Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101166Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 梁啟德 | zh_TW |
| dc.contributor.advisor | Chi-Te Liang | en |
| dc.contributor.author | 蘇伯軒 | zh_TW |
| dc.contributor.author | Bo-Xuan Su | en |
| dc.date.accessioned | 2025-12-31T16:10:56Z | - |
| dc.date.available | 2026-01-01 | - |
| dc.date.copyright | 2025-12-31 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-12-18 | - |
| dc.identifier.citation | [1] Defang Duan, Hongyu Yu, Hui Xie, and Tian Cui. Ab initio approach and its impact on superconductivity. Journal of Superconductivity and Novel Magnetism, 32:53-60, 2019.
[2] Kostya S Novoselov, Andre K Geim, Sergei V Morozov, De-eng Jiang, Yanshui Zhang, Sergey V Dubonos, Irina V Grigorieva, and Alexandr A Firsov. Electric field effect in atomically thin carbon films. Science, 306(5696):666-669, 2004. [3] Andre K Geim and Irina V Grigorieva. Van der Waals heterostructures. Nature, 499(7459):419-425, 2013. [4] Wenna Tang, Kun Yu, Zhenjia Zhou, Jun Li, and Libo Gao. Preparation of two-dimensional superconductors: a comprehensive review. Journal of Materials Chemistry C, 13(14):6963-6979, 2025. [5] Yijun Yu, Liguo Ma, Peng Cai, Ruidan Zhong, Cun Ye, Jian Shen, Genda D Gu, Xian Hui Chen, and Yuanbo Zhang. High-temperature superconductivity in monolayer Bi2Sr2CaCu2O8+δ. Nature, 575(7781):156-163, 2019. [6] Xiaoxiang Xi, Zefang Wang, Weiwei Zhao, Ju-Hyun Park, Kam Tuen Law, Helmuth Berger, László Forró, Jie Shan, and Kin Fai Mak. Ising pairing in superconducting NbSe2 atomic layers. Nature Physics, 12(2):139-143, 2016. [7] IMDEA Nanociencia. Optical characterization of BSCCO, a high-temperature superconducting 2D material. https://www.nanociencia.imdea.org/home-en/news/item/optical-characterization-of-bscco-a-high-temperature-superconducting-2d-material. 2024. Accessed: 2025-10-07. [8] Hong Ding, Takayoshi Yokoya, Juan C Campuzano, Toshiaki Takahashi, M Randeria, MR Norman, T Mochiku, Kazuo Kadowaki, and John Giapintzakis. Spectroscopic evidence for a pseudogap in the normal state of underdoped high-Tc superconductors. Nature, 382(6586):51-54, 1996. [9] CC Tsuei and JR Kirtley. Pairing symmetry in cuprate superconductors. Reviews of Modern Physics, 72(4):969, 2000. [10] Yuying Zhu, Menghan Liao, Qinghua Zhang, Hong-Yi Xie, Fanqi Meng, Yaowu Liu, Zhonghua Bai, Shuaihua Ji, Jin Zhang, Kaili Jiang, et al. Presence of s-wave pairing in Josephson junctions made of twisted ultrathin Bi2Sr2CaCu2O8+x flakes. Physical Review X, 11(3):031011, 2021. [11] Y. Zhu, J. Wang, X. Liu, D. Liu, X. Lin, J. Xu, H. Zhang, Z. Zhang, J. Sun, L. Zhao, X. Ma, Q.-K. Xue, and D. Feng. Persistent Josephson tunneling between Bi2Sr2CaCu2O8+x flakes twisted by 45° across the superconducting dome. Phys. Rev. B, 108(17):174508, 2023. [12] Hong Wang, Xiangwei Huang, Junhao Lin, Jian Cui, Yu Chen, Chao Zhu, Fucai Liu, Qingsheng Zeng, Jiadong Zhou, Peng Yu, et al. High-quality monolayer superconductor NbSe2 grown by chemical vapour deposition. Nature Communications, 8(1):394, 2017. [13] JA Wilson, FJ Di Salvo, and S Mahajan. Charge-density waves in metallic, layered, transition-metal dichalcogenides. Physical Review Letters, 32(16):882, 1974. [14] Miguel M Ugeda, Aaron J Bradley, Yi Zhang, Seita Onishi, Yi Chen, Wei Ruan, Claudia Ojeda-Aristizabal, Hyejin Ryu, Mark T Edmonds, Hsin-Zon Tsai, et al. Characterization of collective ground states in single-layer NbSe2. Nature Physics, 12(1):92-97, 2016. [15] AG Sun, DA Gajewski, MB Maple, and RC Dynes. Observation of Josephson pair tunneling between a high-Tc cuprate (YBa2Cu3O7-δ) and a conventional superconductor (Pb). Physical Review Letters, 72(14):2267, 1994. [16] Naoto Yabuki, Rai Moriya, Miho Arai, Yohta Sata, Sei Morikawa, Satoru Masubuchi, and Tomoki Machida. Supercurrent in van der Waals Josephson junction. Nature Communications, 7(1):10616, 2016. [17] Michael Tinkham. Introduction to superconductivity. Courier Corporation, 2004. [18] R Kleiner, F Steinmeyer, G Kunkel, and P Müller. Intrinsic Josephson effects in Bi2Sr2CaCu2O8 single crystals. Physical Review Letters, 68(15):2394, 1992. [19] John G Simmons. Generalized formula for the electric tunnel effect between similar electrodes separated by a thin insulating film. Journal of Applied Physics, 34(6):1793-1803, 1963. [20] T Watanabe, T Fujii, and A Matsuda. Anisotropic Resistivities of Precisely Oxygen Controlled Single-Crystal Bi2Sr2CaCu2O8+δ: Systematic Study on “Spin Gap” Effect. Physical Review Letters, 79(11):2113, 1997. [21] John Bardeen. Tunnelling from a many-particle point of view. Physical Review Letters, 6(2):57, 1961. [22] Jerry Tersoff and Donald R Hamann. Theory of the scanning tunneling microscope. Physical Review B, 31(2):805, 1985. [23] Rolf Landauer. Spatial variation of currents and fields due to localized scatterers in metallic conduction. IBM Journal of Research and Development, 1(3):223-231, 1957. [24] M Büttiker. Symmetry of electrical conduction. IBM Journal of Research and Development, 32(3):317-334, 1988. [25] Brian David Josephson. Possible new effects in superconductive tunnelling. Physics Letters, 1(7):251-253, 1962. [26] Vinay Ambegaokar and Alexis Baratoff. Tunneling between superconductors. Physical Review Letters, 10(11):486, 1963. [27] Sidney Shapiro. Josephson currents in superconducting tunneling: The effect of microwaves and other observations. Physical Review Letters, 11(2):80, 1963. [28] John Bardeen, Leon N Cooper, and John Robert Schrieffer. Theory of superconductivity. Physical Review, 108(5):1175, 1957. [29] Manfred Sigrist and Kazuo Ueda. Phenomenological theory of unconventional superconductivity. Reviews of Modern Physics, 63(2):239, 1991. [30] Chia-Ren Hu. Midgap surface states as a novel signature for d_{x_a^2-x_b^2}-wave superconductivity. Physical Review Letters, 72(10):1526, 1994. [31] Satoshi Kashiwaya and Yukio Tanaka. Tunnelling effects on surface bound states in unconventional superconductors. Reports on Progress in Physics, 63(10):1641, 2000. [32] Yukio Tanaka and Satoshi Kashiwaya. Theory of Josephson effects in anisotropic superconductors. Physical Review B, 56(2):892, 1997. [33] Keithley Instruments, Tektronix Inc. 2400 SourceMeter User’s Manual. Tektronix, Inc., 2011. Accessed: October 2025. [34] Yu I Latyshev, T Yamashita, LN Bulaevskii, MJ Graf, AV Balatsky, and MP Maley. Interlayer transport of quasiparticles and Cooper pairs in Bi2Sr2CaCu2O8+δ superconductors. Physical Review Letters, 82(26):5345, 1999. [35] Menghan Liao, Yuying Zhu, Jin Zhang, Ruidan Zhong, John Schneeloch, Genda Gu, Kaili Jiang, Ding Zhang, Xucun Ma, and Qi-Kun Xue. Superconductor-insulator transitions in exfoliated Bi2Sr2CaCu2O8+δ flakes. Nano Letters, 18(9):5660-5665, 2018. [36] Da Jiang, Tao Hu, Lixing You, Qiao Li, Ang Li, Haomin Wang, Gang Mu, Zhiying Chen, Haoran Zhang, Guanghui Yu, et al. High-Tc superconductivity in ultrathin Bi2Sr2CaCu2O8+x down to half-unit-cell thickness by protection with graphene. Nature Communications, 5(1):5708, 2014. [37] VM Krasnov, A Yurgens, D Winkler, P Delsing, and T Claeson. Evidence for co-existence of the superconducting gap and the pseudogap in Bi-2212 from intrinsic tunneling spectroscopy. Physical Review Letters, 84(25):5860, 2000. [38] Minoru Suzuki and Takao Watanabe. Discriminating the superconducting gap from the pseudogap in Bi2Sr2CaCu2O8+δ by interlayer tunneling spectroscopy. Physical Review Letters, 85(22):4787, 2000. [39] Minoru Suzuki, Takashi Hamatani, Kenkichi Anagawa, and Takao Watanabe. Evolution of interlayer tunneling spectra and superfluid density with doping in Bi2Sr2CaCu2O8+δ. Physical Review B, 85(21):214529, 2012. [40] R Kleiner and P Müller. Intrinsic Josephson effects in high-Tc superconductors. Physical Review B, 49(2):1327, 1994. [41] Qiang Li, YN Tsay, M Suenaga, RA Klemm, GD Gu, and N Koshizuka. Bi2Sr2CaCu2O8+δ bicrystal c-axis twist Josephson junctions: a new phase-sensitive test of order parameter symmetry. Physical Review Letters, 83(20):4160, 1999. [42] Yoshihiko Takano, Takeshi Hatano, Akihiro Fukuyo, Akira Ishii, Masashi Ohmori, Shunichi Arisawa, Kazumasa Togano, and Masashi Tachiki. d-like symmetry of the order parameter and intrinsic Josephson effects in Bi2Sr2CaCu2O8+δ cross-whisker junctions. Physical Review B, 65(14):140513, 2002. [43] RA Klemm, G Arnold, CT Rieck, and K Scharnberg. Coherent versus incoherent c-axis Josephson tunneling between layered superconductors. Physical Review B, 58(21):14203, 1998. [44] Cory R Dean, Andrea F Young, Inanc Meric, Chris Lee, Lei Wang, Sebastian Sorgenfrei, Kenji Watanabe, Takashi Taniguchi, Phillip Kim, Kenneth L Shepard, et al. Boron nitride substrates for high-quality graphene electronics. Nature Nanotechnology, 5(10):722-726, 2010. [45] TA Fulton and LN Dunkleberger. Lifetime of the zero-voltage state in Josephson tunnel junctions. Physical Review B, 9(11):4760, 1974. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101166 | - |
| dc.description.abstract | 以 Bi2Sr2CaCu2O8+δ(鉍鍶鈣銅氧超導體,BSCCO)為代表的高 Tc 銅氧化物超導體具有高度各向異性的電子性質與非常規配對機制,因此成為研究層狀材料超導性的豐富平台。另一方面,由剝離二維晶體所形成的范德瓦耳(vdW)異質結構,提供了一種可靈活設計潔淨界面與新穎接面幾何的途徑。將 BSCCO 與常規 s 波超導體(例如二硒化鈮 NbSe2)沿 c 軸方向結合,被視為未來約瑟夫森實驗中,用以探測銅氧化物序參數中可能存在之各向同性成分的有前景策略。
本論文聚焦於 BSCCO 為基底的垂直范德瓦耳(vdW)接面之製作與正常態電性量測,作為推進上述約瑟夫森實驗之前的必要準備步驟。首先,我製作具 Au(金)電極的單片 BSCCO 元件,並以四探針傳輸量測其電性。所得 R–T 曲線呈現單一道超導轉變,其 Tc^90% ≈ 100 K;在溫度降至 2 K 的 I–V 量測中,可觀察到臨界電流量級約為 10^1 mA 的穩健超導態。這些單片元件可作為評估接觸品質與材料完整性的基準。 接著,我藉由堆疊兩片剝離之 BSCCO 薄片,實現 BSCCO–BSCCO c 軸接面。初始室溫接面電阻位於兆歐姆(MΩ)等級,顯示界面間存在厚或耦合不佳的勢壘。透過施加受控的電流退火處理,可將接面電阻降低數個數量級至千歐姆(kΩ)等級,並伴隨明顯的 I–V 特性改變。然而,在 78 K 進行的四探針量測中,於可及偏壓範圍內並未觀察到清楚的約瑟夫森超電流,顯示界面局部 Tc 可能遭到抑制,或勢壘仍然過於不透明。 最後,我展示了一個由 h-BN 薄片封蓋的 BSCCO–二硒化鈮(NbSe2)垂直接面。室溫二探針量測顯示,其接面電阻僅為數百歐姆,較先前 BSCCO–二硒化鈮(NbSe2)嘗試中所得到的數值明顯降低。此一改善可歸因於 h-BN 封蓋層提升了機械貼合度並減少界面縫隙,從而增進界面耦合與電流傳輸。 儘管本研究尚未在量測中觀察到具相位相干性的約瑟夫森行為,但所建立的元件結構與製程流程已顯著提升 BSCCO 為基底之范德瓦耳(vdW)接面的透明度與可重現性。這些結果為未來在 BSCCO–二硒化鈮(NbSe2)異質結構上進行低溫穿隧與約瑟夫森實驗提供了實務上的堅實基礎。 | zh_TW |
| dc.description.abstract | High-Tc cuprate superconductors such as Bi2Sr2CaCu2O8+δ (BSCCO) exhibit highly anisotropic electronic properties and unconventional pairing, making them a rich platform for studying superconductivity in layered materials. In parallel, van der Waals (vdW) heterostructures based on exfoliated two-dimensional (2D) crystals have emerged as a flexible route to engineer clean interfaces and novel junction geometries. Combining BSCCO with a conventional s-wave superconductor such as NbSe2 along the c-axis is a promising strategy for future Josephson experiments aimed at probing possible isotropic components in the cuprate order parameter.
In this thesis, I focus on the fabrication and normal-state electrical characterization of BSCCO-based vertical vdW junctions as a necessary step toward such experiments. First, single-flake BSCCO devices are fabricated with Au contacts and characterized using four-probe transport measurements. The R–T curve shows a single superconducting transition with Tc^90% ≈ 100 K, and I–V measurements down to 2 K confirm a robust superconducting state with critical currents of order 10^1 mA. These devices serve as benchmarks for contact quality and material integrity. Second, BSCCO–BSCCO c-axis junctions are realized by stacking two exfoliated BSCCO flakes. Initial room-temperature junction resistances are in the megaohm (MΩ) range, indicating a thick or poorly coupled interfacial barrier. By applying controlled current annealing, the junction resistance is reduced by several orders of magnitude to the kilo-ohm (kΩ) range, with corresponding changes in the I–V characteristics. A four-probe measurement at 78 K reveals no clear Josephson supercurrent within the accessible bias range, suggesting that either the local Tc at the interface is suppressed or the barrier remains too opaque. Finally, I demonstrate a BSCCO–NbSe2 vertical junction capped by an h-BN flake. Room-temperature two-probe measurements yield junction resistances of a few hundred ohms, substantially lower than in earlier BSCCO–NbSe2 attempts. This improvement is attributed to enhanced mechanical conformity and reduced interfacial gaps provided by the h-BN capping layer. Although phase-coherent Josephson behavior is not observed in the present measurements, the devices and protocols established here significantly improve the transparency and reproducibility of BSCCO-based vdW junctions. These results provide a practical foundation for future low-temperature tunneling and Josephson experiments on BSCCO–NbSe2 heterostructures. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-12-31T16:10:56Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-12-31T16:10:56Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 摘要 i
Abstract iii Contents vi List of Figures ix Chapter 1 Introduction 1 1.1 Superconductors 1 1.2 Two-Dimensional Superconductors 2 1.3 Physical properties of BSCCO 4 1.4 Physical properties of NbSe2 6 1.5 Motivation and Scope of This Work 7 Chapter 2 Theory 10 2.1 Superconductivity essentials 10 2.1.1 Phenomenology and critical parameters 10 2.1.2 London electrodynamics and penetration depth 11 2.1.3 Ginzburg–Landau (GL) framework near Tc 12 2.1.4 BCS gap and quasiparticle DOS 12 2.1.5 Type-II mixed state and vortex electrodynamics 13 2.1.6 Anisotropy and layered cuprates (BSCCO) 13 2.2 Normal-state tunneling (single-electron tunneling) 14 2.2.1 Physical picture of c-axis tunneling 14 2.2.2 Transfer-Hamiltonian model (Bardeen approach) 15 2.2.3 Tunneling probability and WKB approximation 19 2.3 Cooper-pair tunneling (Josephson Effect) 21 2.3.1 Historical background and physical concept 22 2.3.2 Derivation from Bardeen model 23 2.3.3 DC and AC Josephson effects 26 2.4 Pairing symmetry and its signatures in tunneling 29 2.4.1 s-wave pairing: isotropic, nodeless gap 29 2.4.2 d-wave pairing: sign change, nodes, and surface states 30 2.4.3 d/s-wave junctions along the c-axis: symmetry-induced suppression of the Josephson effect 32 Chapter 3 Experimental method 34 3.1 Overview of sample structure and fabrication process 34 3.2 Measurement method 39 3.3 Low-temperature measurement system 42 Chapter 4 Results and discussion 44 4.1 Single BSCCO Device 44 4.2 c-Axis Tunneling Characteristics of BSCCO-Based Junctions 48 4.2.1 BSCCO+BSCCO 48 4.2.2 BSCCO+NbSe2 58 Chapter 5 Conclusion and Outlook 66 5.1 Summary of Results 66 5.2 Limitations and Outlook 68 References 71 | - |
| dc.language.iso | en | - |
| dc.subject | 高臨界溫度銅氧化物超導體 | - |
| dc.subject | 鉍鍶鈣銅氧超導體 | - |
| dc.subject | 范德瓦耳約瑟夫森接面 | - |
| dc.subject | c軸輸運 | - |
| dc.subject | 二硒化鈮 | - |
| dc.subject | 常態穿隧傳輸 | - |
| dc.subject | High-Tc cuprate superconductors | - |
| dc.subject | BSCCO | - |
| dc.subject | van der Waals Josephson junctions | - |
| dc.subject | c-axis transport | - |
| dc.subject | NbSe2 | - |
| dc.subject | normal-state tunneling | - |
| dc.title | 鉍鍶鈣銅氧化物基垂直范德瓦爾斯接面元件之製作與常態輸運特性研究 | zh_TW |
| dc.title | Fabrication and Normal-State Transport Properties of BSCCO-Based Vertical van der Waals Junction Devices | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 114-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.coadvisor | 王偉華 | zh_TW |
| dc.contributor.coadvisor | Wei-Hua Wang | en |
| dc.contributor.oralexamcommittee | 葉勝玄 | zh_TW |
| dc.contributor.oralexamcommittee | Sheng-Shiuan Yeh | en |
| dc.subject.keyword | 高臨界溫度銅氧化物超導體,鉍鍶鈣銅氧超導體范德瓦耳約瑟夫森接面c軸輸運二硒化鈮常態穿隧傳輸 | zh_TW |
| dc.subject.keyword | High-Tc cuprate superconductors,BSCCOvan der Waals Josephson junctionsc-axis transportNbSe2normal-state tunneling | en |
| dc.relation.page | 76 | - |
| dc.identifier.doi | 10.6342/NTU202504789 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2025-12-18 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 物理學系 | - |
| dc.date.embargo-lift | N/A | - |
| Appears in Collections: | 物理學系 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-114-1.pdf Restricted Access | 55.03 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
