchiolla, Z.A. Chami, S. Camposeo, C. Lasorella, A. Pacifico, A. Aly, and P. Montemurro. 2012. Effects of mulching materials on soil and performance of cv. Nero di Troia grapevines in the Puglia region, southeastern Italy. Am. J. Enol. Vitic. 63:269-276.
Franzluebbers, A.J. 2002. Water infiltration and soil structure related to organic matter and its stratification with depth. Soil Tillage Res. 66:197-205.
Gmach, M.R., M.R. Cherubin, K. Kaiser, and C.E.P. Cerri. 2020. Processes that influence dissolved organic matter in the soil: A review. Sci. Agric. 77:e20180164.
Golchin, A., J.M. Oades, J.O. Skjemstad, and P. Clarke. 1994. Study of free and occluded particulate organic matter in soils by solid state 13C Cp/MAS NMR spectroscopy and scanning electron microscopy. Aust. J. Soil Res. 32:285-309.
Gómez, J.A., J.V. Giraldez, M. Pastor, and E. Fereres. 1999. Effects of tillage method on soil physical properties, infiltration and yield in an olive orchard. Soil Tillage Res. 52:167-175.
Grosbellet, C., L. Vidal-Beaudet, V. Caubel, and S. Charpentier. 2011. Improvement of soil structure formation by degradation of coarse organic matter. Geoderma 162:27-38.
Gu, C., Y. Liu, I. Mohamed, R. Zhang, X. Wang, X. Nie, M. Jiang, M. Brooks, F. Chen, and Z. Li. 2017. Dynamic changes of soil surface organic carbon under different mulching practices in citrus orchards on sloping land. PLoS One 11:e0168384.
Gu, W., B. Berg, L. Dong, F. Yang, and T. Sun. 2024. Patterns and controlling factors of decomposition in distal shoot systems by branch order across 10 temperate tree species. Plant Soil 503:371-383.
Guardiola, J.L. and A. García-Luis. 2000. Increasing fruit size in Citrus. Thinning and stimulation of fruit growth. Plant Growth Regul. 31:121-132.
Hallman, L.M., J.M. Santiago, J. Fox, M. Pitino, R.G. Shatters, and L. Rossi. 2023. Use of hardwood mulch applications to improve soil characteristics of Alfisols used in Florida citrus production. Front. Soil Sci. 3:1200847.
Hernańdez, A.J., C. Lacasta, and J. Pastor. 2005. Effects of different management practices on soil conservation and soil water in a rainfed olive orchard. Agric Water Manag. 77:232-248.
Hu, Y., P. Zhan, B.W Thomas, J. Zhao, X. Zhang, H. Yan, Z. Zhang, S. Chen, X. Shi, and Y. Zhang. 2022. Organic carbon and nitrogen accumulation in orchard soil with organic fertilization and cover crop management: A global meta-analysis. Sci. Total Environ. 852:158402.
Huang, F., W. Zhang, L. Xue, B. Razavi, K. Zamanian, and X. Zhao. 2025. The microbial mechanism of maize residue decomposition under different temperature and moisture regimes in a Solonchak. Sci. Rep. 15:2215.
Iglesias, D.J., A. Quiñones, A. Font, and B. Martínez-Alcántara. 2013. Carbon balance of citrus plantations in Eastern Spain. Agric Ecosyst Environ. 171:103-111.
Jamir, A. and M. Dutta. 2020. Effect of mulching on important soil physicochemical properties of Khasi mandarin (Citrus reticulata Blanco) orchard under mid-hill region of Nagaland. J. Pharmacogn. Phytochem. 9:2854-2858.
Jastrow, J.D. 1996. Soil aggregate formation and the accrual of particulate and mineral-associated organic matter. Soil Biol. Biochem. 28:665-176.
Jindo, K., Y. Audette, F.L. Olivares, L.P. Canellas, D.S. Smith, and R.P. Voroney. 2023. Biotic and abiotic effects of soil organic matter on the phytoavailable phosphorus in soils: A review. Chem. Biol. Technol. Agric. 10:29.
Jordán, A., L.M. Zavala, and J. Gil. 2010. Effects of mulching on soil physical properties and runoff under semi-arid conditions in southern Spain. Catena 81:77-85.
Jungkunst, .H.F., J. Göpel, T. Horvath, S. Ott, and M. Brunn. 2022. Global soil organic carbon-climate interactions: Why scales matter. Wires Clim. Change. 13:e780.
Kaye, J.P. and S.C. Hart. 1997. Competition for nitrogen between plants and soil microorganisms. Trends Ecol. Evol. 12:139-143.
Kim, H.N. and J.H. Park. 2024. Monitoring of soil EC for the prediction of soil nutrient regime under different soil water and organic matter contents. Appl. Biol. Chem. 67:1.
Kimetu, J.M., J. Lehmann, S.O. Ngoze, D.N. Mugendi, J.M. Kinyangi, S. Riha, L.Verchot, J.W. Recha, and A.N. Pell. 2008. Reversibility of soil productivity decline with organic matter of differing quality along a degradation gradient. Ecosystems 11: 726-739.
King, J.K.K., C. Granjou, J. Fournil, and L. Cecillon. 2018. Soil sciences and the French 4 per 1000 Initiative-The promises of underground carbon. Energy Res. Soc. Sci. 45:1145-152.
Kopittke, P.M., N.W. Menziesa, P. Wang, B.A. McKenna, and E. Lombi. 2019. Soil and the intensification of agriculture for global food security. Environ. Int. 132:105078.
Krajewski, A., T. Ebert, A. Schumann, and L. Waldo. 2022. Pre-Harvest Fruit Splitting of Citrus. Agron. 12:1505.
Lal, R. 2004. Agricultural activities and the global carbon cycle. Nutr Cycl Agroecosys. 70:103-116.
Lal, R. 2007. Carbon management in agricultural soils. Mitig. Adapt. Strateg. Glob. Change. 12:303-322.
Lal, R. 2008. Sequestration of atmospheric CO2 in global carbon pools. Energy Environ. Sci. 1:86-100.
Lal, R., W. Negassa, and K. Lorenz. 2015. Carbon sequestration in soil. Curr. Opin. Environ. Sustain. 15:79-86.
Lalruatsangi, E. and B.N. Hazarika. 2018. Effect of various mulching materials on crop production and soil health in acid lime (Citrus aurantifolia Swingle). Int. J. Agric. Environ Biotechnol. 11:311-317.
Lan, X., P. Tans, and K.W. Thoning. Trends in globally-averaged CO2. NOAA Global Monitoring Laboratory, Colorado. 13 Nov 2025. <https://doi.org/10.15138/9N0H-ZH07.>
Lasota, J.,W. Piaszczyk, and E. Błońska. 2022. Fine woody debris as a biogen reservoir in forest ecosystems. Acta Oecol. 115:103822.
Lavell, A., M. Oppenheimer, C. Diop, J. Hess, R. Lempert, J. Li, R. Muir-Wood, and S. Myeong. 2012. Climate change: new dimensions in disaster risk, exposure, vulnerability, and resilience. In: Managing the risks of extreme events and disasters to advance climate change adaptation, p. 25-64. In: Field, C.B., V. Barros, T.F. Stocker, D. Qin, D.J. Dokken, K.L. Ebi, M.D. Mastrandrea, K.J. Mach, G.-K. Plattner, S.K. Allen, M. Tignor, and P.M. Midgley (eds.). A special report of working groups i and ii of the intergovernmental panel on climate change. IPCC. Cambridge University Press, Cambridge, UK.
Li, J., J. Lu, X. Li, T. Ren, R. Cong, and L. Zhou. 2014. Dynamics of Potassium Release and Adsorption on Rice Straw Residue. PloS One 9:e90440.
Li, X., J. Xie, Q. Zhang, M. Liu, X. Xiong, X. Liu, T. Lin, and Y. Yang. 2020. Substrate availability and soil microbes drive temperature sensitivity of soil organic carbon mineralization to warming along an elevation gradient in subtropical Asia. Geoderma 364:114198.
Liang, Z., B. Cao, Y. Jiao, C. Liu, X. Li, X. Meng, J. Shi, and X. Tian. 2022. Effect of the combined addition of mineral nitrogen and crop residue on soil respiration, organic carbon sequestration, and exogenous nitrogen in stable organic matter. Appl. Soil Ecol. 171:104324.
Lorenz, K. and R. Lal. 2014. Soil organic carbon sequestration in agroforestry systems. A review. Agron. Sustain. Dev. 34:44-454.
Linquist, B., K.J. Groenigen, M.A. Adviento-Borbe, C. Pittelkow, and C. Kessel. 2012. An agronomic assessment of greenhouse gas emissions from major cereal crops. Glob. Chang. Biol. 18:194-209.
Ma, Y., D. Woolf, M. Fan, L. Qiao, R. Li, and J. Lehmann. 2023. Global crop production increase by soil organic carbon. Nat. Geosci. 16:1159-1165.
Manzone, M., E. Paravidino, G. Bonifacino, and P. Balsari. 2016. Biomass availability and quality produced by vineyard management during a period of 15 years. Renewable Energy 99:465-471.
Masson-Delmotte, V., P. Zhai, H.O. Pörtner, D. Roberts, J. Skea, P.R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J.B.R. Matthews, Y. Chen, X. Zhou, M.I. Gomis, E. Lonnoy, T. Maycock, M. Tignor, and T. Waterfield. 2018. Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. IPCC, Cambridge University Press, Cambridge, UK.
Mikaloff Fletcher, S.E., N. Gruber, A.R. Jacobson, S.C. Doney, S. Dutkiewicz, M. Gerber, M. Follows, F. Joos, K. Lindsay, D. Menemenlis, A. Mouchet, S.A. Müller, and J.L. Sarmiento. 2006. Inverse estimates of anthropogenic CO2 uptake, transport, and storage by the ocean. Global Biogeochem. Cycles. 20:GB2002.
Mikha, M.M. and C.W. Rice. 2004. Tillage and manure effects on soil and aggregate-associated carbon and nitrogen. Soil Sci. Soc. Am. J. 68:809-816.
Minasny, B., B.P. Malone, A.B. McBratney, D.A. Angers, D. Arrouays, A. Chambers, V. Chaplot, Z. Chen, K. Cheng, B.S. Das, D.J. Field, A. Gimona, C.B. Hedley, S.Y. Hong, B. Mandal, B.P. Marchant, M. Martin, B.G. McConkey, V.L. Mulder, S. O'Rourke, A.C. Richer-de-Forges, Inakwu Odeh, J. Padarian, K. Paustian, G. Pan, L. Poggio, I. Savin, V. Stolbovoy, U. Stockmann, Y. Sulaeman, C. Tsui, T. Vågen, B. Wesemael, and L. Winowiecki. 2017. Soil carbon 4 per mille. Geoderma 292:359-86.
Montanaro, G., G. Celano, B. Dichio, and C. Xiloyannis. 2010. Effects of soil protecting agricultural practices on soil organic carbon and productivity in fruit tree orchards. Land Degrad. Dev. 21:132-138.
Montanaro, G., B. Dichio, C.B. Bati, and C. Xiloyannis. 2012. Soil management affects carbon dynamics and yield in a mediterranean peach orchard. Agric. Ecosyst. Environ. 161:46-54.
Montanaro, G., C. Xiloyannis, V. Nuzzo, and B. Dichio. 2017a. Orchard management, soil organic carbon and ecosystem services in Mediterranean fruit tree crops. Sci. Hortic. 217:92-101.
Montanaro, G., A.C. Tuzio, E. Xylogiannis, A. Kolimenakis, and B. Dichio. 2017b. Carbon budget in a Mediterranean peach orchard under different management practices. Agric. Ecosyst. Environ. 238:104-113.
Moradi, A., C.T.B. Sung, G.K. Joo, A.H.M. Hanif, and C.F. Ishak. 2012. Evaluation of four soil conservation practices in a non-terraced oil palm plantation. Agron. J. 104:1727-1740.
Morré, D.J., D.D. Jones, and H.H. Mollenhauer. 1967. Golgi apparatus mediated polysaccharide secretion by outer root cap cells of Zea mays. Planta 74:286-301.
Naik, S.K., S. Maurya, D. Mukherjee, A. K. Singh, and B.P. Bhatt. 2018. Rates of decomposition and nutrient mineralization of leaf litter from different orchards under hot and dry sub-humid climate. Arch. Agron. Soil Sci. 64:560-573.
Nardino, M., F. Pernice, F. Rossi, T. Georgiadis, O. Facini, A. Motisi, and A. Drago. 2013. Annual and monthly carbon balance in an intensively managed Mediterranean olive orchard. Photosynthetica. 51:63-74.
Nils, N. 1963. Leaching and decomposition of water-soluble organic substances from different types of leaf and needle litter. Stud. For. Suec. 3, Stockholm, Sweden.
Oldfield, E.E., M.A. Bradford, and S.A. Wood. 2019. Global meta-analysis of the relationship between soil organic matter and crop yields. Soil 5:15-32.
Oldfield, E.E., M.A. Bradford, A.J. Augarten, E.T. Cooley, A.M. Radatz, T. Radatz, and M.D. Ruark. 2022. Positive associations of soil organic matter and crop yields across a regional network of working farms. Soil Sci. Soc. Am. J. 86:384-397.
Olson, J.S. 1963. Energy storage and the balance of producers and decomposers in ecological systems. Ecology 44:322-331.
Ordóñez-Fernández, R., M.A.R. Torres, J. Román-vázquez, P. onzález-Fernández, and R. Carbonell-Bojollo. 2015. Macronutrients released during the decomposition of pruning residues used as plant cover and their effect on soil fertility. J. Agric. Sci. 153:615-630.
Owens, L.B., R.W. Malone, D.L. Hothem, G.C. Starr, and R. Lal. 2002. Sediment carbon concentration and transport from small watersheds under various conservation tillage practices. Soil Tillage Res. 67:65-73.
Pachauri, R.K. and A. Reisinger. 2007. Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, Geneva, Switzerland.
Payen, F.T., A. Sykes, M. Aitkenhead, P. Alexander, D. Moran, and M. MacLeod. 2021. Soil organic carbon sequestration rates in vineyard agroecosystems under different soil management practices: a meta-analysis. J. Clean. Prod. 290:125736.
Pingthaisong, W., S. Blagodatsky, P. Vityakon, and G. Cadisch. 2024. Mixing plant residues of different quality reduces priming effect and contributes to soil carbon retention. Soil Biol. Biochem. 188:109242.
Prescott, C.E. 2010. Litter decomposition: What controls it and how can we alter it to sequester more carbon in forest soils? Biogeochemistry 101:133-149.
Pretty, J. 2008. Agricultural sustainability: concepts, principles and evidence. Philos. Trans. R. Soc. B. 363:447-465.
Probert, M.E., R.J. Delve, S.K. Kimani, and J.P. Dimes. 2005. Modelling nitrogen mineralization from manures: representing quality aspects by varying C:N ratio of sub-pools. Soil Biol. Biochem. 37:279-287.
Regni, L., L. Nasini, L. Ilarioni, A. Brunori, L. Massaccesi, A. Agnelli, and P. Proietti. 2017. Long term amendment with fresh and composted solid olive mill waste on olive grove affects carbon sequestration by prunings, fruits, and soil. Front. Plant Sci. 7:2042.
Repullo, M.A., R. Carbonell, J. Hidalgo, A. Rodríguez-Lizana, and R. Ordóñez. 2012. Using olive pruning residues to cover soil and improve fertility. Soil Tillage Res 124:36-46.
Reyes-Martín, M.P., I. Ortiz-Bernad, A.M. Lallena, L.M. San-Emeterio, M. L. Martínez-Cartas, and E.F. Ondoño. 2022. Reuse of pruning waste from subtropical fruit trees and urban gardens as a source of nutrients: changes in the physical, chemical, and biological properties of the soil. Appl. Sci. 12:193.
Rhodes, R., N. Miles, and J.C. Hughesb. 2018. Interactions between potassium, calcium and magnesium in sugarcane grown on two contrasting soils in South Africa. Field Crops Res. 223:1-11.
Roccuzzo, G., D. Zanotelli, M. Allegra, A. Giuffrida, B.F. Torrisi, A. Leonardi, A. Quiñones, F. Intrigliolo, and M. Tagliavini. 2012. Assessing nutrient uptake by field-grown orange trees. Eur. J. Agron. 41:73-80.
Said-Pullicino, D., K. Kaise, G. Guggenberger, and G. Gigliotti. 2007. Changes in the chemical composition of water-extractable organic matter during composting: Distribution between stable and labile organic matter pools. Chemosphere 66: 2166-2176.
Sánchez-Monedero, M.A., A. Roig, C. Paredes, and M.P. Bernal. 2001. Nitrogen transformation during organic waste composting by the Rutgers system and its effects on pH, EC and maturity of the composting mixtures. Bioresour. Technol. 78:301-308.
Sanderman, J., T. Hengl, and G.J. Fiske. 2017. Soil carbon debt of 12,000 years of human land use. Proc. Natl. Acad. Sci. USA. 114:9575-9580.
Santonja, M., C. Fernandez, M. Proffit, C. Gers, T. Gauquelin, I.M. Reiter, W. Cramer, and V. Baldy. 2017. Plant litter mixture partly mitigates the negative effects of extended drought on soil biota and litter decomposition in a Mediterranean oak forest. J. Ecol. 105:801-815.
Sas-Paszt, L., K. Pruski, E. Żurawicz, B. Sumorok, E. Derkowska, and S. Głuszek. 2014. The effect of organic mulches and mycorrhizal substrate on growth, yield and quality of Gold Milenium apples on M.9 rootstock. Can. J. Plant Sci. 94:281-291.
Sebonela, L.K., D.E. Elephant, and N.J. Sithole. 2024. Eggshells improve soil pH and p availability in sandy loam and sandy clay loamy soil. Agronomy 14:2539.
Sharma, S., V.S. Rana, H. Prasad, J.Lakra, and U. Sharma. 2021. Appraisal of carbon capture, storage, and utilization through fruit crops. Front. Environ. Sci. 9:700768.
Shivanna, K. 2022. Climate change and its impact on biodiversity and human welfare. Proc Indian Natl Sci Acad. 88:160-171.
Six, J., H. Bossuyt, S. Degryze, and K. Denef. 2004. A history of research on the link between (micro) aggregates, soil biota, and soil organic matter dynamics. Soil Tillage Res. 79:7-31.
Suo, G., Y. Xiea, Y. Zhang, and H. Luo. 2019. Long-term effects of different surface mulching techniques on soil water and fruit yield in an apple orchard on the Loess Plateau of China. Sci. Hortic. 246:643-651.
Tagliavini, M., G. Tonon, F. Scandellari, A. Quiñones, S. Palmieri, G. Menarbin, P. Gioacchini, and A. Masia. 2007. Nutrient recycling during the decomposition of apple leaves (Malus domestica) and mowed grasses in an orchard. Agric. Ecosyst. Environ. 118:191-200.
Taguas, E.V., V. Marín-Moreno, C.M. Díez, L. Mateos, D. Barranco, F.J. Mesas-Carrascosa, R.Pérez, A. García-Ferrer, and J.L. Quero. 2021. Opportunities of super high-density olive orchard to improve soil quality: Management guidelines for application of pruning residues. J Environ Manag. 293:112785.
Tarafdar, J.C., S.C. Meena, S. Kathju. 2001. Influence of straw size on activity and biomass of soil microorganisms during decomposition. Eur. J. Soil Biol. 37:157-160.
Tian, G., B.T. Kang and L. Brussaard. 1992. Biological effects of plant residues with contrasting chemical compositions under humid tropical conditions-Decomposition and nutrient release. Soil Biol. Biochem. 24:1051-1060.
Torrús-Castillo, M., J. Calero, and R. García-Ruiz. 2023. Does olive cultivation sequester carbon? : Carbon balance along a C input gradient. Agric. Ecosyst. Environ. 358:108707.
Totsche, K.U., W. Amelung, M.H. Gerzabek, G. Guggenberger, E. Klumpp, C. Knief, E. Lehndorff, R. Mikutta, S. Peth, A. Prechtel, N. Ray, and I. Kögel-Knabner. 2018. Microaggregates in soils. J. Soil Sci. Plant Nutr. 181:104-136.
Toumi, M., B. Nedjimi, A. Halitim, and M. Garcia. 2016. Effects of K-Mg ratio on growth and cation nutrition of Vitis vinifera L. cv. “Dattier de Beiruth” grafted on SO4 rootstock. J. Plant Nutr. 39:904-911.
Udawatta, R.P. and S.H. Anderson. 2008. CT-measured pore characteristics of surface and subsurface soils influenced by agroforestry and grass buffers. Geoderma 145:381-389.
Velázquez-Martí, B., E. Fernández-González, I. López-Cortés, and D.M. Salazar-Hernández. 2011. Quantification of the residual biomass obtained from pruning of trees in Mediterranean olive groves. Biomass Bioenergy 35:3208-3217.
Ventura, M., F. Scandellari, E. Bonora, and M. Tagliavini. 2010. Nutrient release during decomposition of leaf litter in a peach (Prunus persica L.) orchard. Nutr. Cycl. Agroecosystems. 87:115-125.
Visconti, F., E. Peiró, S. Pesce, E. Balugani, C. Baixauli, and J.M. de Paz. 2024. Straw mulching increases soil health in the inter-row of citrus orchards from Mediterranean flat lands. Eur. J. Agron. 155:127115.
Wang, Z., R. Liu, L. Fu, S. Tao, and J. Bao. 2023. Effects of orchard grass on soil fertility and nutritional status of fruit trees in Korla fragrant pear orchard. Hortic. 9:903.
Webber, S.M., A.P. Bailey, T. Huxley, S.G. Potts, and M. Luka. 2022. Traditional and cover crop-derived mulches enhance soil ecosystem services in apple orchards. Appl. Soil Ecol. 178:104569.
Wood, S.A, D Tirfessad, and F. Baudron. 2018. Soil organic matter underlies crop nutritional quality and productivity in smallholder agriculture. Agric. Ecosyst. Environ. 266:100-108.
Xavier, F.A.S., S.M.F. Maia., K.A. Ribeiro, E.S. Mendonça, and T.S. Oliveira. 2013. Effect of cover plants on soil C and N dynamics in different soil management systems in dwarf cashew culture. Agric. Ecosyst. Environ. 165:173-183.
Xiao, K., L. Yu, J. Xu, and P.C. Brookes. 2014. pH, nitrogen mineralization, and KCl-extractable aluminum as affected by initial soil pH and rate of vetch residue application:results from a laboratory study. J Soils Sediments. 14:1513-1525.
Xiao, K., J. Xu, C. Tang, J. Zhang, and P.C. Brookes. 2013. Differences in carbon and nitrogen mineralization in soils of differing initial pH induced by electrokinesis and receiving crop residue amendments. Soil Biol. Biochem. 67:70-84.
Xu, J.M., C. Tang, and Z.L. Chen. 2006. The role of plant residues in pH change of acid soils differing in initial pH. Soil Biol. Biochem. 38:709-719.
Xu, X. and E. Hirata. 2005. Decomposition patterns of leaf litter of seven common canopy species in a subtropical forest: N and P dynamics. Plant and Soil 273:279-289.
Xu, Z., M. Qu, S. Liu, Y. Duan, X. Wang, L.K Brown, T.S George, L. Zhang, and G. Feng. 2020. Carbon addition reduces labile soil phosphorus by increasing microbial biomass phosphorus in intensive agricultural systems. Soil Use Manage. 36:536-546.
Yan, F., S. Schubert, and K. Mengel. 1996. Soil pH increase due to biological decarboxylation of organic anions. Soil Biol. Biochem. 28:617-624.
Yılmaz, E., M. Çanakcı, M. Topakcı, S. Sönmez, B. Ağsaran, Z. Alagöz, S. Çıtak, D.S. Uras. 2019. Effect of vineyard pruning residue application on soil aggregate formation, aggregate stability and carbon content in different aggregate sizes. Catena 183:104219.
Youkhana, A. and T. Idol. 2009. Tree pruning mulch increases soil C and N in a shaded coffee agroecosystem in Hawaii. Soil Biol. Biochem. 41:2527-2534.
Zanotelli, D., L. Montagnani, G. Manca, F. Scandellari, and M. Tagliavini. 2015. Net ecosystem carbon balance of an apple orchard. Eur. J. Agron.
Zhang, K., H. Dang, Q. Zhang, and X. Cheng. 2015. Soil carbon dynamics following land-use change varied with temperature and precipitation gradients: evidence from stable isotopes. Glob. Chang. Biol. 21:2762-2772.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101185-
dc.description.abstract枝條修剪是果園管理的重要措施,但同時也產生大量廢棄枝條處理問題。透過作物殘體回田,可作為具潛力的果園土壤碳匯策略。因此本研究以果園修剪殘枝作為碳源,將茂谷柑修剪枝條粉碎成碎木後,以兩種不同厚度 (5公分、10公分)直接敷蓋於土面,並於敷蓋後每6個月採深度0-10公分和10-30公分土樣進行土壤性質與有機碳含量測定。在敷蓋處理後6個月,兩種碎木敷蓋厚度處理皆顯著提高土壤有機碳與有機碳儲量,深度0-10公分和10-30公分土壤有機碳儲量平均增加6.2和5.6 t·ha⁻¹,同時敷蓋厚度5公分處理可有效降低深度0-10公分的土壤總體密度。在敷蓋18個月後,敷蓋處理總有機碳儲量較未敷蓋土壤高約8.4 t·ha⁻¹。碎木敷蓋可增加樹體磷和氮含量,並促進敷蓋前期的小果膨大及後期果實果皮增厚。綜合土壤性質與樹體生長之結果,以碎木敷蓋厚度5公分處理效果較佳。本研究進一步以孵育試驗評估碎木與有機質肥料共同敷蓋對土壤影響,包含全碎木、碎木與有機質肥料以3:1與1:1 (w/w) 比例混合後的不同敷蓋處理,並持續調查敷蓋物的質量變化。各處理敷蓋物質量在敷蓋3天內即明顯損失至少20%,且在42天的孵育過程中以全碎木敷蓋分解最快 (分解常數k = 0.0057天⁻¹),碎木:有機質肥料1:1 (w/w) 處理分解最慢 (分解常數k = 0.0022天⁻¹)。不同比例的碎木與有機質肥料共同敷蓋對於土壤有機碳含量的短期提升效益有限,但有機質肥料比例提高會導致pH值降低與電導度上升。本研究再以碎木敷蓋5、10公分及未敷蓋處理進行90天的孵育試驗,以評估果園碎木分解與土壤性質之變化。兩種敷蓋厚度的碎木質量留存率變化趨勢相似,孵育結束時的質量留存率約72%。敷蓋厚度5公分處理預估碎木半衰期為223.5天,10公分處理預估碎木半衰期為210.0天。依單一負指數衰減模式與分解常數推算果園碎木分解18個月後質量留存率為15.94%-17.89%。本研究結果證實以果樹修剪殘枝碎木作為敷蓋材料可在6個月後增加土壤有機碳含量,不影響果園生產,配合敷蓋碎木分解速率及與有機質肥料共同施用的探討,可供發展枝條殘體應用於碳匯果園農耕技術之參考。zh_TW
dc.description.abstractPruning is an important practice in orchard management, but it simultaneously generates a lots of waste branches that require proper disposal. Returning crop residues to the field can serve as a potential strategy for enhancing soil carbon sink in orchards. Therefore, this study used pruned branches from the orchard as a carbon source. After the pruned branches of ‘Murcott’ mandarin were shredded, they were directly mulched on the soil surface at two thicknesses (5 cm and 10 cm). Soil samples from depths of 0-10 cm and 10-30 cm were sampled every 6 months after mulching to determine soil properties and soil organic carbon content. 6 months after mulching, both mulching thicknesses treatment significantly increased soil organic carbon and soil organic carbon stock. The soil organic carbon stocks in the 0-10 cm and 10-30 cm depths increased by an average of 6.2 and 5.6 t·ha⁻¹, respectively. Additionally, the 5 cm thick mulching treatment effectively reduced the bulk density of the 0-10 cm soil layer. After 18 months of mulching, the total soil organic carbon stocks under mulching treatments were approximately 8.4 t·ha⁻¹ higher than that of the non-mulched soil. Shredded pruning residues mulching also enhanced the phosphorus and nitrogen contents in leave, promoted fruit enlargement in the early stage of mulching, and increased fruit peel thickness in the later stage. Based on the soil properties and tree growth results, the 5 cm thick mulching treatment showed the best performance. This study further conducted an incubation experiment to evaluate the effects of mulching with shredded pruning residues and organic fertilizer applied together on soil, including treatments of all-shredded pruning residues and composed of shredded pruning residues and organic fertilizer at ratios of 3:1 and 1:1 (w/w). Changes in mass of mulch were continuously monitored. Mulch mass of all treatment decreased by at least 20% within the first 3 days of mulching, and during the 42-day incubation period, the all-shredded pruning residues treatment decomposed the fastest (decomposition constant k = 0.0057 day⁻¹), while the treatment with shredded pruning residues mixed with organic fertilizer at a 1:1 (w/w) ratio decomposed the slowest (decomposition constant k = 0.0022 day⁻¹). Mulching with shredded pruning residues and organic fertilizer at different ratios had limited short-term effects on increasing soil organic carbon content, but increasing the proportion of organic fertilizer led to lower soil pH and higher electrical conductivity. Another 90-day incubation experiment using the 5 cm and 10 cm thick shredded pruning residues mulching and non-mulching treatments was conducted to assess shredded pruning residues decomposition and changes in soil properties. The change in mass remaining of shredded pruning residues were similar between mulching thicknesses, with final mass remaining of approximately 72% at the end of incubation. The estimated half-life of shredded pruning residues was 223.5 days for the 5 cm thick mulching treatment and 210.0 days for the 10 cm thick mulching treatment. Based on a single-exponential decay model and decomposition constants, the predicted mass remaining of orchard shredded pruning residues after 18 months was 15.94% to 17.89%. The results of this study confirm that mulching with shredded pruning residues can increase soil organic carbon content within 6 months without negatively affecting orchard production. Combined with the analysis of shredded pruning residues decomposition rates and mulching with organic fertilizer, these findings provide valuable references for developing orchard carbon sequestration practices using pruned branch residues.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-12-31T16:14:50Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-12-31T16:14:50Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 i
中文摘要 ii
Abstract iv
目次 vi
圖次 ix
表次 x
第一章 前言 1
第二章 文獻回顧 3
一、 土壤碳匯 3
(一) 自然碳匯發展 3
(二) 土壤碳匯過程與潛力 4
(三) 土壤碳匯對農業生產之重要性 5
二、 農業操作對碳匯之影響 6
(一) 碳匯農耕操作對作物生產之影響 6
(二) 果園碳匯農耕技術應用與發展潛力 8
三、 研究動機 9
第三章 材料與方法 11
一、 試驗場域 11
二、 試驗材料與規劃 11
(一) 果園修枝碎木敷蓋田間試驗 11
(二) 修枝碎木與有機質肥料共同孵育試驗 13
(三) 不同敷蓋厚度之碎木孵育試驗 14
三、 樣品前處理 15
(一) 葉片 15
(二) 敷蓋物 15
(三) 土壤 15
四、 分析與調查方法 16
(一) 礦物元素分析 16
(二) 果實生長與品質調查 19
(三) 土壤基本性質測定 20
(四) 敷蓋物質量與碳氮比 22
(五) 氣象資料 23
(六) 統計分析與圖表製作 24
第四章 結果與討論 25
一、 果園應用修枝碎木敷蓋之效應 25
(一) 修枝碎木敷蓋對土壤之影響 25
(二) 修枝碎木敷蓋對茂谷柑樹體養分之影響 28
(三) 修枝碎木敷蓋對茂谷柑果實生長及品質之影響 29
二、 修枝碎木敷蓋條件之影響與其可能變化 32
(一) 修枝碎木與有機質肥料共同孵育 32
1. 敷蓋物質量變化 32
2. 共同孵育對土壤化學性質之影響 33
(二) 修枝碎木不同敷蓋厚度之差異 36
第五章 結論 40
圖 42
表 56
參考文獻 76
附錄 92
-
dc.language.isozh_TW-
dc.subject碳匯-
dc.subject碳固存-
dc.subject土壤有機質-
dc.subject分解速率-
dc.subject修剪-
dc.subjectcarbon sink-
dc.subjectcarbon sequestration-
dc.subjectsoil organic matter-
dc.subjectdecomposition rate-
dc.subjectpruning-
dc.title修枝碎木敷蓋對茂谷柑園土壤有機碳儲量之影響zh_TW
dc.titleEffect of Mulching with Shredded Pruning Residues on soil Organic Carbon Storage in 'Murcott' Mandarin Orchardsen
dc.typeThesis-
dc.date.schoolyear114-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee陳柏安;鄭智馨zh_TW
dc.contributor.oralexamcommitteePo-An Chen ;Chih-Hsin Chengen
dc.subject.keyword碳匯,碳固存土壤有機質分解速率修剪zh_TW
dc.subject.keywordcarbon sink,carbon sequestrationsoil organic matterdecomposition ratepruningen
dc.relation.page96-
dc.identifier.doi10.6342/NTU202504761-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-12-09-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept園藝暨景觀學系-
dc.date.embargo-lift2026-01-01-
顯示於系所單位:園藝暨景觀學系

文件中的檔案:
檔案 大小格式 
ntu-114-1.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
3.9 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved