請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101082完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林致廷 | zh_TW |
| dc.contributor.advisor | Chih-Ting Lin | en |
| dc.contributor.author | 張鈺涓 | zh_TW |
| dc.contributor.author | Yu-Chuan Chang | en |
| dc.date.accessioned | 2025-11-27T16:12:03Z | - |
| dc.date.available | 2025-11-28 | - |
| dc.date.copyright | 2025-11-27 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-10-01 | - |
| dc.identifier.citation | [1] D. S. Raja, C.-H. Lee, P.-Y. Lai, Y.-H. Wang, and D.-H. Tsai, “Rapid Detection of Impurity Particles in Etching Solutions Using Electrospray-Differential Mobility Analysis,” Talanta, vol. 294, pp. 128254–128254, May 2025.
[2] Taiwan Semiconductor Manufacturing Company (TSMC), Hsinchu, Taiwan, “Logic Technology,” tsmc.com. Accessed: July 1, 2025. [Online]. Available: https://www.tsmc.com/english/dedicatedFoundry/technology/logic [3] TECHCET, San Diego, CA, USA, “Semi Wet Chemicals US$2B Market Threatened by Localization,” Techcet.com. Accessed: July 1, 2025. [Online]. Available: https://techcet.com/semi-wet-chemicals-us2b-market-threatened-by-localization/?utm_source=chatgpt.com [4] ASIA IC MIC-PROCESS, INC., Hsinchu County, Taiwan, “Chemical Delivery System,” asiaicmp.com. Accessed: July 2, 2025. [Online]. Available: https://www.asiaicmp.com/en/product.php?act=view&id=3 [5] J. B. Callis, D. Illman, and B. R. Kowalski, “Process analytical chemistry,” Analytical Chemistry, vol. 59, no. 9, pp. 624A637A, May 1987. [6] S. Liu and B. Liu, “Particle Measurement with a Liquid-Borne Particle Counter: Analytical Figures of Merit,” Solid state phenomena, vol. 219, pp. 157-160, Sep. 2014. [7] Z. Zhang, S. Hu, C. Bai, C. Wang, H. Li and H. Zhang, “Characterization of Multiabrasive Mixed Signals From LC Resonance-Based Dual-Coil Oil Detection Sensors,” IEEE Sensors Journal, vol. 24, no. 20, pp. 31940-31948, 15 Oct.15, 2024. [8] S. Zhang et al., “The Design and Study of a Four-Coil Oil Multi-Pollutant Detection Sensor,” Journal of Marine Science and Engineering, vol. 12, no. 5, p. 846, May 2024. [9] X. Zhou, W. Zhang, and Z. Ouyang, “Recent advances in on-site mass spectrometry analysis for clinical applications,” Trends in Analytical Chemistry, vol. 149, p. 116548, Apr. 2022. [10] G. Grandi, M. K. Kazimierczuk, A. Massarini and U. Reggiani, “Stray capacitances of single-layer solenoid air-core inductors,” in IEEE Transactions on Industry Applications, vol. 35, no. 5, pp. 1162-1168, Sept.-Oct. 1999. [11] J. Kuipers, H. Bruning, D. Yntema, S. Bakker and H. Rijnaarts, "Self-Capacitance and Resistive Losses of Saline-Water-Filled Inductors," in IEEE Transactions on Industrial Electronics, vol. 61, no. 5, pp. 2356-2361, May 2014 [12] D. J. Griffiths, Introduction to electrodynamics. Upper Saddle River, N.J.: Prentice-Hall, 1999 [13] H. Nagaoka, “The inductance coefficients of solenoids,” J. Coll. Sci., vol. 27, no. 3, pp. 1–33, Aug. 1909. [14] H. A. Wheeler, “Simple Inductance Formulas for Radio Coils,” in Proceedings of the Institute of Radio Engineers, vol. 16, no. 10, pp. 1398-1400, Oct. 1928. [15] M. K. Kazimierczuk, High-Frequency Magnetic Components, 2nd. ed. Chichester, U.K.: Wiley, 2014. [16] D. Arista, A. Rachmawati, N. Ramadhani, R. E. Saputro, A. Taufiq, and Sunaryono, “Antibacterial performance of Fe3O4/ PEG-4000 prepared by co-precipitation route,” IOP Conference Series: Materials Science and Engineering, vol. 515, p. 012085, 2019. [17] 張佳瑋, 盧彥蓓, 陳銘福, 吳昆寰, and 黃晧庭, “磁熱治療的產熱機制及其腫瘤治療應用,” 科儀新知, no. 233, pp. 79–90, 2022. Accessed: July 12, 2025. [Online].Available:https://www.ncir.niar.org.tw/Publication/InstTdy_Full/12643?PubId=233 [18] C. Bai, H. Zhang, W. Wang, X. Zhao, H. Chen, and N. Zeng, “Inductive-Capacitive Dual-Mode Oil Detection Sensor Based on Magnetic Nanoparticle Material,” IEEE Sensors Journal, vol. 20, no. 20, pp. 12274–12281, Oct. 2020. [19] Science Facts, “Eddy Current,” Science Facts. Accessed: July 14, 2025. [Online]. Available: https://www.sciencefacts.net/eddy-current.html [20] Friedrich Kremer, and Andreas Schönhals. Broadband Dielectric Spectroscopy. Berlin ; Heidelberg Springer, 2012. [21] V. A. Markel, “Introduction to the Maxwell Garnett approximation: tutorial,” Journal of the Optical Society of America A, vol. 33, no. 7, p. 1244, Jun. 2016. [22] X. Xia, Z. Zhong, and G. J. Weng, “Maxwell–Wagner–Sillars mechanism in the frequency dependence of electrical conductivity and dielectric permittivity of graphene-polymer nanocomposites,” Mechanics of Materials, vol. 109, pp. 42–50, Jun. 2017. [23] J. Qian et al., “Modification of the Maxwell–Wagner Heterogeneous Dielectric Model for Heterogeneous Polymers and Emulsions,” Polymers, vol. 14, no. 13, pp. 2743–2743, Jul. 2022. [24] Thermo Fisher Scientific, Waltham, MA, USA. Particle Technology Technical Notes & Reference Guide. (2018). Accessed: July. 17, 2025. [Online]. Available: https://documents.thermofisher.com/TFS-Assets/CDD/Catalogs/CAT-10021654-PT-TECH-GUIDE-EN.pdf [25] GW Instek, New Taipei, Taiwan. LCR-8200 Series User Manual. (2024). Accessed: July. 21, 2025. [Online]. Available: https://www.gwinstek.com/zh-TW/products/downloadSeriesDownNew/15492/1879 [26] Keysight Technologies, Santa Rosa, CA, USA. Impedance Measurement Handbook: A Guide to Measurement Technology and Techniques, 6th ed. (2016). Accessed: July 21, 2025. [Online]. Available: https://www.cmc.ca/wp-content/uploads/2019/07/Keysight-Technologies-impedance-measurement-handbook.pdf [27] H.-Y. Kuo, Y.-H. Cheng, H. Chang, J.-S. Shaw, and R. Lee, “Design of Electrodes on Gold Test Strips for Enhanced Accuracy in Glucose Measurement,” Journal of Sensors, vol. 2019, pp. 1–10, Oct. 2019. [28] Thermo Fisher Scientific, Waltham, MA, USA, “Thermo Scientific™ NanoDrop™ One Microvolume UV-Vis Spectrophotometer,” Thermo Fisher Scientific. Accessed: July 22, 2025. [Online]. Available: https://www.fishersci.ca/shop/ products/nanodrop-one-spectrophotometer/13400518 [29] SCINCO Taiwan Co., Ltd., Taipei, Taiwan, “淺談紫外光可見光光譜原理/uv vis原理,” SCINCO Taiwan. Accessed: July 22, 2025. [Online]. Available: https://www.scincotaiwan.tw/zh-cht/TechnicalSupport_Detail-60.html [30] 臺灣大學化學系質譜室, Taipei, Taiwan, “感應耦合電漿質譜儀 (ICP-MS),” 臺灣大學化學系質譜室. Accessed: July 22, 2025. [Online]. Available: https://sites.google.com/view/ntumasscorefacility/%E8%87%BA%E7%81%A3%E5%A4%A7%E5%AD%B8%E5%8C%96%E5%AD%B8%E7%B3%BB%E8%B3%AA%E8%AD%9C%E5%AE%A4/icp-ms?authuser=0 [31] Merck Ltd., Taipei, Taiwan, “水質對 ICP-MS 感應耦合電漿質譜儀的影響,” Merck Ltd., Accessed: July 22, 2025. [Online]. Available: https://milli-q.com.tw/blog/detail/b3a79e68-c2f3-4ef6-8f08-638371b0c848?pageno=3 [32] S. C. Wilschefski and M. R. Baxter, “Inductively Coupled Plasma Mass Spectrometry: Introduction to Analytical Aspects,” Clinical Biochemist Reviews, vol. 40, no. 3, pp. 115–133, Aug. 2019. [33] PHE-NANO INSTRUMENTS LTD. TAIWAN BRANCH(UK), Taipei, Taiwan, “SEM掃描式電子顯微鏡:電子信號種類與應用,” 英商飛奈儀器. Accessed: July 23, 2025. [Online]. Available: https://phe-nano.com.tw/sem-principle-structure-uses/ [34] 國立臺灣大學貴重儀器中心, Taipei, Taiwan, “電子顯微鏡(積學館)-雙鎗型離子束顯微鏡/場發射掃描式電子顯微鏡 EM022500, ” 國立臺灣大學貴重儀器中心. Accessed: July 23, 2025. [Online]. Available: https://www.hic.ch.ntu.edu.tw/EM%E5%8C%96/em1.html [35] Merck, Darmstadt, Germany, “Gold nanoparticles,” Merck. Accessed: July 30, 2025. Available: https://www.sigmaaldrich.com/TW/en/product/aldrich/742007? srsltid=AfmBOori5SQFCrCfPFVHVIPQdiLNIPaDLlUWYhYLnal0qFL-bLacSLGo [36] W. Haiss, N. T. K. Thanh, J. Aveyard, and D. G. Fernig, “Determination of Size and Concentration of Gold Nanoparticles from UV−Vis Spectra,” Analytical Chemistry, vol. 79, no. 11, pp. 4215–4221, Jun. 2007. [37] M. M. H. Al Fayad, “Amplification in MEMS RLC Circuits for Enhanced Sensitivity and MEMS Applications,” M.S. thesis, Dept. Archit. Eng., Univ. of Nebraska–Lincoln, Lincoln, NE, USA, 2025. [Online]. Available: https://digitalcommons.unl.edu/archengdiss/79/ [38] Charles K. Alexander, Matthew N. O. Sadiku. Fundamentals of electric circuits, 4th. ed. McGraw-Hill, 2009. [39] Evgenij Barsoukov, and James Ross Macdonald. Impedance Spectroscopy. Wiley, 2018. [40] J.-G. Park, S.-H. Lee, J.-S. Ryu, Y.-K. Hong, T.-G. Kim, and A. A. Busnaina, “Interfacial and Electrokinetic Characterization of IPA Solutions Related to Semiconductor Wafer Drying and Cleaning,” Journal of The Electrochemical Society, vol. 153, no. 9, p. G811, 2006. [41] Z. Yang et al., “Assessing the effect of composition on dielectric constant of sustainable aviation fuel,” Fuel, vol. 380, p. 133230, Jan. 2025. [42] K. N. Koo, A. F. Ismail, M. H. D. Othman, N. Bidin, and M. A Rahman, “Preparation and characterization of superparamagnetic magnetite (Fe3O4) nanoparticles: A short review,” Malaysian Journal of Fundamental and Applied Sciences, vol. 15, no. 1, pp. 23–31, Feb. 2019. [43] Wahajuddin and S. Arora, “Superparamagnetic iron oxide nanoparticles: magnetic nanoplatforms as drug carriers,” International Journal of Nanomedicine, vol. 7, p. 3445, Jul. 2012. [44] A. F. J. Levi, Essential Classical Mechanics for Device Physics. Morgan & Claypool Publishers, 2016. [45] M. A. Ordal et al., “Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared,” Applied Optics, vol. 22, no. 7, p. 1099, Apr. 1983. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101082 | - |
| dc.description.abstract | 現今半導體製程對化學品純度的要求日益嚴格,然而現行液體純度的檢測方法多屬離線分析,不僅無法即時監控產線上化學品的品質,取樣過程亦可能造成二次污染。為解決此問題,本研究旨在開發一套非接觸式電磁感測系統,用於檢測液體樣品中奈米級之不純物。該系統採用同軸雙層螺線管線圈作為感測元件,當樣品置於線圈中心時,其電磁特性的差異將改變線圈等效電路中之參數,包含電感與電容值,此參數的改變會直接影響線圈的阻抗與相位特性,透過量測系統的頻率響應圖即可觀測此變化。本研究即是透過分析相位響應的變化,來推估樣品中不純物是否存在及其濃度差異。
基於上述原理,為了驗證感測系統之可行性,本研究首先使用去離子水與異丙醇混合溶液進行實驗,觀察到相位圖之頻率偏移與理論預期一致,證實感測元件之有效性。後續研究中選用三種性質不同的奈米粒子作為樣本,包括具鐵磁性的四氧化三鐵奈米粒子、具導電性但無磁性的金奈米粒子,以及不具導電性與磁性的聚苯乙烯奈米粒子,並以去離子水為溶劑製成懸浮液,探討不同類型與濃度的奈米粒子對螺線管電路相位特性的影響。實驗結果顯示,雙層螺線管感測系統能有效偵側不同濃度下的單一奈米級不純物。該技術未來有望應用於半導體製程中化學品管線的即時污染物檢測,有助於提高製程良率與產品品質。 總結而言,本研究證實雙層螺線管感測機制於液體中不純物濃度檢測之可行性。未來研究可著重於提升系統的檢測靈敏度與準確性,並進一步探討外線圈在不同激發條件下,對感測效能之影響。 | zh_TW |
| dc.description.abstract | In semiconductor manufacturing, the demand for high-purity chemicals has become increasingly critical. However, most current liquid purity inspection techniques rely on offline analysis, which not only prevents real-time monitoring but also carries the risk of contamination during sampling. To address this issue, this study proposes a non-contact electromagnetic sensing system for detecting nanoscale impurities in liquid samples. The sensing element is designed as a coaxial double-layer solenoid coil. When a sample is placed at the center of the coil, variations in its electromagnetic properties alter the equivalent circuit parameters, including inductance and capacitance. These parameter changes directly influence the coil’s impedance and phase characteristics, which can be observed through the frequency response of the system. By analyzing shifts in the phase response, the presence and concentration differences of impurities in the liquid can be evaluated.
Based on this principle, preliminary experiments were carried out using mixtures of deionized water and isopropanol. The observed frequency shifts in the phase spectra were consistent with theoretical expectations, confirming the effectiveness of the sensing element. In the following experiments, three types of nanoparticles with distinct physical properties were chosen as test samples: ferromagnetic Fe₃O₄ nanoparticles, conductive but non-magnetic gold nanoparticles, and non-conductive, non-magnetic polystyrene nanoparticles. These were dispersed in deionized water to form suspensions, enabling the investigation of how different particle types and concentrations influence the phase characteristics of the solenoid circuit. The experimental results demonstrate that the double-layer solenoid sensing system can effectively detect nanoscale impurities of various concentrations. This technique shows potential for real-time monitoring of chemical contamination in semiconductor manufacturing pipelines, thereby contributing to improved process yield and product quality. In conclusion, this study has demonstrated the feasibility of using a double-layer solenoid sensing mechanism for detecting impurity concentrations in liquids. Future work may focus on improving the sensitivity and accuracy of the system, as well as further investigating how variations in the excitation conditions of the outer coil influence the overall sensing performance. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-11-27T16:12:03Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-11-27T16:12:03Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 中文摘要 iii 英文摘要 iv 目次 vi 圖次 ix 表次 xi 第一章 緒論 1 1.1 研究背景 1 1.2 化學品測量方法 2 1.3 雙線圈檢測技術 4 1.4 研究動機 5 第二章 理論及原理介紹 6 2.1 螺線管線圈的電路特性 6 2.1.1 電感特性 8 2.1.2 電容特性 9 2.2 奈米粒子之電磁性質 10 2.2.1 相對磁導率 10 2.2.2 渦電流效應 11 2.2.3 介電特性 13 第三章 實驗架設與方法 15 3.1 實驗材料介紹 15 3.2 儀器原理 17 3.3 電路模擬 19 3.4 實驗流程與樣品配製 20 3.4.1 線圈製作 20 3.4.2 溶液配置方法 21 3.4.3 量測方法 22 3.5 濃度驗證儀器 23 3.5.1 紫外光可見光光譜(Ultraviolet–visible spectroscopy, UV-Vis) 23 3.5.2 感應耦合電漿質譜儀(Inductively coupled plasma mass spectrometry, ICP-MS) 24 3.5.3 掃描式電子顯微鏡(Scanning electron microscope, SEM) 25 第四章 實驗結果分析與討論 26 4.1 濃度驗證結果 26 4.1.1 紫外光可見光光譜(UV-Vis)分析結果 26 4.1.2 感應耦合電漿質譜儀(ICP-MS)分析結果 28 4.1.3 掃描式電子顯微鏡(SEM)結果 29 4.2 雙層螺線管之阻抗與相位 30 4.3 量測系統穩定性分析 31 4.3.1 操作因素誤差 31 4.3.2 液體體積與相位偏移之關係 33 4.4 非金屬不純物檢測 34 4.4.1 液體種類對相位之影響 34 4.4.2 混合液體對介電特性和相位之影響 35 4.4.3 非金屬奈米粒子 36 4.5 金屬不純物檢測 38 4.5.1 鐵磁性金屬奈米粒子 38 4.5.2 非鐵磁性金屬奈米粒子 40 第五章 結論與未來展望 42 參考文獻 44 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 雙層螺線管線圈 | - |
| dc.subject | 粒子檢測 | - |
| dc.subject | 電磁感測 | - |
| dc.subject | 非接觸式感測 | - |
| dc.subject | 化學品監控 | - |
| dc.subject | Dual-Layer Solenoid Coil | - |
| dc.subject | Particle Detection | - |
| dc.subject | Electromagnetic Sensing | - |
| dc.subject | Non-contact Measurement | - |
| dc.subject | Chemical Contamination Monitoring | - |
| dc.title | 雙線圈電磁感應架構於非接觸式奈米粒子檢測技術之開發 | zh_TW |
| dc.title | Development of a Dual-Coil Electromagnetic Induction System for Non-Contact Nanoparticle Detection | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 114-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 張子璿;林駿璿 | zh_TW |
| dc.contributor.oralexamcommittee | Tzu-Hsuan Chang;Chun-Hsuan Lin | en |
| dc.subject.keyword | 雙層螺線管線圈,粒子檢測電磁感測非接觸式感測化學品監控 | zh_TW |
| dc.subject.keyword | Dual-Layer Solenoid Coil,Particle DetectionElectromagnetic SensingNon-contact MeasurementChemical Contamination Monitoring | en |
| dc.relation.page | 49 | - |
| dc.identifier.doi | 10.6342/NTU202504537 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2025-10-02 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 電子工程學研究所 | - |
| dc.date.embargo-lift | N/A | - |
| 顯示於系所單位: | 電子工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-114-1.pdf 未授權公開取用 | 3.7 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
