Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101181
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳中明zh_TW
dc.contributor.advisorChung-Ming Chenen
dc.contributor.author張漢庭zh_TW
dc.contributor.authorJOSEPH CHANGen
dc.date.accessioned2025-12-31T16:14:00Z-
dc.date.available2026-01-01-
dc.date.copyright2025-12-31-
dc.date.issued2025-
dc.date.submitted2025-12-02-
dc.identifier.citation1. Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2024. CA Cancer J Clin. 2024;74(1):12-49. doi:10.3322/caac.21820.
2. Atun R, Jaffray DA, Barton MB, Bray F, Baumann M, Vikram B, et al. Expanding global access to radiotherapy. Lancet Oncol. 2015;16(10):1153-1186. doi:10.1016/S1470-2045(15)00222-3.
3. Zhu H, Cao Y, Zhang E, Liu Y, Cao J, Lin S, et al. Global radiotherapy demands and corresponding radiotherapy workforce capacity by 2050: a modelling study. Lancet Glob Health. 2024;12(11):e1769-e1781. doi:10.1016/S2214-109X(24)00358-4.
4. Baskar R, Lee KA, Yeo R, Yeoh KW. Cancer and radiation therapy: current advances and future directions. Int J Med Sci. 2012;9(3):193-199. doi:10.7150/ijms.3635.
5. Vaidya A, Vaidya P, Both B, Brew-Graves C, Bulsara M, Vaidya JS. Health economics of targeted intraoperative radiotherapy (TARGIT-IORT) for early breast cancer: a cost-effectiveness analysis in the United Kingdom. BMJ Open. 2017;7(8):e014944. doi:10.1136/bmjopen-2016-014944.
6. Lutz ST, Jones J, Chow E. Role of radiation therapy in palliative care of the patient with cancer. J Clin Oncol. 2014;32(26):2913-2919. doi:10.1200/JCO.2014.55.1143.
7. Cho B. Intensity-modulated radiation therapy: a review with a physics perspective. Radiat Oncol J. 2018;36(1):1-10. doi:10.3857/roj.2018.00122.
8. Sanghani M, Mignano J. Intensity modulated radiation therapy: a review of current practice and future directions. Technol Cancer Res Treat. 2006;5(5):447-450. doi:10.1177/153303460600500501.
9. Pereira GC, Traughber M, Muzic RF Jr. The role of imaging in radiation therapy planning: past, present, and future. Biomed Res Int. 2014;2014:231090. doi:10.1155/2014/231090.
10. Thompson RF, Valdes G, Fuller CD, Carpenter CM, Morin O, Aneja S, et al. Artificial intelligence in radiation oncology: a specialty-wide disruptive transformation? Radiother Oncol. 2018;129(3):421-426. doi:10.1016/j.radonc.2018.05.030.
11. Chang JS, Chang JH, Kim N, Kim YB, Shin KH, Kim K. Intensity modulated radiotherapy and volumetric modulated arc therapy in the treatment of breast cancer: an updated review. J Breast Cancer. 2022;25(5):349-365. doi:10.4048/jbc.2022.25.e40.
12. Aggarwal A, Nossiter J, Cathcart P, Clarke M, Burns EM, van der Meulen J, et al. The future of cancer care in the UK—time for a radical rethink. Lancet Oncol. 2023;24(1):e6-e17. doi:10.1016/S1470-2045(22)00514-5.
13. Guo C, Huang P, Li Y, Dai J. Accurate method for evaluating the duration of the entire radiotherapy process. J Appl Clin Med Phys. 2020;21(9):252-258. doi:10.1002/acm2.12959.
14. Baroudi H, Brock KK, Cao W, Chen X, Chung C, Court LE, et al. Automated Contouring and Planning in Radiation Therapy: What Is 'Clinically Acceptable'? Diagnostics (Basel). 2023;13(4):667. doi:10.3390/diagnostics13040667.
15. Halvorsen P, Gupta N, Rong Y. Clinical practice workflow in Radiation Oncology should be highly standardized. J Appl Clin Med Phys. 2019;20(4):6-9. doi:10.1002/acm2.12555.
16. Lu QP, Wu Y, Mao XD, Wan HJ, Shao J, Yu QK, et al. Continuous quality improvement project to reduce the downtime of medical linear accelerators: A case study at Zhejiang Cancer Hospital. Heliyon. 2024;10(9):e30668. doi:10.1016/j.heliyon.2024.e30668.
17. Papadopoulou A, Govina O, Tsatsou I, Mantzorou M, Mantoudi A, Tsiou C, et al. Quality of life, distress, anxiety and depression of ambulatory cancer patients receiving chemotherapy. Med Pharm Rep. 2022;95(4):418-429. doi:10.15386/mpr-2458.
18. Thompson, R. F., Valdes, G., Fuller, C. D., Carpenter, C. M., Morin, O., Aneja, S., Lindsay, W. D., Aerts, H. J. W. L., Agrimson, B., Deville, C., Rosenthal, S. A., Yu, J. B., & Thomas, C. R. (2018). Artificial intelligence in radiation oncology: A specialty-wide disruptive transformation? Radiotherapy and Oncology, 129(3), 421-426. https://doi.org/10.1016/j.radonc.2018.05.030
19. Krishnamurthy R, Mummudi N, Goda JS, Chopra S, Heijmen B, Swamidas J. Using Artificial Intelligence for Optimization of the Processes and Resource Utilization in Radiotherapy. JCO Glob Oncol. 2022;8:e2100393. doi:10.1200/GO.21.00393.
20. Brouwer CL, Steenbakkers RJ, van den Heuvel E, Bos LJ, Hashemi SM, Pos FJ, et al. 3D variation in delineation of head and neck organs at risk. Radiat Oncol. 2012;7(1):32. doi:10.1186/1748-717X-7-32.
21. Vinod SK, Min M, Jameson MG, Holloway LC. A review of the technical and clinical challenges of inter-observer variability in radiation oncology. J Med Imaging Radiat Oncol. 2016;60(4):521-534. doi:10.1111/1754-9485.12463.
22. Caravatta L, Macchia G, Mattiucci GC, Sainato A, Cernusco NL, Mantello G, Di Tommaso M, Trignani M, De Paoli A, Boz G, Friso ML, Fusco V, Di Nicola M, Morganti AG, Genovesi D. Inter-observer variability of clinical target volume delineation in radiotherapy treatment of pancreatic cancer: a multi-institutional contouring experience. Radiat Oncol. 2014 Sep 8;9:198. doi: 10.1186/1748-717X-9-198. PMID: 25199768; PMCID: PMC4261525.
23. van der Linden Y, Roos D, Lutz S, Fairchild A. International variations in radiotherapy fractionation for bone metastases: geographic borders define practice patterns? Clin Oncol (R Coll Radiol). 2009 Nov;21(9):655-8. doi: 10.1016/j.clon.2009.08.004. Epub 2009 Sep 3. PMID: 19733039.
24. Le Guevelou J, Bastit V, Marcy PY, Lasne-Cardon A, Guzene L, Gerard M, Larnaudie A, Coutte A, Beddok A, Calugaru V, Johnson A, Gery B, Liem X, Pointreau Y, Bourhis J, Thariat J; GORTEC. Flap delineation guidelines in postoperative head and neck radiation therapy for head and neck cancers. Radiother Oncol. 2020 Oct;151:256-265. doi: 10.1016/j.radonc.2020.08.025. Epub 2020 Sep 3. PMID: 32890610.
25. Dejonckheere CS, Thelen A, Simon B, Greschus S, Köksal MA, Schmeel LC, Wilhelm-Buchstab T, Leitzen C. Impact of Postoperative Changes in Brain Anatomy on Target Volume Delineation for High-Grade Glioma. Cancers (Basel). 2023 May 19;15(10):2840. doi: 10.3390/cancers15102840. PMID: 37345177; PMCID: PMC10216722.
26. Beddok A, Willmann J, Embring A, Appelt AL, Balermpas P, Chua K, Choi JI, Elger BS, Gabrys D, Hoskin P, Niyazi M, Pasquier D, Paradis K, Kaidar-Person O, Plaisier C, Schmitt NC, Steuer CE, Thariat J, Yom SS, Poortmans P, Vasquez Osorio E, Andratschke N. Reirradiation: Standards, challenges, and patient-focused strategies across tumor types. CA Cancer J Clin. 2025 May 29. doi: 10.3322/caac.70016. Epub ahead of print. PMID: 40438993.
27. Cardenas CE, McCarroll RE, Court LE, Shen H, Hobbs BP, Taheri-Kadkhoda Z, et al. Deep learning algorithm for auto-delineation of high-risk oropharyngeal clinical target volumes with built-in dice similarity coefficient parameter optimization function. Int J Radiat Oncol Biol Phys. 2019;101(2):468-478. doi:10.1016/j.ijrobp.2018.02.019.
28. van der Veen J, Willems S, Deschuymer S, Claes C, Eekers D, Roelofs E, et al. Interobserver variability in organ at risk delineation in head and neck cancer. Radiat Oncol. 2021;16(1):43. doi:10.1186/s13014-021-01770-z.
29. Doolan PJ, Charalambous S, Roussakis Y, Asamoah DO, Ochi N, Teyateeti A, et al. A clinical evaluation of the performance of five commercial AI auto-segmentation solutions. Front Oncol. 2023;13:1213068. doi:10.3389/fonc.2023.1213068.
30. Roper J, Lin MH, Rong Y. Extensive upfront validation and testing are needed prior to the clinical implementation of AI-based auto-segmentation tools. J Appl Clin Med Phys. 2023;24(1):e13873. doi:10.1002/acm2.13873.
31. Schwartzstein RM. Clinical reasoning and artificial intelligence: Can AI really think? Ann Am Thorac Soc. 2024;21(8):1138-1144. doi:10.1513/AnnalsATS.202404-346PS.
32. Mastella, E., Calderoni, F., Manco, L., et al. (2025). A systematic review of the role of artificial intelligence in computed tomography-based adaptive radiotherapy for head and neck cancer. Radiotherapy and Oncology, 192, 110081.
33. Court, L. E., Aggarwal, A., Jhingran, A., et al. (2024). Artificial Intelligence–Based Radiotherapy Contouring and Planning to Improve Global Access to Cancer Care. JCO Global Oncology, 10, e2300376.
34. Court, L., Aggarwal, A., Burger, H., et al. (2023). Addressing the Global Expertise Gap in Radiation Oncology: The Radiation Planning Assistant. JCO Global Oncology, 9, GO.22.00431.
35. Ferber, D., Doncevic, S., Loges, S., et al. (2025). Development and validation of an autonomous artificial intelligence agent leveraging GPT-4 with multimodal precision oncology tools to support personalized clinical decision-making. Nature Cancer, 6(1), 91-101.
36. Liu, S., Rasch, C., Frank, S., et al. (2025). Automated radiotherapy treatment planning guided by GPT-4Vision: A feasibility study on treatment plan quality and clinical workflow integration. Physics in Medicine & Biology, 70, 025003.
37. Men K, Geng H, Biswas T, Liao Z, Xiao Y. Automated Quality Assurance of OAR Contouring for Lung Cancer Based on Segmentation With Deep Active Learning. Front Oncol. 2020 Jul 3;10:986. doi: 10.3389/fonc.2020.00986. PMID: 32719742; PMCID: PMC7350536.
38. Rusanov, B., Hassan, G. M., Reynolds, M., et al. (2025). Guidance on selecting and evaluating AI auto-segmentation solutions for clinical radiotherapy workflows: A comprehensive framework. Radiotherapy and Oncology, 192, 110058.
39. Hosny, A., Parmar, C., Coroller, T. P., et al. Clinical validation of deep learning algorithms for radiotherapy targeting: a multi-institutional study. The Lancet Digital Health. 2022;4(6):e398-e408.
40. Kann BH, Hosny A, Aerts HJWL. Artificial intelligence for clinical oncology. Cancer Cell. 2021 Jul 12;39(7):916-927. doi: 10.1016/j.ccell.2021.04.002. Epub 2021 Apr 29. PMID: 33930310; PMCID: PMC8282694.
41. Thariat J, Hannoun-Levi JM, Sun Myint A, Vuong T, Gérard JP. Past, present, and future of radiotherapy for the benefit of patients. Nat Rev Clin Oncol. 2013 Jan;10(1):52-60. doi: 10.1038/nrclinonc.2012.203. Epub 2012 Nov 27. PMID: 23183635.
42. Colevas AD, Cmelak AJ, Pfister DG, Spencer S, Adkins D, Birkeland AC, Brizel DM, Busse PM, Caudell JJ, Durm G, Fakhry C, Galloway T, Geiger JL, Gillison ML, Glastonbury C, Haddad RI, Hicks WL, Hitchcock YJ, Jimeno A, Juloori A, Kase M, Leizman D, Maghami E, Mell LK, Mittal BB, Pinto HA, Price K, Rocco JW, Rodriguez CP, Schwartz D, Shah JP, Sher D, John MS, Wang H, Weinstein G, Worden F, Bruce JY, Yom SS, Zhen W, Montgomery S, Darlow SD. NCCN Guidelines® Insights: Head and Neck Cancers, Version 2.2025. J Natl Compr Canc Netw. 2025 Feb;23(2):2-11. doi: 10.6004/jnccn.2025.0007. PMID: 39938471.
43. Hartsell WF, Scott CB, Bruner DW, Scarantino CW, Ivker RA, Roach M 3rd, Suh JH, Demas WF, Movsas B, Petersen IA, Konski AA, Cleeland CS, Janjan NA, DeSilvio M. Randomized trial of short- versus long-course radiotherapy for palliation of painful bone metastases. J Natl Cancer Inst. 2005 Jun 1;97(11):798-804. doi: 10.1093/jnci/dji139. PMID: 15928300.
44. Mutic S, Palta JR, Butker EK, Das IJ, Huq MS, Loo LN, Salter BJ, McCollough CH, Van Dyk J; AAPM Radiation Therapy Committee Task Group No. 66. Quality assurance for computed-tomography simulators and the computed-tomography-simulation process: report of the AAPM Radiation Therapy Committee Task Group No. 66. Med Phys. 2003 Oct;30(10):2762-92. doi: 10.1118/1.1609271. PMID: 14596315.
45. Warfield, S. K., Zou, K. H., & Wells, W. M. (2004). "Simultaneous Truth and Performance Level Estimation (STAPLE): An Algorithm for the Validation of Image Segmentation." IEEE Transactions on Medical Imaging, 23(7), 903-921.
46. Asman, A. J., & Landman, B. A. (2012). "Formulating Spatially Varying Performance in the STAPLE Algorithm." IEEE Transactions on Medical Imaging, 31(10), 1907-1921.
47. Commowick, O., Warfield, S. K., & Malandain, G. (2012). "Using Frankle-Wolfe Algorithm to Accelerate Curvilinear Search in High Dimensions." IEEE Transactions on Medical Imaging, 31(8), 1626-1635.
48. Mahapatra, D., Schuffler, P. J., Tielbeek, J. A., Makanyanga, J. O., Pendse, A. A., Sahami, S., ... & Stoker, J. (2017). "Semi-supervised Learning and Graph Cuts for Consensus Based Medical Image Segmentation." Medical Image Analysis, 41, 1-13.
49. Hamzaoui, D., Montagne, R., Renard-Penna, A., Ayache, N., & Delingette, H. (2023). "Morphologically-Aware Consensus Computation via Robust Aggregate of Signed Distance Functions." Machine Learning for Biomedical Image Segmentation (MELBA), 2023(013).
50. Teunissen, F. R., Monninkhof, E. M., Zorgdrager, R., Jansen, R. J., Hummeling, Y. E., Heijmink, S. W. T., ... & van der Toorn, V. C. (2021). "Interrater Agreement of Contouring of the Neurovascular Bundle and Internal Pudendal Artery in Radiotherapy for Prostate Cancer." International Journal of Radiation Oncology Biology Physics*, 111(3), 800-811.
51. Allozi, R., Li, X. A., White, J., Apte, A., Tai, A., Michalski, J. M., ... & Kaus, M. (2010). "Tools for Consensus Analysis of Experts' Contours for Radiotherapy Structure Definitions." Radiotherapy and Oncology, 97(3), 572-578.
52. Liu, Y., Chen, Y., Shen, B., Frick, J., Frey, B. S., & Chawla, N. V. (2024). "Leveraging Open-Source Large Language Models for Clinical Information Extraction." Nature Medicine Benchmark Study.
53. Li, Y., Wang, S., Li, J., Liu, Y., Gu, Q., Meng, H., ... & Wang, Z. (2025). "Towards Evaluating and Building Versatile Large Language Models for Medical NER and Diagnosis: MedS-Bench." Nature.
54. Mak, S., Sun, C., Srinivasan, P., Ng, D., Singh, M., Desrosiers, B., ... & Xu, Y. (2025). "Implementing Large Language Models in Healthcare While Balancing Data Privacy and Ethical Considerations." Nature Reviews Medicine.
55. Nishino, S., Fukuda, Y., Uehara, A., & Ito, Y. (2025). "Model Development and Validation of Fine-Tuned Large Language Models for Clinical NLP in Low-Resource Settings." JMIR Medical Informatics, 13, e76773.
56. Singhal, K., Azizi, S., Tu, T., Mahdavi, S. S., Wei, J., Prevedello, L. M., ... & Natarajan, V. (2023). "Large Language Models Encode Clinical Knowledge." Nature, 620(7972), 172-180.
57. Singhal, K., Tu, T., Cofield, J., Barral, O., Huang, S., Azizi, S., ... & Hinton, G. (2025). "Toward Expert-Level Medical Question Answering with Large Language Models." Nature, 632, 176-183.
58. Wu, C., Lin, E. L., Zhang, S., Ouyang, S., He, L., Sun, Z., ... & Zhang, Y. (2025). "Towards Evaluating and Building Versatile Large Language Models for Medical NER and Diagnosis: MedS-Bench." Nature, 635, E1-E12.
59. Buckley, T. A., Marques, O., Rahman, M., Weir, D., Stone, L., Monaghan, T. F., ... & Roehrborn, C. G. (2025). "Comparison of Frontier Open-Source and Proprietary Large Language Models in Clinical Reasoning for Complex Diagnostic Cases." JAMA Network Open, 8(3), e251843.
