Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工業工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101083
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳政鴻zh_TW
dc.contributor.advisorCheng-Hung Wuen
dc.contributor.author楊佑婕zh_TW
dc.contributor.authorYu-Chieh Yangen
dc.date.accessioned2025-11-27T16:12:16Z-
dc.date.available2025-11-28-
dc.date.copyright2025-11-27-
dc.date.issued2025-
dc.date.submitted2025-09-24-
dc.identifier.citationAvan, A., A. Azim and Q. H. Mahmoud (2023). "A State-of-the-Art Review of Task Scheduling for Edge Computing: A Delay-Sensitive Application Perspective." Electronics 12(12): 2599.
Beraldi, R., A. Mtibaa and H. Alnuweiri (2017). Cooperative load balancing scheme for edge computing resources. 2017 Second International Conference on Fog and Mobile Edge Computing (FMEC).
Cao, J., Z. Yu and B. Xue (2024). "Research on collaborative edge network service migration strategy based on crowd clustering." Scientific Reports 14(1): 7207.
Chen, M., W. Li, G. Fortino, Y. Hao, L. Hu and I. Humar (2019). "A Dynamic Service Migration Mechanism in Edge Cognitive Computing." ACM Trans. Internet Technol. 19(2): Article 30.
Chen, W., Y. Chen and J. Liu (2023). "Service migration for mobile edge computing based on partially observable Markov decision processes." Computers and Electrical Engineering 106: 108552.
Chen, W., X. Qiu, T. Cai, H. N. Dai, Z. Zheng and Y. Zhang (2021). "Deep Reinforcement Learning for Internet of Things: A Comprehensive Survey." IEEE Communications Surveys & Tutorials 23(3): 1659-1692.
Chen, X., Z. Yao, Z. Chen, G. Min, X. Zheng and C. Rong (2023). "Load Balancing for Multiedge Collaboration in Wireless Metropolitan Area Networks: A Two-Stage Decision-Making Approach." IEEE Internet of Things Journal 10(19): 17124-17136.
Chen, Y., Y. Sun, C. Wang and T. Taleb (2022). "Dynamic Task Allocation and Service Migration in Edge-Cloud IoT System Based on Deep Reinforcement Learning." IEEE Internet of Things Journal 9(18): 16742-16757.
Chiang, Y., Y. Zhang, H. Luo, T. Y. Chen, G. H. Chen, H. T. Chen, Y. J. Wang, H. Y. Wei and C. T. Chou (2023). "Management and Orchestration of Edge Computing for IoT: A Comprehensive Survey." IEEE Internet of Things Journal 10(16): 14307-14331.
Deng, S. G., Z. Z. Xiang, P. Zhao, J. Taheri, H. H. Gao, J. W. Yin and A. Y. Zomaya (2020). "Dynamical Resource Allocation in Edge for Trustable Internet-of-Things Systems: A Reinforcement Learning Method." Ieee Transactions on Industrial Informatics 16(9): 6103-6113.
Duc, T. L., R. G. Leiva, P. Casari and P.-O. Östberg (2019). "Machine Learning Methods for Reliable Resource Provisioning in Edge-Cloud Computing: A Survey." ACM Comput. Surv. 52(5): Article 94.
Gu, S., D. Guo, G. Tang, L. Luo, Y. Sun and X. Luo (2023). "HyEdge: A Cooperative Edge Computing Framework for Provisioning Private and Public Services." ACM Trans. Internet Things 4(2): Article 13.
Guan, X., T. J. Lv, Z. P. Lin, P. M. Huang and J. Zeng (2022). "D2D-Assisted Multi-User Cooperative Partial Offloading in MEC Based on Deep Reinforcement Learning." Sensors 22(18): 19.
Guo, K. and T. Q. S. Quek (2020). Dynamic Computation Offloading in Multi-Server MEC Systems: An Online Learning Approach. GLOBECOM 2020 - 2020 IEEE Global Communications Conference.
Hong, Y. C., B. J. Lv, R. Wang, H. S. Tan, Z. H. Han and F. C. M. Lau (2022). "Distributed Job Dispatching in Edge Computing Networks With Random Transmission Latency: A Low-Complexity POMDP Approach." Ieee Internet of Things Journal 9(6): 4152-4167.
Hou, W. J., H. Wen, N. Zhang, J. S. Wu, W. X. Lei and R. H. Zhao (2022). "Incentive-Driven Task Allocation for Collaborative Edge Computing in Industrial Internet of Things." IEEE INTERNET OF THINGS JOURNAL 9(1): 706-718.
Huang, S.-Z., K.-Y. Lin and C.-L. Hu (2022). "Intelligent task migration with deep Qlearning in multi-access edge computing." IET Communications 16(11): 1290-1302.
Jamil, B., H. Ijaz, M. Shojafar, K. Munir and R. Buyya (2022). "Resource Allocation and Task Scheduling in Fog Computing and Internet of Everything Environments: A Taxonomy, Review, and Future Directions." ACM Comput. Surv. 54(11s): Article 233.
Jiang, Z., N. Ling, X. Huang, S. Shi, C. Wu, X. Zhao, Z. Yan and G. Xing (2023). CoEdge: A Cooperative Edge System for Distributed Real-Time Deep Learning Tasks. Proceedings of the 22nd International Conference on Information Processing in Sensor Networks. San Antonio, TX, USA, Association for Computing Machinery: 53–66.
Khan, A. A. and M. Zakarya (2021). "Energy, performance and cost efficient cloud datacentres: A survey." Computer Science Review 40: 100390.
Khokhar, D. and A. Kaushik (2017). "Best time quantum round robin CPU scheduling algorithm." International Journal of Scientific Engineering and Applied Science (IJSEAS) 3(5): 213-217.
Kim, C. K., T. Kim and S. Lee (2025). "Cooperative Service Caching for Reducing Delay in Multi-Edge Networks." IEEE Transactions on Vehicular Technology 74(2): 3573-3578.
Kizito, R., P. Scruggs, X. Li, M. Devinney, J. Jansen and R. Kress (2021). "Long Short-Term Memory Networks for Facility Infrastructure Failure and Remaining Useful Life Prediction." IEEE Access 9: 67585-67594.
Lan, D., A. Taherkordi, F. Eliassen, Z. Chen and L. Liu (2020). Deep Reinforcement Learning for Intelligent Migration of Fog Services in Smart Cities. Algorithms and Architectures for Parallel Processing, Cham, Springer International Publishing.
Li, M. and P. Yuan (2024). A Lyapunov Optimization Strategy with Deep Reinforcement Learning in Cloud-Edge Collaborative Service Offloading Scenarios. 2024 10th International Conference on Computer and Communications (ICCC).
Li, X. and S. Bi (2024). "Optimal AI Model Splitting and Resource Allocation for Device-Edge Co-Inference in Multi-User Wireless Sensing Systems." IEEE Transactions on Wireless Communications 23(9): 11094-11108.
Li, Y., S. Cheng, H. Zhang and J. Liu (2023). "Dynamic adaptive workload offloading strategy in mobile edge computing networks." Computer Networks 233: 109878.
Lin, C. C., D. J. Deng, Y. L. Chih and H. T. Chiu (2019). "Smart Manufacturing Scheduling With Edge Computing Using Multiclass Deep Q Network." IEEE Transactions on Industrial Informatics 15(7): 4276-4284.
Lin, Y., L. Feng, W. Li, F. Zhou and Q. Ou (2019). Stochastic Joint Bandwidth and Computational Allocation for Multi-Users and Multi-Edge-Servers in 5G D-RANs. 2019 IEEE International Conference on Smart Cloud (SmartCloud).
Liu, L., D. Qi, N. Zhou and Y. Wu (2018). "A Task Scheduling Algorithm Based on Classification Mining in Fog Computing Environment." Wireless Communications and Mobile Computing 2018(1): 2102348.
Liu, Q., H. Zhang, X. Zhang and D. Yuan (2024). "Improved DDPG Based Two-Timescale Multi-Dimensional Resource Allocation for Multi-Access Edge Computing Networks." IEEE Transactions on Vehicular Technology 73(6): 9153-9158.
Luo, Q., S. Hu, C. Li, G. Li and W. Shi (2021). "Resource scheduling in edge computing: A survey." IEEE Communications Surveys & Tutorials 23(4): 2131-2165.
Mach, P. and Z. Becvar (2017). "Mobile Edge Computing: A Survey on Architecture and Computation Offloading." IEEE Communications Surveys & Tutorials 19(3): 1628-1656.
Malazi, H. T., S. R. Chaudhry, A. Kazmi, A. Palade, C. Cabrera, G. White and S. Clarke (2022). "Dynamic Service Placement in Multi-Access Edge Computing: A Systematic Literature Review." Ieee Access 10: 32639-32688.
Mao, Y., J. Zhang and K. B. Letaief (2016). "Dynamic Computation Offloading for Mobile-Edge Computing With Energy Harvesting Devices." IEEE Journal on Selected Areas in Communications 34(12): 3590-3605.
Maray, M., E. Mustafa, J. Shuja and M. Bilal (2023). "Dependent task offloading with deadline-aware scheduling in mobile edge networks." Internet of Things 23: 100868.
Mehta, S., S. Raheja and M. Kumar (2024). Shortest Job First with Gateway-Based Resource Management Strategy for Fog Enabled Cloud Computing. Advances in Artificial-Business Analytics and Quantum Machine Learning, Singapore, Springer Nature Singapore.
Moghadam, M. H. and S. M. Babamir (2018). "Makespan reduction for dynamic workloads in cluster-based data grids using reinforcement-learning based scheduling." Journal of Computational Science 24: 402-412.
Moon, S. and Y. Lim (2021). Task Partitioning for Migration with Collaborative Edge Computing in Vehicular Networks. 2021 IEEE 3rd Eurasia Conference on IOT, Communication and Engineering (ECICE).
Moon, S. and Y. Lim (2022). "Task Migration with Partitioning for Load Balancing in Collaborative Edge Computing." Applied Sciences 12(3): 1168.
Niu, H., L. Wang, K. Du, Z. Lu, X. Wen and Y. Liu (2025). "A pipelining task offloading strategy via delay-aware multi-agent reinforcement learning in Cybertwin-enabled 6G network." Digital Communications and Networks 11(1): 92-105.
Pan, Y. H., T. Qu, N. Q. Wu, M. Khalgui and G. Q. Huang (2021). "Digital Twin Based Real-time Production Logistics Synchronization System in a Multi-level Computing Architecture." Journal of Manufacturing Systems 58: 246-260.
Qin, W., H. Chen, L. Wang, Y. Xia, A. Nascita and A. Pescapè (2024). "MCOTM: Mobility-aware computation offloading and task migration for edge computing in industrial IoT." Future Generation Computer Systems 151: 232-241.
Rani, P., P. N. Singh, S. Verma, N. Ali, P. K. Shukla and M. Alhassan (2022). "An Implementation of Modified Blowfish Technique with Honey Bee Behavior Optimization for Load Balancing in Cloud System Environment." WIRELESS COMMUNICATIONS & MOBILE COMPUTING 2022.
Ray, K., A. Banerjee and N. C. Narendra (2020). Proactive Microservice Placement and Migration for Mobile Edge Computing. 2020 IEEE/ACM Symposium on Edge Computing (SEC).
Sahni, Y., J. N. Cao, L. Yang and Y. S. Ji (2021). "Multi-Hop Multi-Task Partial Computation Offloading in Collaborative Edge Computing." Ieee Transactions on Parallel and Distributed Systems 32(5): 1133-1145.
Shi, B. and Y. Wu (2024). "Task Offloading and Resource Allocation Strategies Among Multiple Edge Servers." IEEE Internet of Things Journal 11(8): 14647-14656.
Sun, L., Z. Li, J. Lv, C. Wang, Y. Wang, L. Chen and D. He (2020). Edge computing task scheduling strategy based on load balancing. MATEC Web of Conferences, EDP Sciences.
Tripathy, S. S., K. Mishra, D. S. Roy, K. Yadav, A. Alferaidi, W. Viriyasitavat, J. Sharmila, G. Dhiman and R. K. Barik (2023). "State-of-the-Art Load Balancing Algorithms for Mist-Fog-Cloud Assisted Paradigm: A Review and Future Directions." Archives of Computational Methods in Engineering: 36.
Volnes, E., T. Plagemann and V. Goebel (2024). "To Migrate or Not to Migrate: An Analysis of Operator Migration in Distributed Stream Processing." IEEE Communications Surveys & Tutorials 26(1): 670-705.
Wang, T., S. Zhou, L. Cheng, J. Zhang and X. Liu (2024). Multi-Edge Computing Collaboration Based On QoS-QoE Model. Proceedings of the 3rd International Conference on Computer, Artificial Intelligence and Control Engineering. Xi' an, China, Association for Computing Machinery: 329–333.
Wang, Y., T. Tang, Z. Fang, Y. Deng and Y. Duan (2025). "Intelligent Task Scheduling for Microservices via A3C-Based Reinforcement Learning." arXiv preprint arXiv:2505.00299.
Xia, L., Z. G. Zhang, Q.-L. Li and P. W. Glynn (2018). "A \$ c/\mu \$-Rule for Service Resource Allocation in Group-Server Queues." arXiv preprint arXiv:1807.05367.
Xiong, X., K. Zheng, L. Lei and L. Hou (2020). "Resource Allocation Based on Deep Reinforcement Learning in IoT Edge Computing." IEEE Journal on Selected Areas in Communications 38(6): 1133-1146.
Xu, D., T. Li, Y. Li, X. Su, S. Tarkoma, T. Jiang, J. Crowcroft and P. Hui (2021). "Edge Intelligence: Empowering Intelligence to the Edge of Network." Proceedings of the IEEE 109(11): 1778-1837.
Yang, G. S., L. Hou, X. Y. He, D. J. He, S. Chan and M. Guizani (2021). "Offloading Time Optimization via Markov Decision Process in Mobile-Edge Computing." Ieee Internet of Things Journal 8(4): 2483-2493.
Yang, J., Q. Yuan, S. Chen, H. He, X. Jiang and X. Tan (2023). "Cooperative Task Offloading for Mobile Edge Computing Based on Multi-Agent Deep Reinforcement Learning." IEEE Transactions on Network and Service Management 20(3): 3205-3219.
Zaki, A. M. and S. Sorour (2022). Proactive Migration for Dynamic Computation Load in Edge Computing. ICC 2022 - IEEE International Conference on Communications.
Zhang, J., T. Wang and L. Cheng (2023). "Time-Sensitive and Resource-Aware Concurrent Workflow Scheduling for Edge Computing Platforms Based on Deep Reinforcement Learning." Applied Sciences 13(19): 10689.
Zhang, W., J. Luo, L. Chen and J. Liu (2023). "A Trajectory Prediction-Based and Dependency-Aware Container Migration for Mobile Edge Computing." IEEE Transactions on Services Computing 16(5): 3168-3181.
Zhao, L., S. Li, Z. Tan, A. Hawbani, S. Timotheou and K. Yu (2025). "A Multi-UAV Cooperative Task Scheduling in Dynamic Environments: Throughput Maximization." IEEE Transactions on Computers 74(2): 442-454.
Zhou, J., D. Tian, Z. Sheng, X. Duan and X. Shen (2021). "Distributed Task Offloading Optimization With Queueing Dynamics in Multiagent Mobile-Edge Computing Networks." IEEE Internet of Things Journal 8(15): 12311-12328.
Zhu, X., W. Yao and W. Wang (2024). "Load-aware task migration algorithm toward adaptive load balancing in Edge Computing." Future Generation Computer Systems 157: 303-312.
蔡沂芯 (2019). 大型生產系統之多智能體動態派工與預防保養架構. 碩士.
李冠臻 (2020). 應用多智能體分解與合成之動態派工與與保養方法. 碩士.
蔡佩穎 (2022). 運用 MILP 分解之邊緣運算動態任務分配決策研究. 碩士.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101083-
dc.description.abstract隨著AIoT和5G技術的迅速發展,大量異質設備的接入帶動密集型運算(computation-intensive)需求急遽增加,如基於機器學習技術的智慧排程與自動化品質檢測中的影像辨識等應用,皆需仰賴外部運算資源協助處理。此類大型且複雜的任務具備模組化與輕量化特性,可轉化為顆粒度更小的微服務應用(microservice)分配至鄰近裝置的邊緣端進行運算,使得運算資源的分配面臨高度動態變化與延遲控制等挑戰。在此背景下,如何有效調度任務並動態配置資源,以兼顧即時性、負載均衡(load balancing)與系統穩定性,已成為影響邊緣運算系統服務品質(Quality of Service, QoS)核心挑戰之一。
其中,考量伺服器異質運算特性將任務分配給最適的邊緣節點為常見的負載平衡策略,可有效降低因局部過載或閒置所造成的系統效能損耗。鑒於各邊緣伺服器之任務到達率具高度隨機性,而隊列過長將導致運算延遲(delay)和吞吐量(throughput)下降,進而影響整體任務執行效率。因此,如何在初始任務分配後,持續維持系統於瞬時高變負載下的運行平衡並最小化系統週期時間(cycle time),成為系統設計上的關鍵挑戰。在此條件下,任務遷移機制(task migration)被視為實現系統穩定運作的重要手段。
因此,本研究提出一套動態任務分配與遷移(Dynamic Task Allocation and Migration, DTAM)方法,應用於協同式邊緣運算(Cooperative Edge Computing)系統。欲整合以上方法,先透過線性規劃拆解模型(Linear Programming Decomposition, LPD),將複雜的系統問題拆解為多個子問題,並以馬可夫決策過程(Markov Decision Process, MDP)建立單伺服器多任務分配模型,決定在不同狀態下優先運算的任務種類。之後,透過協調子問題解找出最佳任務分配,並在伺服器閒置時啟動任務遷移機制,伺服器將各自求解每期遷移的任務種類及來源伺服器,以滿足最大化系統產能利用率和任務等候成本最小化等目標。
zh_TW
dc.description.abstractWith the rapid advancement of AIoT and 5G technologies, the emergence of numerous heterogeneous devices has led to a sharp increase in computation-intensive demands. Applications such as intelligent scheduling based on machine learning and image recognition in automated quality inspection rely heavily on external computing resources. These large and complex tasks are often modularized and lightweight, allowing them to be transformed into smaller granularity microservice applications, which can then be distributed to edge devices for processing. However, this introduces challenges in managing highly dynamic resource allocation and delay control.
In this context, how to effectively schedule tasks and dynamically allocate resources, while ensuring real-time responsiveness, load balancing, and system stability, has become one of the core challenges affecting the Quality of Service (QoS) in edge computing systems. Among the common strategies for load balancing, balanced task distribution can effectively reduce performance degradation caused by local overloads or idleness. Given the highly stochastic and variable nature of task arrival rates at different edge servers, excessively long queues can lead to increased computational delays and reduced throughput, ultimately affecting overall task execution efficiency.
To address this, this study proposes a dynamic task allocation method that integrates task allocation and migration mechanisms within a Cooperative Edge Computing (CEC) System. The approach first applies to a Linear Programming Decomposition (LPD) method to break down complex system problems into multiple single server subproblems. A Markov Decision Process (MDP) is then used to model multi-task allocation for each server, determining the priority of tasks to be processed under different system states. Through coordination of the subproblem solutions, the optimal task allocation is derived. Additionally, when a server is idle, the task migration mechanism is activated, allowing each server to determine which tasks to migrate and from which source servers, with the aim of maximizing system resource utilization and minimizing task waiting costs.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-11-27T16:12:16Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-11-27T16:12:16Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝 I
中文摘要 II
英文摘要 III
目 次 IV
圖 次 VI
表 次 VII
第1章 緒論 1
1.1 研究背景與動機 2
1.1.1 AIoT對工業運算資源的需求 2
1.1.2 協同式邊緣運算潛力 2
1.1.3 動態任務分配 4
1.2 研究目的 5
1.3 研究方法 6
1.4 研究流程 7
第2章 文獻回顧 8
2.1 邊緣運算系統架構 8
2.2 邊緣運算之任務管理方法 8
2.2.1 運算任務之派工法則 9
2.2.2 協同式邊緣運算之動態任務分配方法 11
2.2.3 任務遷移機制 13
2.3 文獻回顧小結 16
第3章 問題描述與模型建構 17
3.1 研究問題 17
3.1.1 研究問題描述 17
3.1.2 研究問題假設 18
3.2 多任務多伺服器之動態任務分配模型 19
3.2.1 參數與變數符號定義 19
3.2.2 多任務多邊緣任務分配模型 20
3.2.3 求解複雜度解釋 22
第4章 動態任務分配與遷移求解流程 24
4.1 任務管理方法求解流程圖 25
4.2 線性規劃分解模型(LPD) 25
4.2.1 參數與變數符號定義 26
4.2.2 線性規劃分解模型 26
4.3 可擴充式的動態任務分配與遷移方法 27
第5章 系統模擬結果與數值分析 30
5.1 求解程式與模擬環境介紹 30
5.1.1 LPD與DTAM求解工具 30
5.1.2 模擬環境介紹 31
5.1.3 模擬DTAM方法流程 32
5.2 多任務多邊緣伺服器之模擬實驗 33
5.2.1 三任務三邊緣伺服器實驗 33
5.2.2 多任務多邊緣伺服器實驗 38
5.2.3 實驗分析–顯著性假設檢定分析 42
5.2.4 迴歸分析:利用率 45
5.2.5 任務種類數量變化對效能的影響分析 47
5.3 模擬結果與數據分析小結 48
第6章 結論與未來研究方向 49
6.1 結論 49
6.2 未來研究方向 50
參考文獻 51
附錄 57
-
dc.language.isozh_TW-
dc.subject任務分配-
dc.subject任務遷移-
dc.subject協同式邊緣運算系統-
dc.subject負載均衡-
dc.subject動態規劃-
dc.subjectTask Allocation-
dc.subjectTask Migration-
dc.subjectCooperative Edge Computing System-
dc.subjectLoad Balancing-
dc.subjectDynamic Programming-
dc.title適用於協同式邊緣運算之動態任務分配與遷移zh_TW
dc.titleDynamic Task Allocation and Migration for Cooperative Edge Computingen
dc.typeThesis-
dc.date.schoolyear114-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee洪一薰;陳文智zh_TW
dc.contributor.oralexamcommitteeI-Hsuan Hong;Wen-Chih Chenen
dc.subject.keyword任務分配,任務遷移協同式邊緣運算系統負載均衡動態規劃zh_TW
dc.subject.keywordTask Allocation,Task MigrationCooperative Edge Computing SystemLoad BalancingDynamic Programmingen
dc.relation.page72-
dc.identifier.doi10.6342/NTU202504462-
dc.rights.note未授權-
dc.date.accepted2025-09-25-
dc.contributor.author-college工學院-
dc.contributor.author-dept工業工程學研究所-
dc.date.embargo-liftN/A-
顯示於系所單位:工業工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-114-1.pdf
  未授權公開取用
2.34 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved