請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101085完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李翔傑 | zh_TW |
| dc.contributor.advisor | Hsiang-Chieh Lee | en |
| dc.contributor.author | 吳孟珊 | zh_TW |
| dc.contributor.author | Meng-Shan Wu | en |
| dc.date.accessioned | 2025-11-27T16:12:44Z | - |
| dc.date.available | 2025-11-28 | - |
| dc.date.copyright | 2025-11-27 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-09-19 | - |
| dc.identifier.citation | [1] E. M. Ferlay J, Lam F, Colombet M, Mery L, Piñeros M, Znaor A, Soerjomataram I, Bray F. "Ferlay J, Ervik M, Lam F, Colombet M, Mery L, Piñeros M, Znaor A, Soerjomataram I, Bray F." International Agency for Research on Cancer. https://gco.iarc.fr/today (accessed.
[2] M. o. H. a. W. Health Promotion Administration, Executive Yuan, Taiwan, "Cancer registry annual report, 2016, Taiwan," 2018. [3] N. C. Institute. "What Is Cervical Cancer?" National Cancer Institute. https://www.cancer.gov/types/cervical (accessed. [4] D. R. Lowy, D. Solomon, A. Hildesheim, J. T. Schiller, and M. Schiffman, "Human papillomavirus infection and the primary and secondary prevention of cervical cancer," Cancer, vol. 113, no. S7, pp. 1980-1993, 2008/10/01 2008, doi: 10.1002/cncr.23704. [5] O. Reich and S. Regauer, "Two major pathways of recurrent high-grade squamous intraepithelial lesions of the cervix," International Journal of Cancer, vol. 137, no. 10, pp. 2520-2521, 2015/11/15 2015, doi: 10.1002/ijc.29117. [6] M. Herfs et al., "Cervical Squamocolumnar Junction–specific Markers Define Distinct, Clinically Relevant Subsets of Low-grade Squamous Intraepithelial Lesions," The American Journal of Surgical Pathology, vol. 37, no. 9, pp. 1311-1318, 2013, doi: 10.1097/PAS.0b013e3182989ee2. [7] R. Nayar and D. Solomon, "Second edition of 'The Bethesda System for reporting cervical cytology' - atlas, website, and Bethesda interobserver reproducibility project," (in eng), Cytojournal, vol. 1, no. 1, pp. 4-4, 2004, doi: 10.1186/1742-6413-1-4. [8] M. U. Barut et al., "Analysis of Sensitivity, Specificity, and Positive and Negative Predictive Values of Smear and Colposcopy in Diagnosis of Premalignant and Malignant Cervical Lesions," (in eng), Med Sci Monit, vol. 21, pp. 3860-3867, 2015, doi: 10.12659/msm.895227. [9] D. Arifler, C. MacAulay, M. Follen, and R. Richards-Kortum, "Spatially resolved reflectance spectroscopy for diagnosis of cervical precancer: Monte Carlo modeling and comparison to clinical measurements," Journal of Biomedical Optics, vol. 11, no. 6, p. 064027, 2006. [Online]. Available: https://doi.org/10.1117/1.2398932. [10] S. M. Chidananda, K. Satyamoorthy, L. Rai, A. P. Manjunath, and V. B. Kartha, "Optical diagnosis of cervical cancer by fluorescence spectroscopy technique," International Journal of Cancer, vol. 119, no. 1, pp. 139-145, 2006, doi: 10.1002/ijc.21825. [11] K. Pandey, A. Pradhan, A. Agarwal, A. Bhagoliwal, and N. Agarwal, "Fluorescence Spectroscopy: A New Approach in Cervical Cancer," The Journal of Obstetrics and Gynecology of India, vol. 62, no. 4, pp. 432-436, 2012/08/01 2012, doi: 10.1007/s13224-012-0298-6. [12] F. M. Lyng, D. Traynor, I. R. M. Ramos, F. Bonnier, and H. J. Byrne, "Raman spectroscopy for screening and diagnosis of cervical cancer," Analytical and Bioanalytical Chemistry, vol. 407, no. 27, pp. 8279-8289, 2015/11/01 2015, doi: 10.1007/s00216-015-8946-1. [13] I. Kuznetzova et al., Optical coherence tomography in diagnosing cervical cancer (BiOS 2000 The International Symposium on Biomedical Optics). SPIE, 2000. [14] D. Huang et al., "Optical coherence tomography," (in eng), Science, vol. 254, no. 5035, pp. 1178-81, Nov 22 1991, doi: 10.1126/science.1957169. [15] Z. Yaqoob, J. Wu, and C. Yang, "Spectral domain optical coherence tomography: a better OCT imaging strategy," (in eng), Biotechniques, vol. 39, no. 6 Suppl, pp. S6-13, Dec 2005, doi: 10.2144/000112090. [16] Y. Tufail et al., "Transcranial pulsed ultrasound stimulates intact brain circuits," (in eng), Neuron, vol. 66, no. 5, pp. 681-94, Jun 10 2010, doi: 10.1016/j.neuron.2010.05.008. [17] N. R. Mollet, F. Cademartiri, and P. J. de Feyter, "Non-invasive multislice CT coronary imaging," (in eng), Heart, vol. 91, no. 3, pp. 401-7, Mar 2005, doi: 10.1136/hrt.2004.034009. [18] M. Quirin et al., "Existential neuroscience: a functional magnetic resonance imaging investigation of neural responses to reminders of one's mortality," (in eng), Soc Cogn Affect Neurosci, vol. 7, no. 2, pp. 193-8, Feb 2012, doi: 10.1093/scan/nsq106. [19] A. Hoffman, M. Goetz, M. Vieth, P. R. Galle, M. F. Neurath, and R. Kiesslich, "Confocal laser endomicroscopy: technical status and current indications," (in eng), Endoscopy, vol. 38, no. 12, pp. 1275-83, Dec 2006, doi: 10.1055/s-2006-944813. [20] K. Karnowski, B. J. Kaluzny, M. Szkulmowski, M. Gora, and M. Wojtkowski, "Corneal topography with high-speed swept source OCT in clinical examination," Biomed. Opt. Express, vol. 2, no. 9, pp. 2709-2720, 2011/09/01 2011, doi: 10.1364/BOE.2.002709. [21] S. Sakai, M. Yamanari, Y. Lim, N. Nakagawa, and Y. Yasuno, "In vivo evaluation of human skin anisotropy by polarization-sensitive optical coherence tomography," Biomed. Opt. Express, vol. 2, no. 9, pp. 2623-2631, 2011/09/01 2011, doi: 10.1364/BOE.2.002623. [22] A. M. Lee, L. Cahill, K. Liu, C. MacAulay, C. Poh, and P. Lane, "Wide-field in vivo oral OCT imaging," (in eng), Biomed Opt Express, vol. 6, no. 7, pp. 2664-74, Jul 1 2015, doi: 10.1364/boe.6.002664. [23] T.-H. Tsai et al., "Ultrahigh speed endoscopic optical coherence tomography for gastroenterology," Biomed. Opt. Express, vol. 5, no. 12, pp. 4387-4404, 2014/12/01 2014, doi: 10.1364/BOE.5.004387. [24] R. A. Leitgeb, R. M. Werkmeister, C. Blatter, and L. Schmetterer, "Doppler optical coherence tomography," (in eng), Prog Retin Eye Res, vol. 41, no. 100, pp. 26-43, Jul 2014, doi: 10.1016/j.preteyeres.2014.03.004. [25] J. F. de Boer, C. K. Hitzenberger, and Y. Yasuno, "Polarization sensitive optical coherence tomography – a review [Invited]," Biomed. Opt. Express, vol. 8, no. 3, pp. 1838-1873, 2017/03/01 2017, doi: 10.1364/BOE.8.001838. [26] J. A. Izatt, M. A. Choma, and A.-H. Dhalla, "Theory of Optical Coherence Tomography," in Optical Coherence Tomography: Technology and Applications, W. Drexler and J. G. Fujimoto Eds. Cham: Springer International Publishing, 2015, pp. 65-94. [27] W. Drexler, M. Liu, A. Kumar, T. Kamali, A. Unterhuber, and R. A. Leitgeb, "Optical coherence tomography today: speed, contrast, and multimodality," (in eng), J Biomed Opt, vol. 19, no. 7, p. 071412, 2014, doi: 10.1117/1.Jbo.19.7.071412. [28] W. Jung, D. T. McCormick, J. Zhang, L. Wang, N. C. Tien, and Z. Chen, "Three-dimensional endoscopic optical coherence tomography by use of a two-axis microelectromechanical scanning mirror," Applied Physics Letters, vol. 88, no. 16, p. 163901, 2006, doi: 10.1063/1.2195092. [29] B. Baumann, "Polarization Sensitive Optical Coherence Tomography: A Review of Technology and Applications," Applied Sciences, vol. 7, no. 5, doi: 10.3390/app7050474. [30] R. C. Jones, "A New Calculus for the Treatment of Optical SystemsI. Description and Discussion of the Calculus," J. Opt. Soc. Am., vol. 31, no. 7, pp. 488-493, 1941/07/01 1941, doi: 10.1364/JOSA.31.000488. [31] W. Drexler and J. Fujimoto, Optical Coherence Tomography: Technology and Applications. 2008. [32] V. V. Tuchin, "Polarized light interaction with tissues," (in eng), J Biomed Opt, vol. 21, no. 7, p. 71114, Jul 1 2016, doi: 10.1117/1.Jbo.21.7.071114. [33] S. Makita, M. Yamanari, and Y. Yasuno, "Generalized Jones matrix optical coherence tomography: performance and local birefringence imaging," (in eng), Opt Express, vol. 18, no. 2, pp. 854-76, Jan 18 2010, doi: 10.1364/oe.18.000854. [34] C. Hitzenberger, E. Götzinger, M. Sticker, M. Pircher, and A. Fercher, "Measurement and imaging of birefringence and optic axis orientation by phase resolved polarization sensitive optical coherence tomography," Optics Express, vol. 9, pp. 780-790, 12/17 2001, doi: 10.1364/OE.9.000780. [35] L. M. Sakata, J. Deleon-Ortega, V. Sakata, and C. A. Girkin, "Optical coherence tomography of the retina and optic nerve - a review," (in eng), Clin Exp Ophthalmol, vol. 37, no. 1, pp. 90-9, Jan 2009, doi: 10.1111/j.1442-9071.2009.02015.x. [36] J. Olsen, J. Holmes, and G. B. Jemec, "Advances in optical coherence tomography in dermatology-a review," (in eng), J Biomed Opt, vol. 23, no. 4, pp. 1-10, Apr 2018, doi: 10.1117/1.Jbo.23.4.040901. [37] M. J. Gora, M. J. Suter, G. J. Tearney, and X. Li, "Endoscopic optical coherence tomography: technologies and clinical applications [Invited]," Biomed. Opt. Express, vol. 8, no. 5, pp. 2405-2444, 2017/05/01 2017, doi: 10.1364/BOE.8.002405. [38] P. Panta et al., "Optical Coherence Tomography: Emerging In Vivo Optical Biopsy Technique for Oral Cancers," in Oral Cancer Detection: Novel Strategies and Clinical Impact, P. Panta Ed. Cham: Springer International Publishing, 2019, pp. 217-237. [39] L. L. Gleich, P. W. Biddinger, Z. P. Pavelic, and J. L. Gluckman, "Tumor angiogenesis in T1 oral cavity squamous cell carcinoma: role in predicting tumor aggressiveness," (in eng), Head Neck, vol. 18, no. 4, pp. 343-6, Jul-Aug 1996, doi: 10.1002/(sici)1097-0347(199607/08)18:4<343::Aid-hed5>3.0.Co;2-y. [40] M. T. Tsai et al., "Noninvasive structural and microvascular anatomy of oral mucosae using handheld optical coherence tomography," (in eng), Biomed Opt Express, vol. 8, no. 11, pp. 5001-5012, Nov 1 2017, doi: 10.1364/boe.8.005001. [41] G. J. Tearney et al., "Scanning single-mode fiber optic catheter-endoscope for optical coherence tomography," (in eng), Opt Lett, vol. 21, no. 7, pp. 543-5, Apr 1 1996, doi: 10.1364/ol.21.000543. [42] Z. H. Liu et al., "Diagnostic Efficacy of Real-Time Optical Coherence Tomography in the Management of Preinvasive and Invasive Neoplasia of the Uterine Cervix," International Journal of Gynecological Cancer, vol. 20, no. 2, pp. 283-287, Feb 2010, doi: 10.1111/IGC.0b013e3181cd1810. [43] S. E. Belinson et al., "Cervical Epithelial Brightness by Optical Coherence Tomography Can Determine Histological Grades of Cervical Neoplasia," Journal of Lower Genital Tract Disease, vol. 17, no. 2, pp. 160-166, Apr 2013, doi: 10.1097/LGT.0b013e31825d7bf0. [44] S. Y. Chen et al., "Imaging endocervical mucus anatomy and dynamics in macaque female reproductive track using optical coherence tomography," Quantitative Imaging in Medicine and Surgery, vol. 5, no. 1, pp. 40-45, Feb 2015, doi: 10.3978/j.issn.2223-4292.2014.11.03. [45] S. W. Lee et al., "Optical diagnosis of cervical intraepithelial neoplasm (CIN) using polarization-sensitive optical coherence tomography," Optics Express, vol. 16, no. 4, pp. 2709-2719, Feb 2008, doi: 10.1364/oe.16.002709. [46] A. F. Zuluaga, M. Follen, I. Boiko, A. Malpica, and R. Richards-Kortum, "Optical coherence tomography: A pilot study of a new imaging technique for noninvasive examination of cervical tissue," American Journal of Obstetrics and Gynecology, vol. 193, no. 1, pp. 83-88, 2005/07/01/ 2005, doi: https://doi.org/10.1016/j.ajog.2004.11.054. [47] J. Gallwas, L. Turk, K. Friese, and C. Dannecker, "Optical coherence tomography as a non-invasive imaging technique for preinvasive and invasive neoplasia of the uterine cervix," Ultrasound in Obstetrics & Gynecology, vol. 36, no. 5, pp. 624-629, Nov 2010, doi: 10.1002/uog.7656. [48] J. K. S. Gallwas et al., "Optical Coherence Tomography for the Diagnosis of Cervical Intraepithelial Neoplasia," Lasers in Surgery and Medicine, vol. 43, no. 3, pp. 206-212, Mar 2011, doi: 10.1002/lsm.21030. [49] T. H. Tsai et al., "Endoscopic optical coherence angiography enables 3-dimensional visualization of subsurface microvasculature," (in eng), Gastroenterology, vol. 147, no. 6, pp. 1219-21, Dec 2014, doi: 10.1053/j.gastro.2014.08.034. [50] Axsun. "High Speed 1060nm Swept Source for OCT." [Online]. Available: https://docs.axsun.com/axsun-knowledge-base/oct-product-configurations#integrated-engine-laser-and-camera-link-daq (accessed. [51] M. Villiger, B. Braaf, N. Lippok, K. Otsuka, S. Nadkarni, and B. Bouma, "Optic axis mapping with catheter-based polarization-sensitive optical coherence tomography," Optica, vol. 5, pp. 1329-1337, 10/18 2018, doi: 10.1364/OPTICA.5.001329. [52] A. M. D. Lee, H. Pahlevaninezhad, V. X. D. Yang, S. Lam, C. MacAulay, and P. Lane, "Fiber-optic polarization diversity detection for rotary probe optical coherence tomography," Opt. Lett., vol. 39, no. 12, pp. 3638-3641, 2014/06/15 2014, doi: 10.1364/OL.39.003638. [53] M. Villiger, E. Z. Zhang, S. K. Nadkarni, W.-Y. Oh, B. J. Vakoc, and B. E. Bouma, "Spectral binning for mitigation of polarization mode dispersion artifacts in catheter-based optical frequency domain imaging," Optics Express, vol. 21, no. 14, pp. 16353-16369, 2013/07/15 2013, doi: 10.1364/OE.21.016353. [54] T. Fujii et al., "Digital Colposcopy for the Diagnosis of Cervical Adenocarcinoma Using a Narrow Band Imaging System," International journal of gynecological cancer : official journal of the International Gynecological Cancer Society, vol. 20, pp. 605-10, 05/01 2010, doi: 10.1111/IGC.0b013e3181d98da9. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101085 | - |
| dc.description.abstract | 本論文致力於開發與驗證可應用於婦科臨床的導管式光學同調斷層掃描術(Optical Coherence Tomography, OCT)系統。根據對婦科應用中不同的成像需求,設計了前掃式與側掃式兩種成像探頭,以對應子宮頸口表面與子宮頸內管腔道組織的影像擷取。本系統硬體亦為臨床應用做準備進行設計,針對側掃式系統,對光學元件的部分進行模組化設置,並設計了專屬光學台車以整合所需儀器;而針對前掃式系統則引入了OCT引擎,將整套系統輕量化以縮小體積,提升便攜性與臨床部署能力。OCT系統特性方面,另外搭建一組不具掃描成像功能的客製化樣本臂,以特定長度單模光纖及其經平面切割的光纖端面構成,模擬導管的光學路徑,用於側掃式導管系統的特性量測。實驗獲得 106.9 dB 的高靈敏度,並顯示出成像範圍內良好的系統穩定度,確保整體成像穩定性與重複性。我們使用前掃式及側掃式兩套系統對膠帶以及人類指尖與口腔黏膜進行OCT成像,影像結果分別展示了各樣本的結構特徵,並且這些影像成功顯示出所開發之OCT成像系統於婦科臨床應用的可行性。此外,為減輕導管式OCT系統中常見的偏振相關成像雜訊,該導管式OCT成像系統架構內整合了偏振分光偵測模組(Polarization diversity module, PDM),透過合併正交偏振訊號,有效抑制偏振偽影並提升影像品質。本研究更進一步將側掃式導管OCT系統進行硬體改裝,以實現導管式之偏振靈敏光學同調斷層掃描術(Polarization-sensitive OCT, PS-OCT),利用電光調變器(Motorized delay-line, MDL)來動態控制入射光偏振態,以提取樣本組織中雙折射與去偏振特性。同時,本研究已擬定完整的婦科臨床實驗流程,包括影像量測計畫與受試者同意書,預期可應用於病患在近距放射治療(Brachytherapy)前後的子宮頸組織觀察與變化分析。 | zh_TW |
| dc.description.abstract | This thesis focuses on the development and validation of catheter-based optical coherence tomography (OCT) systems designed for clinical applications in gynecology. To address the distinct imaging requirements in gynecological examinations, two types of probes with forward-viewing and side-viewing configurations were developed. The hardware design of both systems was tailored for clinical deployment. The side-viewing OCT system featured optical modularization and a dedicated optical cart for instrument integration, while the forward-viewing OCT system incorporated an OCT engine to reduce system size and enhance portability. For system characterization, a customized sample arm without scanning functionality was additionally constructed, consisting of a single-mode fiber of specific length with a flat-cleaved end face, to replicate the optical path of the catheter and enable characterization of the side-viewing OCT system. The measured sensitivity of the system reached 106.9 dB and demonstrated excellent imaging stability, ensuring robust and repeatable image acquisition. Imaging experiments using both probe types were conducted on a tape phantom, human fingertips, and oral mucosa. The resulting OCT images clearly revealed microstructural features of each sample and validated the system’s feasibility for gynecological imaging applications. To mitigate polarization artifacts commonly observed in catheter-based OCT, a polarization diversity module was integrated. By combining orthogonal polarization signals, the system effectively suppressed artifacts and improved image quality. Furthermore, the side-viewing OCT system was modified to implement polarization-sensitive OCT (PS-OCT), enabling the extraction of tissue birefringence and depolarization properties through dynamic polarization modulation using an electro-optic modulator. In preparation for the clinical experiment, a complete imaging protocol and informed consent documents were drafted. The proposed system thus demonstrates strong potential as a multifunctional imaging tool for advanced gynecological diagnostics. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-11-27T16:12:44Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-11-27T16:12:44Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 論文口試委員審定書 i
誌謝 ii 中文摘要 iii ABSTRACT iv CONTENTS vi LIST OF FIGURES ix LIST OF TABLES xiv Chapter 1 Introduction 1 1.1 Research Motivation 1 1.1.1 Background of Cervical Cancer 1 1.1.2 Current Clinical Approaches for Cervical Cancer 3 1.2 Scope of Thesis 5 Chapter 2 Optical Coherence Tomography (OCT) 6 2.1 Introduction to OCT 6 2.2 Basic Principle of OCT Technology 7 2.2.1 Time-Domain OCT (TD-OCT) 10 2.2.2 Fourier-Domain OCT (FD-OCT) 11 2.3 Polarization-Sensitive OCT (PS-OCT) 14 2.3.1 Polarization Properties of Light 14 2.3.2 Calculation of Polarization 15 2.3.3 Birefringence 19 2.3.4 Basic Principle of PS-OCT 20 Chapter 3 OCT Endoscopes 23 3.1 Development of Endoscopes for OCT 23 3.1.1 Side-Viewing Endoscopes 25 3.1.2 Forward-Viewing Endoscopes 25 3.1.3 Proximal-End Scanning Endoscopes 25 3.1.4 Distal-End Scanning Endoscopes 26 3.2 Catheter-Based PS-OCT for Gynecologic Imaging 27 Chapter 4 Experimental Architecture and Methods 29 4.1 Overview of System Development 29 4.2 Side-Viewing Catheter-Based OCT System 30 4.2.1 Optical Modularization for Catheter-Based OCT System 33 4.2.2 Integration of Catheter-Based OCT with Optical Cart 35 4.3 Forward-Viewing Endoscopic OCT System 38 4.3.1 Optical Design and Simulation 41 4.3.2 Optomechanical Design 46 4.3.3 System Miniaturization with OCT engine 48 4.4 Catheter-Based PS-OCT System Implementation 50 4.4.1 Polarization Diversity Detection 50 4.4.2 Side-Viewing Catheter-Based PS-OCT System 51 Chapter 5 Experimental Results and Discussion 54 5.1 Characterizations of the Developed OCT Systems 54 5.2 Endoscopic OCT imaging 58 5.3 Catheter-Based PS-OCT Imaging 61 5.3.1 Polarization Diversity Detection Images 61 5.3.2 Birefringence and Depolarization Images 64 5.4 Discussion 67 Chapter 6 Conclusion and Future Work 69 6.1 Conclusion 69 6.2 Future Works 71 REFERENCE 73 | - |
| dc.language.iso | en | - |
| dc.subject | 光學同調斷層掃描術 | - |
| dc.subject | 導管式成像探頭 | - |
| dc.subject | 偏振分光檢測 | - |
| dc.subject | 偏振成像 | - |
| dc.subject | 婦科 | - |
| dc.subject | 子宮頸腫瘤檢測 | - |
| dc.subject | optical coherence tomography | - |
| dc.subject | catheter | - |
| dc.subject | polarization diversity detection | - |
| dc.subject | polarimetric imaging | - |
| dc.subject | gynecology | - |
| dc.subject | cervical neoplasia detection | - |
| dc.title | 內視鏡導管式光學同調斷層掃描術於子宮頸癌臨床應用之可行性研究 | zh_TW |
| dc.title | Feasibility Study of Endoscopic Optical Coherence Tomography (OCT) for Clinical Applications in Cervical Cancer | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 114-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 李正匡;蔡睿哲 | zh_TW |
| dc.contributor.oralexamcommittee | Cheng-Kuang Lee;Jui-che Tsai | en |
| dc.subject.keyword | 光學同調斷層掃描術,導管式成像探頭偏振分光檢測偏振成像婦科子宮頸腫瘤檢測 | zh_TW |
| dc.subject.keyword | optical coherence tomography,catheterpolarization diversity detectionpolarimetric imaginggynecologycervical neoplasia detection | en |
| dc.relation.page | 76 | - |
| dc.identifier.doi | 10.6342/NTU202504498 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2025-09-19 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 光電工程學研究所 | - |
| dc.date.embargo-lift | N/A | - |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-114-1.pdf 未授權公開取用 | 5.34 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