60. Ong, E., Wong, R., Sumathipala, K., Chiang, S., Deng, Y., Meganathan, K., ... & Zheng, W. (2022). "ClinicalT5: A Generative Language Model for Clinical Text." Findings of the Association for Computational Linguistics: EMNLP 2022, 398, 5971-5986.
61. Rietberg, M. A., Driessen, M., Bakshi, U., López-Pintado, S., Golinelli, G., van Weert, J., ... & de Bock, G. H. (2025). "The DRAGON Benchmark for Clinical NLP: Comparing General-Domain, Domain-Specific, and Mixed-Domain Pretraining Strategies." npj Digital Medicine, 8(32), 1-15.
62. Zangada, S., Schmidt, B. L., Xie, Z., Lim, N. B., McConnell, R., Kocher, J. P., ... & Karnuta, J. M. (2025). "Evaluating the Effectiveness of Biomedical Fine-Tuning for Large Language Models Against General-Purpose Counterparts." Oxford Academic Publishing (oup.com), published May 19, 2025.
63. Rajpurkar, P., Irvin, J., Zhu, K., Yang, B., Mehta, H., Duan, T., ... & Ng, A. Y. (2022). "CheXpert: A Large Chest Radiograph Dataset with Uncertainty Labels and Expert Comparison." OpenReview Medical NLP Benchmark.
64. Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux, M. A., Lacroix, T., ... & Scialom, T. (2023). "Llama 2: Open Foundation and Fine-Tuned Chat Models." Meta AI Official Model Card & arXiv:2307.09288.
65. Hirosawa, T., Harada, Y., Yokota, Y., & Nakashima, K. (2024). "Differential Diagnosis Lists by LLaMA3 Versus LLaMA2 for Case Reports of Infectious Diseases." JAMA Network Open, 7(8), e2431241.
66. Pillai, J., Pillai, A. A., Pillai, V., & Pandey, S. (2023). "Accuracy of Generative Artificial Intelligence Models in Diagnosing Autoinflammatory Disorders." Scientific Reports, 13(1), 19437.
67. Dinc, M. T., Ekim, B., & Bilgili, A. E. (2025). "Comparative Analysis of Large Language Models in Clinical Diagnosis: Performance in Common and Complex Scenarios." Oxford Academic Publishing, 2025.
68. Naliyatthaliyazchayil, P., Pillai, S., & Kumar, P. (2025). "Evaluating the Reasoning Capabilities of Large Language Models in Clinical Diagnosis: Primary Diagnosis, Medical Coding, and Readmission Risk." JMIR Medicine, 4(3), e48392.
69. Bhasuran, B., Adepoju, O., & Vickers, A. J. (2025). "Preliminary Analysis of the Impact of Lab Results on Large Language Model Diagnostic Accuracy in Complex Clinical Cases." Nature Digital Medicine, published March 17, 2025.
70. Meta AI (2024). "Introducing Meta Llama 3: The Most Capable Openly Available LLM." Meta AI Official Blog & Technical Report, published April 17, 2024.
71. Paul, R., Kumar, A., & Singh, M. (2025). "Balancing Vocabulary Size in Modern LLMs (GPT-4, LLaMA, Mistral)." Technical Blog & Analysis, published March 1, 2025.
72. Dennstädt F, Schmerder M, Riggenbach E, Mose L, Bryjova K, Bachmann N, Mackeprang PH, Ahmadsei M, Sinovcic D, Windisch P, Zwahlen D, Rogers S, Riesterer O, Maffei M, Gkika E, Haddad H, Peeken J, Putora PM, Glatzer M, Putz F, Hoefler D, Christ SM, Filchenko I, Hastings J, Gaio R, Chiang L, Aebersold DM, Cihoric N. Comparative Evaluation of a Medical Large Language Model in Answering Real-World Radiation Oncology Questions: Multicenter Observational Study. J Med Internet Res. 2025 Sep 23;27:e69752. doi: 10.2196/69752. PMID: 40986858; PMCID: PMC12504895.
73. Zhang, B., Li, S., Du, S., & Tian, Y. (2024). "When Scaling Meets LLM Finetuning: The Effect of Data, Model and Finetuning Method Scaling." OpenReview ICLR 2024.
74. Ding, N., Qin, Y., Yang, G., Wei, F., Yang, Z., Suzuki, Y., ... & Liu, Z. (2023). "Parameter-Efficient Fine-Tuning of Large-Scale Pre-Trained Language Models." Nature Machine Intelligence, 1237.
75. Kim, K., Park, J., & Song, M. (2025). "Plug-in and Fine-tuning: Bridging the Gap Between Small and Large Language Models." ACL Anthology, July 8, 2025.
76. SambaNova AI Research (2024). "Outperforming GPT-4o with Llama 3 8B: Domain Specific Fine-Tuning." Technical Report, published November 19, 2024.
77. Wei, J., Bosma, M., Zhao, V. Y., Guo, K., Yu, A. W., Luh, B., ... & Zhou, D. (2022). "Finetuned Language Models Are Zero-Shot Learners." OpenReview ICLR 2022.
78. Dubey A, Mishra S, Lee K, et al. The Llama 3 Herd of Models. arXiv preprint arXiv:2407.21783. Published July 23, 2024.
79. Hu, E. J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang, S., ... & Chen, W. (2021). "LoRA: Low-Rank Adaptation of Large Language Models." arXiv preprint arXiv:2106.09685.
80. Dettmers, T., Pagnoni, A., Holtzman, A., & Zettlemoyer, L. (2023). "QLoRA: Efficient Finetuning of Quantized LLMs." NeurIPS 2023, arXiv:2305.14314.
81. Aghajanyan, A., Zettlemoyer, L., & Gupta, S. (2020). "Intrinsic Dimensionality Explains the Effectiveness of Language Model Fine-Tuning." ACL 2021.
82. Xia, W., Ge, T., Si, C., Zhu, Y., Wen, S., Zhang, P., ... & Liu, S. (2024). "Chain of LoRA: Efficient Fine-tuning of Language Models via Residual Learning." OpenReview ICLR 2024.
83. Isensee, F., Jaeger, P. F., Kohl, S. A. A., Petersen, J., & Maier-Hein, K. H. (2021). "nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation." Nature Methods, 18(2), 203-211.
84. Antonelli, M., Reinke, A., Isensee, F., Petersen, J., Hepp, T., Schnell, M., ... & Maier-Hein, K. H. (2022). "The Medical Segmentation Decathlon." Nature Communications, 13, 4128.
85. McConnell, N., Nguyen, T. H., Voets, N. L., & Hogan, S. J. (2023). "Exploring Advanced Architectural Variations of nnUNet." ScienceDirect Medical Image Analysis, 89, 102902.
86. Li, Z., Wang, Y., Yu, J., Guo, Y., Xu, W., Veeraraghavan, H., ... & Li, X. (2022). "A Deep Learning-Based Self-Adapting Ensemble Method for Medical Image Segmentation." Biomedical Signal Processing and Control, 78, 104009.
87. McConnell, N., Miron, A., Wang, Z., & Li, Y. (2022). Integrating residual, dense, and inception blocks into the nnUNet. In 2022 IEEE 35th International Symposium on Computer-Based Medical Systems (CBMS).
88. Garg S, Balakrishnan S, Shur Z, Barman B, Bau D. Failure modes of domain generalization algorithms. In: 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE; 2023. p. 14228-14237. doi:10.1109/CVPR52729.2023.01370.
89. Chen Q, Wang Y, Gao S, Ma R, Tian X, You Y, et al. Exploring feature sparsity for out-of-distribution detection in deep neural networks. Nat Mach Intell. 2024;6:1328-1342. doi:10.1038/s42256-024-00909-4.
90. Zhang Y, Chen L, Shang B, Liu Y, Wu Y, Zhang Y, et al. Unsupervised evaluation for out-of-distribution detection. ScienceDirect (Comput Vision Image Underst). 2025;210:104026. doi:10.1016/j.cviu.2024.104026.
91. Wang L, Su R, Zhang Y, Chen X, Liu B, Yang Z, et al. Medical Foundation Large Language Models for Comprehensive Text Analysis. Nat Med. 2025;31(3):512-523. doi:10.1038/s41591-025-02345-8.
92. Korsvik JH, Dalsgaard S, Solevag AL, Renberg T, Schulze I, Pedersen TS, et al. Domain-Specific Pretraining of NorDeClin-Bidirectional Encoder Representations From Transformers for Clinical Diagnosis Coding. JMIR Med Inform. 2025;13(8):e48932. doi:10.2196/48932.
93. Naumann T, Gee A, Celi L. Fine-Tuning Methods for Large Language Models in Clinical Natural Language Processing. JMIR Med Educ. 2025;11(3):e56234. doi:10.2196/56234.
94. Ma J, He Y, Li F, Han L, You C, Wang B. Segment Anything in Medical Images. Nat Commun. 2024;15:654. doi:10.1038/s41467-023-40064-4.
95. Huang SC, Pareek A, Seyyedi S, Banerjee I, Lungren MP. Fusion of Medical Imaging Data: A Comprehensive Overview. IEEE Rev Biomed Eng. 2020;13:8-20. doi:10.1109/RBME.2018.2876519.
96. Haribabu M, Jain N, Kumar N, Singh A. An Improved Multimodal Medical Image Fusion Approach Using Intuitionistic Fuzzy Sets. Comput Methods Programs Biomed. 2023;237:107567. doi:10.1016/j.cmpb.2023.107567.
97. Kirillov A, Mintun E, Ravi N, Mao H, Rolland C, Gustafson L, et al. Segment Anything. In: IEEE/CVF International Conference on Computer Vision (ICCV). IEEE; 2023. p. 3992-4003. doi:10.1109/ICCV51070.2023.00371.
98. Heo J, Seo YS, Kim YJ, Park HC, Suh CO, Choi BO. CT-Based Quantitative Evaluation of Radiation-Induced Lung Fibrosis: Volume and Density Changes. Int J Radiat Oncol Biol Phys. 2014;88(3):615-623. doi:10.1016/j.ijrobp.2013.11.033.
99. Perez JR, Hawkins PG, Esthappan J, Marur S, Chino J, Beriwal S. A Comparative Analysis of Longitudinal Computed Tomography for Detection of Radiation-Induced Pulmonary Fibrosis. Int J Radiat Oncol Biol Phys. 2017;99(2):E132. doi:10.1016/j.ijrobp.2017.06.308.
100. Wang J, Liu H, Kong Y, Zhu C, Huang X, Li X, et al. A Predictive Model of Radiation-Related Fibrosis Based on the Radiomic Features of CT and MR Images. Transl Cancer Res. 2020;9(8):5133-5145. doi:10.21037/tcr-20-1223.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101181-
dc.description.abstract放射治療計畫的準確性仰賴標靶區與危及器官的精確勾勒,此工作不僅耗時費力,亦為臨床工作流程中的重要挑戰。深度學習自動勾勒技術雖在標準解剖患者上常展現良好成效,但在術後改變解剖、先前接受過放射治療、或複雜病史之患者上,其準確度往往下降,顯示單純依賴影像資訊可能不足。本論文探討整合大型語言模型(Large Language Model, LLM)臨床文本萃取與深度學習影像分割之多模態人工智慧系統,期能改善複雜臨床案例中器官勾勒之準確度。
本研究採用開源大型語言模型,並以放射腫瘤科臨床文本進行微調訓練,使其能從手術紀錄、病歷摘要等臨床文件中萃取器官存在性、解剖關係等關鍵資訊。此臨床資訊透過不確定性加權損失函數整合至深度學習分割系統,該函數依據患者解剖複雜度與器官空間關係進行動態調整。系統於包含術後改變解剖患者在內之回溯性病例上進行驗證。
研究結果顯示,整合臨床文本資訊之系統相較於僅使用影像之基準方法,在多項器官勾勒上展現準確度改善。準確度提升與解剖複雜度相關,在標準解剖患者上呈現適度改善,而在解剖結構具挑戰性之患者上則有更明顯的提升。針對術後切除器官的偽陽性預測獲得降低。分析顯示,多任務關係學習及不確定性加權損失函數各自對整體效能有所貢獻。
本論文探討透過整合臨床文本資訊輔助影像分割,以改善複雜解剖案例之勾勒準確度。研究成果顯示,較小型語言模型經專家驗證資料微調後,可達臨床實用效能,且具有開源部署之優勢。此方法透過納入臨床脈絡資訊,有助於處理非典型解剖之分割挑戰。儘管樣本量及單一機構驗證等限制存在,研究結果表明整合臨床文本與影像之多模態方法,提供了一個改善複雜案例器官勾勒的可行途徑。後續進行多中心前瞻性驗證,將有助評估此系統在臨床放射治療工作流程中的應用價值。
zh_TW
dc.description.abstractRadiotherapy treatment planning relies on accurate delineation of target volumes and organs-at-risk, a time-intensive process that creates bottlenecks in cancer care delivery. While artificial intelligence-based auto-contouring systems have demonstrated promising performance on standard anatomical presentations, their performance often degrades when applied to post-surgical anatomy, cases with prior radiotherapy, or complex medical histories, scenarios where protocol-driven approaches may be insufficient. This thesis investigates a multimodal artificial intelligence system that integrates large language model (LLM)-based clinical context extraction with deep learning image segmentation to enable context-aware radiotherapy planning.
A fine-tuned open-source LLM was developed to extract structured anatomical information from clinical documentation. This clinical context was integrated into a deep learning segmentation system through uncertainty-weighted adaptive loss functions incorporating patient-level anatomical complexity and anatomical relationships. The system was validated on a retrospective data with anatomically complex presentations including post-surgical cases.
The LLM-guided system demonstrated improved segmentation accuracy across multiple anatomical structures compared to baseline image-only approaches. Performance improvements were associated with anatomical complexity, with modest gains in straightforward cases and more pronounced improvements in anatomically challenging scenarios. False positive predictions for surgically absent structures were reduced. Ablation studies indicated that multi-task relationship learning and uncertainty-weighted loss functions each contributed to overall performance.
This research explores techniques to integrate clinical information through domain-specific LLMs to improve segmentation for complex cases. The findings suggest that smaller models can achieve useful performance after fine-tuning on expert-validated data. The approach addresses limitations of image-only systems by incorporating medical context. Further prospective validation and cross-institutional testing would be valuable to assess generalizability and clinical utility in real-world radiotherapy workflows.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-12-31T16:13:59Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-12-31T16:14:00Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents摘要 I
ABSTRACT II
TABLE OF CONTENTS III
LIST OF FIGURES V
LIST OF TABLES VI
CHAPTER 1
INTRODUCTION 1
1.1 Modern Radiotherapy 1
1.2 Clinical Workflow Challenges and Protocol Limitations 4
1.3 The Promise and Limitations of Current AI in Radiotherapy 9
1.4 Research Objective 12
CHAPTER 2 15
MATERIALS & METHODS 15
2.1 Study Design and Patient Cohort 15
2.1.1 Study Overview 15
2.1.2 Patient Selection Criteria 15
2.1.3 Dataset Statistics and Description 18
2.1.4 Complex Anatomical Scenarios 21
2.1.5 Dataset Partitioning 23
2.2 Ground Truth Annotation 25
2.2.1 Expert Delineation Procedures 25
2.2.2 Consensus Contour Generation 26
2.3 Large Language Model for Clinical Context Extraction 29
2.3.1 Model Selection 29
2.3.2 Training Data Construction 32
2.3.3 LLM Model Fine-Tuning 35
2.4 Deep Learning Segmentation Model 40
2.4.1 Base Architecture 40
2.4.2 Novel Training Enhancements with LLM-Guided Context 43
CHAPTER 3 50
RESULTS 50
3.1 Clinical Context Extraction Performance 50
3.1.1 Pre-Fine-Tuning Baseline 50
3.1.2 Post-Fine-Tuning Performance 51
3.2 Segmentation Performance 55
3.2.1 Overall Segmentation 55
3.2.2 Performance by Anatomical Complexity 56
3.2.3 Performance Across Anatomical Sites and Body Regions 58
3.2.4 Performance for Individual Anatomical Structures 60
3.3 Ablation Study 66
3.3.1 Progressive Multi-Resolution Training 66
3.3.2 Uncertainty-Weighted Dynamic Loss Function Ablation 68
3.3.3 Multi-Task Anatomical Relationship Learning Ablation 70
CHAPTER 4 73
DISCUSSION & CONCLUSION 73
4.1 Key Findings 73
4.1.1 LLM-Guided Context Extraction 73
4.1.2 Adaptive Loss Weighting 76
4.1.3 Multi-Task Relationship Learning 78
4.1.4 Progressive Resolution Training 79
4.2 Research Limitations 80
4.2.1 Residual False Positive Predictions 80
4.2.2 Cross-Institutional Generalization Limitations 80
4.3 Future Research 81
4.4 Conclusion 85
REFERENCES 88
ABBREVIATIONS 99
-
dc.language.isoen-
dc.subject放射治療計畫-
dc.subject自動勾勒-
dc.subject大型語言模型-
dc.subject多模態深度學習-
dc.subject臨床文本萃取-
dc.subjectRadiotherapy Planning-
dc.subjectAuto-Contouring-
dc.subjectLarge Language Models-
dc.subjectMultimodal Deep Learning-
dc.subjectClinical Context Integration-
dc.title多模態人工智慧於放射治療:從臨床情境至自動勾勒zh_TW
dc.titleMultimodal AI for Radiotherapy: From Clinical Context to Auto-Contouringen
dc.typeThesis-
dc.date.schoolyear114-1-
dc.description.degree博士-
dc.contributor.oralexamcommittee李佳燕;蔡豐聲;吳文超;簡君儒zh_TW
dc.contributor.oralexamcommitteeChia-Yen Lee;Feng-Sheng Tsai;Wen-Chau Wu;Chun-Ru Chienen
dc.subject.keyword放射治療計畫,自動勾勒大型語言模型多模態深度學習臨床文本萃取zh_TW
dc.subject.keywordRadiotherapy Planning,Auto-ContouringLarge Language ModelsMultimodal Deep LearningClinical Context Integrationen
dc.relation.page100-
dc.identifier.doi10.6342/NTU202504749-
dc.rights.note未授權-
dc.date.accepted2025-12-03-
dc.contributor.author-college工學院-
dc.contributor.author-dept醫學工程學系-
dc.date.embargo-liftN/A-
顯示於系所單位:醫學工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-114-1.pdf
  未授權公開取用
2.82 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved