Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 海洋研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101073
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳韋仁zh_TW
dc.contributor.advisorWei-jen Chenen
dc.contributor.author劉力瑄zh_TW
dc.contributor.authorLi-Hsuan Liuen
dc.date.accessioned2025-11-27T16:09:49Z-
dc.date.available2025-11-28-
dc.date.copyright2025-11-27-
dc.date.issued2025-
dc.date.submitted2025-11-03-
dc.identifier.citationAburto-Oropeza, O., Dominguez-Guerrero, I., Cota-Nieto, J., & Plomozo-Lugo, T., 2009. Recruitment and ontogenetic habitat shifts of the yellow snapper (Lutjanus argentiventris) in the Gulf of California. Marine Biology, 156(12), 2461–2472. https://doi.org/10.1007/s00227-009-1271-5.
Agassiz, L., 1845. Report on the fossil fishes of the London Clay. Report of the British Association for the Advancement of Science, 1844, 279–310.
Akazaki, M., & Iwatsuki, Y., 1987. Classification of the lutjanid fish genus Pristipomoides (Percoidei). Japanese Journal of Ichthyology, 34(3), 324–333. https://doi.org/10.11369/jji1950.34.324.
Alfaro, M. E., Faircloth, B. C., Harrington, R. C., Sorenson, L., Friedman, M., Thacker, C. E., Oliveros, C. H., Černý, D., & Near, T. J., 2018. Explosive diversification of marine fishes at the Cretaceous–Palaeogene boundary. Nature Ecology & Evolution, 2(4), 688–696. https://doi.org/10.1038/s41559-018-0494-6.
Alfaro, M. E., Santini, F., & Brock, C. D., 2007. Do reefs drive diversification in marine teleosts? Evidence from the pufferfish and their allies (Order Tetraodontiformes). Evolution, 61(9): 2104–2126. https://doi.org/10.1111/j.1558-5646.2007.00182.x.
Allen, G. R., 1985. FAO species catalogue: Vol. 6. Snappers of the world. An annotated and illustrated catalogue of lutjanid species known to date. FAO, Rome.
Al-Zaidan, A. S. Y., Akbar, A., Bahbahani, H., Al-Mohanna, S. Y., Kolattukudy, B., & Balakrishna, V., 2021. Landing, consumption, and DNA barcoding of commercial seabream (Perciformes: Sparidae) in Kuwait. Aquatic Conservation: Marine and Freshwater Ecosystems, 31(4), 802–817. https://doi.org/10.1002/aqc.3476.
Arvedlund, M., & Takemura, A., 2006. The importance of chemical environmental cues for juvenile Lethrinus nebulosus Forsskål (Lethrinidae, Teleostei) when settling into their first benthic habitat. Journal of Experimental Marine Biology and Ecology, 338(1), 112–122. https://doi.org/10.1016/j.jembe.2006.07.001.
Atlas of Living Australia. http://www.ala.org.au.
Bakar, A. A., Adamson, E. A. S., Juliana, L. H., Nor Mohd, S. A., Wei-Jen, C., Man, A., & Md, D. N., 2018. DNA barcoding of Malaysian commercial snapper reveals an unrecognized species of the yellow-lined Lutjanus (Pisces:Lutjanidae). PLOS ONE, 13(9), e0202945. https://doi.org/10.1371/journal.pone.0202945.
Baken, E. K., Collyer, M. L., Kaliontzopoulou, A., & Adams, D. C., 2021. geomorph v4.0 and gmShiny: Enhanced analytics and a new graphical interface for a comprehensive morphometric experience. Methods in Ecology and Evolution, 12(12), 2355–2363. https://doi.org/10.1111/2041-210X.13723.
Bannikov, A. F., & Tyler, J. C., 1995. Phylogenetic revision of the fish families Luvaridae and †Kushlukiidae (Acanthuroidei), with a new genus and two new species of Eocene luvarids. Smithsonian Contributions to Paleobiology, 81(81), 1–45. http://dx.doi.org/10.5479/si.00810266.81.1.
Baraf, L. M., Pratchett, M. S., & Cowman, P. F., 2019. Ancestral biogeography and ecology of marine angelfishes (F: Pomacanthidae). Molecular Phylogenetics and Evolution, 140, 106596. https://doi.org/10.1016/j.ympev.2019.106596.
Beaulieu, J. M., O'Meara, B. C., & Donoghue, M. J., 2013. Identifying hidden rate Changes in the evolution of a binary morphological character: the evolution of plant habit in campanulid angiosperms. Systematic Biology, 62(5), 725–737. https://doi.org/10.1093/sysbio/syt034.
Bejarano, S., Mumby, P. J., & Sotheran, I., 2011. Predicting structural complexity of reefs and fish abundance using acoustic remote sensing (RoxAnn). Marine Biology, 158(3), 489–504. https://doi.org/10.1007/s00227-010-1575-5.
Bellwood, D. R., Goatley, C. H. R., & Bellwood, O., 2017. The evolution of fishes and corals on reefs: form, function and interdependence. Biological Reviews, 92(2), 878–901. https://doi.org/10.1111/brv.12259.
Benson, D. A., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J., Rapp, B. A., & Wheeler, D. L., 2000. GenBank. Nucleic Acids Research, 28(1), 15–18. https://doi.org/10.1093/nar/28.1.15.
Betancur-R, R., Broughton, R. E., Wiley, E. O., Carpenter, K., López, J. A., Li, C., Holcroft, N. I., Arcila, D., Sanciangco, M., Cureton II, J. C., Zhang, F., Buser, T., Campbell, M. A., Ballesteros, J. A., Roa-Varon, A., Willis, S., Borden, W. C., Rowley, T., Reneau, P. C., Hough, D. J., Lu, G., Grande, T., Arratia, G., & Ortí, G., 2013. The tree of life and a new classification of bony fishes. PLoS currents, 5. https://doi.org/10.1371/currents.tol.53ba26640df0ccaee75bb165c8c26288.
Betancur-R, R., Wiley, E. O., Arratia, G., Acero, A., Bailly, N., Miya, M., Lecointre, G., & Ortí, G., 2017. Phylogenetic classification of bony fishes. BMC Evolutionary Biology, 17(1), 162. https://doi.org/10.1186/s12862-017-0958-3.
Blake, R. W., 2004. Fish functional design and swimming performance. Journal of Fish Biology, 65(5), 1193–1222. https://doi.org/10.1111/j.0022-1112.2004.00568.x.
Bogorodsky, S., Saeed, F., & Zajonz, U., 2020. Twenty-three new records of commercial fish species (Actinopterygii) from the Socotra Archipelago (North-Western Indian Ocean). Acta Ichthyologica Et Piscatoria, 50, 511–538. https://doi.org/10.3750/AIEP/03068.
Bookstein, F. L., 1992. Morphometric Tools for Landmark Data: Geometry and Biology. Cambridge University Press. https://doi.org/10.1017/CBO9780511573064.
Borsa, P., Hsiao, D.-R., Carpenter, K. E., & Chen, W.-J., 2013. Cranial morphometrics and mitochondrial DNA sequences distinguish cryptic species of the longface emperor (Lethrinus olivaceus), an emblematic fish of Indo-West Pacific coral reefs. Comptes Rendus Biologies, 336(10), 505–514. https://doi.org/10.1016/j.crvi.2013.06.003.
Borsa, P., Lemer, S., & Aurelle, D., 2007. Patterns of lineage diversification in rabbitfishes. Molecular Phylogenetics and Evolution, 44(1), 427–435. https://doi.org/10.1016/j.ympev.2007.01.015.
Bouckaert, R., Heled, J., Kühnert, D., Vaughan, T., Wu, C.-H., Xie, D., Suchard, M. A., Rambaut, A., & Drummond, A. J., 2014. BEAST 2: A software platform for Bayesian evolutionary analysis. PLOS Computational Biology, 10(4), e1003537. https://doi.org/10.1371/journal.pcbi.1003537.
Brown, A., & Thatje, S., 2014. Explaining bathymetric diversity patterns in marine benthic invertebrates and demersal fishes: physiological contributions to adaptation of life at depth. Biological Reviews, 89(2), 406–426. https://doi.org/10.1111/brv.12061.
Brownstein, C. D., Harrington, R. C., Alencar, L. R. V., Bellwood, D. R., Choat, J. H., Rocha, L. A., Wainwright, P. C., Tavera, J., Burress, E. D., Muñoz, M. M., Cowman, P. F., & Near, T. J., 2025. Phylogenomics establishes an Early Miocene reconstruction of reef vertebrate diversity. Science Advances, 11(19), eadu6149. https://doi.org/10.1126/sciadv.adu6149.
Brownstein, C. D., Zapfe, K. L., Lott, S., Harrington, R., Ghezelayagh, A., Dornburg, A., & Near, T. J., 2024. Synergistic innovations enabled the radiation of anglerfishes in the deep open ocean. Current Biology, 34(11), 2541–2550. https://doi.org/10.1016/j.cub.2024.04.066.
Budd, G. E., 2021. Morphospace. Current Biology, 31(19), 1181–1185. https://doi.org/10.1016/j.cub.2021.08.040.
Burns, M. D., & Sidlauskas, B. L., 2019. Ancient and contingent body shape diversification in a hyperdiverse continental fish radiation. Evolution, 73(3), 569–587. https://doi.org/10.1111/evo.13658.
Campbell, M. A., Chanet, B., Chen, J.-N., Lee, M.-Y., & Chen, W.-J., 2019. Origins and relationships of the Pleuronectoidei: Molecular and morphological analysis of living and fossil taxa. Zoologica Scripta, 48(5), 640–656. https://doi.org/10.1111/zsc.12372.
Carnevale, G., & Pietsch, T. W., 2009. An Eocene frogfish from Monte Bolca, Italy: The earliest known skeletal record for the family. Palaeontology, 52(4), 745–752.
Carpenter, K., & Randall, J., 2003. Lethrinus ravus, a new species of emperor fish (Perciformes: Lethrinidae) from the western Pacific and eastern Indian oceans. Magnolia Press Zootaxa, 240, 1–8. https://doi.org/10.11646/zootaxa.240.1.1.
Carpenter, K. E., & Allen, G. R., 1989. FAO species catalogue: Vol. 9. Emperor fishes and large-eye breams of the world (family Lethrinidae). An annotated and illustrated catalogue of lethrinid species known to date. FAO, Rome.
Carpenter, K. E., & Johnson, G. D., 2002. A phylogeny of sparoid fishes (Perciformes, Percoidei) based on morphology. Ichthyological Research, 49(2), 114–127. https://doi.org/10.1007/s102280200015.
Carpenter, K. E., 1990. A phylogenetic analysis of the Caesionidae (Perciformes: Lutjanoidea). Copeia, 1990(3), 692–717. https://doi.org/10.2307/1446436.
Carpenter, K. E., 1996. Morphometric pattern and feeding mode in emperor fishes (Lethrinidae, Perciformes). In: Marcus, L.F., Corti, M., Loy, A., Naylor, G.J.P., & Slice, D.E. (Eds.), Advances in Morphometrics, NATO ASI Series, vol 284. Springer. https://doi.org/10.1007/978-1-4757-9083-2_41.
Carpenter, K.E., 1988. FAO Species Catalogue: Vol. 8. Fusilier fishes of the world. An annotated and illustrated catalogue of caesionid species known to date. FAO, Rome.
Carpenter, K.E., 1987. Revision of the Indo-Pacific fish family Caesionidae (Lutjanoidea), with descriptions of five new species. Indo-Pacific Fishes, 15.
Chao, N- L., Frédou, F. L., Haimovici, M., Peres, M. B., Polidoro, B., Raseira, M., Subirá, R., & Carpenter, K., 2015. A popular and potentially sustainable fishery resource under pressure–extinction risk and conservation of Brazilian Sciaenidae (Teleostei: Perciformes). Global Ecology and Conservation, 4, 117–126. https://doi.org/10.1016/j.gecco.2015.06.002.
Chen, W.-J., & Borsa, P., 2020. Diversity, phylogeny, and historical biogeography of large-eye seabreams (Teleostei: Lethrinidae). Molecular Phylogenetics and Evolution, 151, 106902. https://doi.org/10.1016/j.ympev.2020.106902.
Chen, W.-J., & Mayden, R. L., 2009. Molecular systematics of the Cyprinoidea (Teleostei: Cypriniformes), the world’s largest clade of freshwater fishes: Further evidence from six nuclear genes. Molecular Phylogenetics and Evolution, 52(2), 544–549. https://doi.org/10.1016/j.ympev.2009.01.006.
Chen, W.-J., Bonillo, C., & Lecointre, G., 2003. Repeatability of clades as a criterion of reliability: a case study for molecular phylogeny of Acanthomorpha (Teleostei) with larger number of taxa. Molecular Phylogenetics and Evolution, 26(2), 262–288. https://doi.org/10.1016/S1055-7903(02)00371-8.
Chen, W.-J., Lavoué, S., & Mayden, R. L., 2013. Evolutionary origin and early biogeography of otophysan fishes (Ostariophysi: Teleostei). Evolution, 67(8), 2218–2239. https://doi.org/10.1111/evo.12104.
Chen, W.-J., Miya, M., Saitoh, K., & Mayden, R. L., 2008. Phylogenetic utility of two existing and four novel nuclear gene loci in reconstructing tree of life of ray-finned fishes: the order Cypriniformes (Ostariophysi) as a case study. Gene, 423(2), 125–134. https://doi.org/10.1016/j.gene.2008.07.016.
Chen, W.-J., Ruiz-Carus, R., & Ortí, G., 2007. Relationships among four genera of mojarras (Teleostei: Perciformes: Gerreidae) from the western Atlantic and their tentative placement among percomorph fishes. Journal of Fish Biology, 70, 202–218. https://doi.org/10.1111/j.1095-8649.2007.01395.x.
Chen, W.-J., Santini, F., Carnevale, G., Chen, J.-N., Liu, S.-H., Lavoué, S., & Mayden, R. L., 2014. New insights on early evolution of spiny-rayed fishes (Teleostei: Acanthomorpha). Frontiers in Marine Science, 1, 53. https://doi.org/10.3389/fmars.2014.00053.
Childress, J. J., 1995. Are there physiological and biochemical adaptations of metabolism in deep-sea animals? Trends in Ecology & Evolution, 10(1), 30–36. https://doi.org/10.1016/S0169-5347(00)88957-0.
Chu, C., Rizman-Idid, M., & Ving Ching, C., 2013. Phylogenetic relationships of selected genera of Lutjanidae inferred from mitochondrial regions, with a note on the taxonomic status of Pinjalo pinjalo. Ciencias Marinas, 39(4), 349–361. https://doi.org/10.7773/cm.v39i4.2287.
Claverie, T., & Wainwright, P. C., 2014. A morphospace for reef fishes: elongation is the dominant axis of body shape evolution. PLOS ONE, 9(11), e112732. https://doi.org/10.1371/journal.pone.0112732.
Cooper, W. J., Carter, C. B., Conith, A. J., Rice, A. N., & Westneat, M. W., 2017. The evolution of jaw protrusion mechanics is tightly coupled to bentho-pelagic divergence in damselfishes (Pomacentridae). Journal of Experimental Biology, 220(4), 652–666. https://doi.org/10.1242/jeb.143115.
Cornish-Bowden, A., 1985. Nomenclature for incompletely specified bases in nucleic acid sequences: recommendations 1984. Nucleic Acids Research, 13(9), 3021–3030. https://doi.org/10.1093/nar/13.9.3021.
Cowman, P. F., & Bellwood, D. R., 2011. Coral reefs as drivers of cladogenesis: expanding coral reefs, cryptic extinction events, and the development of biodiversity hotspots. Journal of Evolutionary Biology, 24(12), 2543–2562. https://doi.org/10.1111/j.1420-9101.2011.02391.x.
Cowman, P. F., & Bellwood, D. R., 2013. The historical biogeography of coral reef fishes: global patterns of origination and dispersal. Journal of Biogeography, 40(2), 209–224. https://doi.org/10.1111/jbi.12003.
Cowman, P. F., 2014. Historical factors that have shaped the evolution of tropical reef fishes: a review of phylogenies, biogeography, and remaining questions. Frontiers in Genetics, 5, 394. https://doi.org/10.3389/fgene.2014.00394.
Cowman, P. F., Bellwood, D. R., & van Herwerden, L., 2009. Dating the evolutionary origins of wrasse lineages (Labridae) and the rise of trophic novelty on coral reefs. Molecular Phylogenetics and Evolution, 52(3), 621–631. https://doi.org/10.1016/j.ympev.2009.05.015.
Damadi, E., Yazdani Moghaddam, F., & Ghanbarifardi, M., 2023. Species delimitation, molecular phylogeny and historical biogeography of the sweetlips fish (Perciformes, Haemulidae). Zoosystematics and Evolution, 99(1), 135–147. https://doi.org/10.3897/zse.99.96386.
Dang, Z., Wu, Q., Zhou, Y., Wang, L., Liu, Y., Yang, C., Liu, M., Xie, Q., Chen, C., Ma, S., & Shan, B., 2025. Comparative transcriptomic analysis for identification of environmental-responsive genes in seven species of threadfin breams (Nemipterus). International Journal of Molecular Sciences, 26(15), 7118. https://doi.org/10.3390/ijms26157118.
Davis, M. P., Sparks, J. S., & Smith, W. L., 2016. Repeated and widespread evolution of bioluminescence in marine fishes. PLOS ONE, 11(6), e0155154. https://doi.org/10.1371/journal.pone.0155154.
Day, J. J., 2002. Evolutionary relationships of the Sparidae (Teleostei: Percoidei): integrating fossil and Recent data. Transactions of the Royal Society of Edinburgh: Earth Sciences, 93(4), 333–353. https://doi.org/10.1017/S0263593300000468.
Degnan, J. H., & Rosenberg, N. A., 2009. Gene tree discordance, phylogenetic inference and the multispecies coalescent. Trends in Ecology & Evolution, 24(6), 332–340. https://doi.org/10.1016/j.tree.2009.01.009.
Dettai, A., & Lecointre, G., 2005. Further support for the clades obtained by multiple molecular phylogenies in the acanthomorph bush. Comptes Rendus Biologies, 328(7), 674–689. https://doi.org/10.1016/j.crvi.2005.04.002.
D'Hondt, S., 2005. Consequences of the Cretaceous/Paleogene Mass Extinction for Marine Ecosystems. Annual Review of Ecology, Evolution, and Systematics, 36, 295–317. https://doi.org/10.1146/annurev.ecolsys.35.021103.105715.
Dong, L., Huang, Z., Li, Y., & Cheng, G., 2013. Sequence analysis of mitochondrial COⅠand Cytb gene of Nemipterus species in South China Sea. Journal of Fishery Sciences of China, 19, 355–363. https://doi.org/10.3724/SP.J.1118.2012.00355.
Dornburg, A., & Near, T. J., 2021. The emerging phylogenetic perspective on the evolution of Actinopterygian fishes. Annual Review of Ecology, Evolution, and Systematics, 52, 427–452. https://doi.org/10.1146/annurev-ecolsys-122120-122554.
Dryden, I. L., & Mardia, K. V., 2016. Procrustes analysis. In: Dryden, I. L., & Mardia, K.V. (Eds.), Statistical Shape Analysis, with Applications in R, John Wiley & Sons, pp. 125–173. https://doi.org/10.1002/9781119072492.ch7.
Edgar, R. C., 2004. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics, 5(1), 113. https://doi.org/10.1186/1471-2105-5-113.
El-Ganainy, A. A., Khalil, M. T., El-Bokhty, E. E. E., Saber, M. A., & Abd El-Rahman, F. A. A., 2018. Assessment of three nemipterid stocks based on trawl surveys in the Gulf of Suez, Red Sea. Egyptian Journal of Aquatic Research, 44(1), 45–49. https://doi.org/10.1016/j.ejar.2018.02.005.
Fabian, V., Houk, P., & Lemer, S., 2021. Phylogeny of Micronesian emperor fishes and evolution of trophic types. Molecular Phylogenetics and Evolution, 162, 107207. https://doi.org/10.1016/j.ympev.2021.107207.
Fariña, A. C., Azevedo, M., Landa, J., Duarte, R., Sampedro, P., Costas, G., Torres, M. A., & Cañás, L., 2008. Lophius in the world: a synthesis on the common features and life strategies. ICES Journal of Marine Science, 65(7), 1272–1280. https://doi.org/10.1093/icesjms/fsn140.
Farina, S. C., & Bemis, W. E., 2016. Functional morphology of gill ventilation of the goosefish, Lophius americanus (Lophiiformes: Lophiidae). Zoology, 119(3), 207–215. https://doi.org/10.1016/j.zool.2016.01.006.
Felsenstein, J., 1981. Evolutionary trees from DNA sequences: A maximum likelihood approach. Journal of molecular evolution, 17(6), 368–376. https://doi.org/10.1007/BF01734359.
Floeter, S. R., Bender, M. G., Siqueira, A. C., & Cowman, P. F., 2018. Phylogenetic perspectives on reef fish functional traits. Biological Reviews, 93(1), 131–151. https://doi.org/10.1111/brv.12336.
Frédérich, B., & Santini, F., 2017. Macroevolutionary analysis of the tempo of diversification in snappers and fusiliers (Percomorpha: Lutjanidae). Belgian Journal of Zoology, 147(1), 17–35. https://doi.org/10.26496/bjz.2017.2.
Fricke, R., Eschmeyer, W. N., & Van der Laan, R. (Eds.), 2025. Eschmeyer’s Catalog of Fishes: Genera, species, references. https://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatmain.asp (accessed 14 May 2025).
Friedman, M., 2010. Explosive morphological diversification of spiny-finned teleost fishes in the aftermath of the end-Cretaceous extinction. Proceedings of the Royal Society B: Biological Sciences, 277(1688), 1675–1683. https://doi.org/10.1098/rspb.2009.2177.
Friedman, M., & Sallan, L. C., 2012. Five hundred million years of extinction and recovery: a phanerozoic survey of large-scale diversity patterns in fishes. Palaeontology, 55(4), 707–742. https://doi.org/10.1111/j.1475-4983.2012.01165.x.
Friedman, S. T., Price, S. A., Corn, K. A., Larouche, O., Martinez, C. M., & Wainwright, P. C., 2020. Body shape diversification along the benthic–pelagic axis in marine fishes. Proceedings of the Royal Society B: Biological Sciences, 287(1931), 20201053. https://doi.org/10.1098/rspb.2020.1053.
Friedman, S. T., Price, S. A., Hoey, A. S., & Wainwright, P. C., 2016. Ecomorphological convergence in planktivorous surgeonfishes. Journal of Evolutionary Biology, 29(5), 965–978. https://doi.org/10.1111/jeb.12837.
Froese, R., & Pauly, D. (Eds.), 2025. FishBase. World wide web electronic publication. https://www.fishbase.org/.
Gaither, M. R., Violi, B., Gray, H. W. I., Neat, F., Drazen, J. C., Grubbs, R. D., Roa-Varón, A., Sutton, T., & Hoelzel, A. R., 2016. Depth as a driver of evolution in the deep sea: Insights from grenadiers (Gadiformes: Macrouridae) of the genus Coryphaenoides. Molecular Phylogenetics and Evolution, 104, 73–82. https://doi.org/10.1016/j.ympev.2016.07.027.
Gatz, A. J., 1979. Community organization in fishes as indicated by morphological features. Ecology, 60(4), 711–718. https://doi.org/0.2307/1936608.
Ghezelayagh, A., Harrington, R. C., Burress, E. D., Campbell, M. A., Buckner, J. C., Chakrabarty, P., Glass, J. R., McCraney, W. T., Unmack, P. J., Thacker, C. E., Alfaro, M. E., Friedman, S. T., Ludt, W. B., Cowman, P. F., Friedman, M., Price, S. A., Dornburg, A., Faircloth, B. C., Wainwright, P. C., & Near, T. J., 2022. Prolonged morphological expansion of spiny-rayed fishes following the end-Cretaceous. Nature Ecology & Evolution, 6(8), 1211–1220. https://doi.org/10.1038/s41559-022-01801-3.
Gold, J. R., Voelker, G., & Renshaw, M. A., 2011. Phylogenetic relationships of tropical western Atlantic snappers in subfamily Lutjaninae (Lutjanidae: Perciformes) inferred from mitochondrial DNA sequences. Biological Journal of the Linnean Society, 102(4), 915–929. https://doi.org/10.1111/j.1095-8312.2011.01621.x.
Gold, J. R., Willis, S. C., Renshaw, M. A., Buentello, A., Walker, H. J., Puritz, J. B., Hollenbeck, C. M., & Voelker, G., 2015. Phylogenetic relationships of tropical eastern Pacific snappers (Lutjanidae) inferred from mitochondrial DNA sequences. Systematics and Biodiversity, 13(6), 596–607. https://doi.org/10.1080/14772000.2015.1078857.
Gomez, C., Williams, A. J., Nicol, S. J., Mellin, C., Loeun, K. L., & Bradshaw, C. J. A., 2015. Species distribution models of tropical deep-sea snappers. PLOS ONE, 10(6), e0127395. https://doi.org/10.1371/journal.pone.0127395.
Gregorova, R., Ortwin, S., Mathias, H., Andreas, K., & Ćorić, S., 2009. A giant early Miocene sunfish from the North Alpine Foreland Basin (Austria) and its implication for molid phylogeny. Journal of Vertebrate Paleontology, 29(2), 359–371. https://doi.org/10.1671/039.029.0201.
Guo, Y., Wang, Z., Liu, C., Liu, L., & Liu, Y., 2007. Phylogenetic relationships of South China Sea snappers (Genus Lutjanus; Family Lutjanidae) based on mitochondrial DNA Sequences. Marine Biotechnology, 9(6), 682–688. https://doi.org/10.1007/s10126-007-9012-6.
Haedrich, R. L., 1996. Deep-water fishes: evolution and adaptation in the earth's largest living spaces. Journal of Fish Biology, 49, 40–53. https://doi.org/10.1111/j.1095-8649.1996.tb06066.x.
Hall, A. E., & Kingsford, M. J., 2021. Habitat type and complexity drive fish assemblages in a tropical seascape. Journal of Fish Biology, 99(4), 1364–1379. https://doi.org/10.1111/jfb.14843.
Hanel, R., & Tsigenopoulos, C. S., 2011. Phylogeny, evolution and taxonomy of sparids with some notes on their ecology and biology. In: Pavlidis, M. A., & Mylonas, C.C. (Eds.), Sparidae, Wiley-Blackwell, pp. 51–73. https://doi.org/10.1002/9781444392210.ch2.
Holcroft, N. I., & Wiley, E. O., 2008. Acanthuroid relationships revisited: a new nuclear gene-based analysis that incorporates tetraodontiform representatives. Ichthyological Research, 55(3), 274–283. https://doi.org/10.1007/s10228-007-0026-x.
Holcroft, N. I., 2004. A molecular test of alternative hypotheses of tetraodontiform (Acanthomorpha: Tetraodontiformes) sister group relationships using data from the RAG1 gene. Molecular Phylogenetics and Evolution, 32(3), 749–760. https://doi.org/10.1016/j.ympev.2004.04.002.
Holcroft, N. I., 2005. A molecular analysis of the interrelationships of tetraodontiform fishes (Acanthomorpha: Tetraodontiformes). Molecular Phylogenetics and Evolution, 34(3), 525–544. https://doi.org/10.1016/j.ympev.2004.11.003.
Houben, A. J. P., van Mourik, C. A., Montanari, A., Coccioni, R., & Brinkhuis, H., 2012. The Eocene–Oligocene transition: Changes in sea level, temperature or both? Palaeogeography, Palaeoclimatology, Palaeoecology, 335–336, 75–83. https://doi.org/10.1016/j.palaeo.2011.04.008.
Hughes, L. C., Nash, C. M., White, W. T., & Westneat, M. W., 2022. Concordance and Discordance in the Phylogenomics of the Wrasses and Parrotfishes (Teleostei: Labridae). Systematic Biology, 72(3), 530–543. https://doi.org/10.1093/sysbio/syac072.
Hung, K.-W., Russell, B. C., & Chen, W.-J., 2017. Molecular systematics of threadfin breams and relatives (Teleostei, Nemipteridae). Zoologica Scripta, 46(5), 536–551. https://doi.org/10.1111/zsc.12237.
Ingram, T., 2011. Speciation along a depth gradient in a marine adaptive radiation. Proceedings of the Royal Society B: Biological Sciences, 278(1705), 613–618. https://doi.org/ 10.1098/rspb.2010.1127.
Inoue, J. G., Miya, M., Miller, M. J., Sado, T., Hanel, R., Hatooka, K., Aoyama, J., Minegishi, Y., Nishida, M., & Tsukamoto, K., 2010. Deep-ocean origin of the freshwater eels. Biology Letters, 6(3), 363–366. https://doi.org/10.1098/rsbl.2009.0989.
John T. S. Mexican Fish.com. https://mexican-fish.com/.
Johnson, G. D., 1980. The Limits and Relationships of the Lutjanidae and Associated Families. University of California Press, pp. 114.
Kar, C., Mariyambi, P. C., Raghavan, R., & Sureshkumar, S., 2023. Mitochondrial phylogeny of fusilier fishes (family Caesionidae) from the Laccadive archipelago reveals a new species and two new records from the Central Indian Ocean. Journal of Fish Biology, 103(6), 1445–1451. https://doi.org/10.1111/jfb.15553.
Kiessling, W., Simpson, C., & Foote, M., 2010. Reefs as cradles of evolution and sources of biodiversity in the Phanerozoic. Science, 327(5962), 196–198. https://doi.org/10.1126/science.1182241.
Kimura, S., Kimura, R., & Ikejima, K., 2008. Revision of the genus Nuchequula with descriptions of three new species (Perciformes: Leiognathidae). Ichthyological Research, 55(1), 22–42. https://doi.org/10.1007/s10228-007-0011-4.
Kozlov, A. M., Darriba, D., Flouri, T., Morel, B., & Stamatakis, A., 2019. RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics, 35(21), 4453–4455. https://doi.org/10.1093/bioinformatics/btz305.
Lalli, C. M., & Parsons, T. R., 1997. Chapter 3 - Phytoplankton and primary production. In: C. M. Lalli, & T. R. Parsons (Eds.), Biological Oceanography: An Introduction (Second Edition), Butterworth-Heinemann pp. 39–73. https://doi.org/10.1016/B978-075063384-0/50059-1.
Lanfear, R., Frandsen, P. B., Wright, A. M., Senfeld, T., & Calcott, B., 2016. PartitionFinder 2: New methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Molecular Biology and Evolution, 34(3), 772–773. https://doi.org/10.1093/molbev/msw260.
Larouche, O., Benton, B., Corn, K. A., Friedman, S. T., Gross, D., Iwan, M., Kessler, B., Martinez, C. M., Rodriguez, S., Whelpley, H., Wainwright, P. C., & Price, S. A., 2020. Reef-associated fishes have more maneuverable body shapes at a macroevolutionary scale. Coral Reefs, 39(5), 1427–1439. https://doi.org/10.1007/s00338-020-01976-w.
Larsson, A., 2014. AliView: a fast and lightweight alignment viewer and editor for large datasets. Bioinformatics, 30(22), 3276–3278. https://doi.org/10.1093/bioinformatics/btu531.
Leal, C. G., Junqueira, N. T., & Pompeu, P. S., 2011. Morphology and habitat use by fishes of the Rio das Velhas basin in southeastern Brazil. Environmental Biology of Fishes, 90(2), 143–157. https://doi.org/10.1007/s10641-010-9726-6.
Leis, J. M., & Lee, K., 1994. Larval development in the lutjanid subfamily Etelinae (Pisces): The genera Aphareus, Aprion, Etelis and Pristipomoides. Bulletin of Marine Science, 55(1), 46–125.
Li, B., Dettaï, A., Cruaud, C., Couloux, A., Desoutter-Meniger, M., & Lecointre, G., 2009. RNF213, a new nuclear marker for acanthomorph phylogeny. Molecular Phylogenetics and Evolution, 50(2), 345–363. https://doi.org/10.1016/j.ympev.2008.11.013.
Liang, R., Wang, C., Zhou, Q., Zhou, A., & Zhou, J., 2013. Molecular phylogenetic relationship among seven Nemipterus species based on partial S7 ribosomal protein gene sequences. Journal of Fishery Sciences of China, 20(3), 506–513. https://doi.org/10.3724/SP.J.1118.2013.00506.
Liang, R., Zhuo, X., Yang, G., Luo, D., Zhong, S., & Zou, J., 2012. Molecular phylogenetic relationships of family Haemulidae (Perciformes: Percoidei) and the related species based on mitochondrial and nuclear genes. Mitochondrial DNA, 23(4), 264–277. https://doi.org/10.3109/19401736.2012.690746.
Lim, H. C., Habib, A., & Chen, W. J., 2021. Comparative Phylogeography and Phylogeny of Pennah Croakers (Teleostei: Sciaenidae) in Southeast Asian Waters. Genes, 12(12). https://doi.org/10.3390/genes12121926.
Lingo, M. E., & Szedlmayer, S. T., 2006. The influence of habitat complexity on reef fish communities in the northeastern Gulf of Mexico. Environmental Biology of Fishes, 76(1), 71–80. https://doi.org/10.1007/s10641-006-9009-4.
Liu, C., Li, D., Zhang, Y., Péré, M., Zhuang, Z., Liu, J., Zhou, H., & Chen, X., 2023. Phylogenetic analyses of Pristipomoides (Perciformes: Lutjanidae) based on new mitochondrial genomes. Fishes, 8(7), 343. https://doi.org/10.3390/fishes8070343.
Lo Galbo, A. M., Carpenter, K. E., & Reed, D. L., 2002. Evolution of trophic types in emperor fishes (Lethrinus, Lethrinidae, Percoidei) based on Cytochrome B gene sequence variation. Journal of molecular evolution, 54(6), 754–762. https://doi.org/10.1007/s00239-001-0076-z.
Lo, P.-C., Liu, S.-H., Chao, N.-L., Nunoo, F. K. E., Mok, H.-K., & Chen, W.-J., 2015. A multi-gene dataset reveals a tropical New World origin and Early Miocene diversification of croakers (Perciformes: Sciaenidae). Molecular Phylogenetics and Evolution, 88, 132–143. https://doi.org/10.1016/j.ympev.2015.03.025.
Lo, P.-C., Liu, S.-H., Nor, S. A. M., & Chen, W.-J., 2017. Molecular exploration of hidden diversity in the Indo-West Pacific sciaenid clade. PLOS ONE, 12(4), e0176623. https://doi.org/10.1371/journal.pone.0176623.
Lobato, F. L., Barneche, D. R., Siqueira, A. C., Liedke, A. M. R., Lindner, A., Pie, M. R., Bellwood, D. R., & Floeter, S. R., 2014. Diet and diversification in the evolution of coral reef fishes. PLOS ONE, 9(7), e102094. https://doi.org/10.1371/journal.pone.0102094.
López, J. A., Chen, W.-J., & Ortí, G., 2004. Esociform Phylogeny. Copeia, 2004(3), 449–464. https://doi.org/10.1643/CG-03-087R1.
López-Fernández, H., Arbour, J. H., Winemiller, K. O., & Honeycutt, R. L., 2013. Testing for ancient adaptive radiations in neotropical cichlid fishes. Evolution, 67(5), 1321–1337. https://doi.org/10.1111/evo.12038.
Maile, A. J., May, Z. A., DeArmon, E. S., Martin, R. P., & Davis, M. P., 2020. Marine habitat transitions and body-shape evolution in lizardfishes and their allies (Aulopiformes). Copeia, 108(4), 820–832. https://doi.org/10.1643/CG-19-300.
Maile, A. J., Smith, W. L., & Davis, M. P., 2025. A total-evidence phylogenetic approach to understanding the evolution, depth transitions, and body-shape changes in the anglerfishes and allies (Acanthuriformes: Lophioidei). PLOS ONE, 20(5), e0322369. https://doi.org/10.1371/journal.pone.0322369.
Marshell, A., & Mumby, P. J., 2015. The role of surgeonfish (Acanthuridae) in maintaining algal turf biomass on coral reefs. Journal of Experimental Marine Biology and Ecology, 473, 152–160. https://doi.org/10.1016/j.jembe.2015.09.002.
Martinez, C. M., Friedman, S. T., Corn, K. A., Larouche, O., Price, S. A., & Wainwright, P. C., 2021. The deep sea is a hot spot of fish body shape evolution. Ecology Letters, 24(9), 1788–1799. https://doi.org/10.1111/ele.13785.
Matsuura, K., 2015. Taxonomy and systematics of tetraodontiform fishes: a review focusing primarily on progress in the period from 1980 to 2014. Ichthyological Research, 62(1), 72–113. https://doi.org/10.1007/s10228-014-0444-5.
McCraney, W. T., Thacker, C. E., Faircloth, B. C., Harrington, R. C., Near, T. J., & Alfaro, M. E., 2025. Explosion of goby fish diversity at the Eocene-Oligocene transition. Molecular Phylogenetics and Evolution, 207, 108342. https://doi.org/10.1016/j.ympev.2025.108342.
McLean, D. L., Harvey, E. S., Fairclough, D. V., & Newman, S. J., 2010. Large decline in the abundance of a targeted tropical lethrinid in areas open and closed to fishing. Marine Ecology Progress Series, 418, 189–199. https://doi.org/10.3354/meps.
Mekkawy, I., 2017. Evolutionary lineages in genus Lethrinus (family: Lethrinidae) and the corresponding trophic evolution based on DNA barcoding. American Journal of Biochemistry and Molecular Biology, 7, 1–20. https://doi.org/10.3923/ajbmb.2017.1.20.
Mendes, F. K., & Hahn, M. W., 2016. Gene tree discordance causes apparent substitution rate variation. Systematic Biology, 65(4), 711–721. https://doi.org/10.1093/sysbio/syw018.
Menezes, M. R., Arolkar, U., & Rathod, V., 2002. Genetic relationships among five nemipterid fish species from the Indian coast using allozyme analysis. Journal of Fish Biology, 60(5), 1326–1330. https://doi.org/10.1111/j.1095-8649.2002.tb01724.x.
Micklich, N. R., Tyler, J. C., Johnson, G. D., Świdnicka, E., & Bannikov, A. F., 2009. First fossil records of the tholichthys larval stage of butterfly fishes (Perciformes, Chaetodontidae), from the Oligocene of Europe. Paläontologische Zeitschrift, 83(4), 479–497. https://doi.org/10.1007/s12542-009-0031-7.
Mihalitsis, M., & Bellwood, D. R., 2019. Morphological and functional diversity of piscivorous fishes on coral reefs. Coral Reefs, 38(5), 945–954. https://doi.org/10.1007/s00338-019-01820-w.
Miller, E. C., Faucher, R., Hart, P. B., Rincón-Sandoval, M., Santaquiteria, A., White, W. T., Baldwin, C. C., Miya, M., Betancur-R, R., Tornabene, L., Evans, K., & Arcila, D., 2024. Reduced evolutionary constraint accompanies ongoing radiation in deep-sea anglerfishes. Nature Ecology & Evolution, 9, 474–490. https://doi.org/10.1038/s41559-024-02586-3.
Miller, E. C., Martinez, C. M., Friedman, S. T., Wainwright, P. C., Price, S. A., & Tornabene, L., 2022. Alternating regimes of shallow and deep-sea diversification explain a species-richness paradox in marine fishes. Proceedings of the National Academy of Sciences, 119(43), e2123544119. https://doi.org/10.1073/pnas.2123544119.
Miller, M. A., Pfeiffer, W., & Schwartz, T., 2010. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. Gateway Computing Environments Workshop, New Orleans, USA, 2010, pp. 1–8. https://doi.org/10.1109/GCE.2010.5676129.
Miller, T. L., & Cribb, T. H., 2007. Phylogenetic relationships of some common Indo-Pacific snappers (Perciformes: Lutjanidae) based on mitochondrial DNA sequences, with comments on the taxonomic position of the Caesioninae. Molecular Phylogenetics and Evolution, 44(1), 450–460. https://doi.org/10.1016/j.ympev.2006.10.029.
Miya, M., & Nishida, M., 1996. Molecular phylogenetic perspective on the evolution of the deep-sea fish genus Cyclothone (Stomiiformes: Gonostomatidae). Ichthyological Research, 43(4), 375–398. https://doi.org/10.1007/BF02347637.
Miya, M., Pietsch, T. W., Orr, J. W., Arnold, R. J., Satoh, T. P., Shedlock, A. M., Ho, H.-C., Shimazaki, M., Yabe, M., & Nishida, M., 2010. Evolutionary history of anglerfishes (Teleostei: Lophiiformes): a mitogenomic perspective. BMC Evolutionary Biology, 10(1), 58. https://doi.org/10.1186/1471-2148-10-58.
Miya, M., Sato, Y., Fukunaga, T., Sado, T., Poulsen, J. Y., Sato, K., Minamoto, T., Yamamoto, S., Yamanaka, H., Araki, H., Kondoh, M., & Iwasaki, W., 2015. MiFish, a set of universal PCR primers for metabarcoding environmental DNA from fishes: detection of more than 230 subtropical marine species. Royal Society Open Science, 2(7), 150088. https://doi.org/10.1098/rsos.150088.
Miya, M., Takeshima, H., Endo, H., Ishiguro, N. B., Inoue, J. G., Mukai, T., Satoh, T. P., Yamaguchi, M., Kawaguchi, A., Mabuchi, K., Shirai, S. M., & Nishida, M., 2003. Major patterns of higher teleostean phylogenies: a new perspective based on 100 complete mitochondrial DNA sequences. Molecular Phylogenetics and Evolution, 26(1), 121–138. https://doi.org/10.1016/S1055-7903(02)00332-9.
Muséum national d’Histoire naturelle. https://www.mnhn.fr/fr.
Fishes of Australia. https://fishesofaustralia.net.au/.
Myers, E. M. V., Anderson, M. J., Eme, D., Liggins, L., & Roberts, C. D., 2020. Changes in key traits versus depth and latitude suggest energy-efficient locomotion, opportunistic feeding and light lead to adaptive morphologies of marine fishes. Journal of Animal Ecology, 89(2), 309–322. https://doi.org/10.1111/1365-2656.13131.
Nair, R. J., Kumar, D., & Kuriakose, S., 2016. First report of dwarf monocle bream Parascolopsis capitinis (Teleostei: Nemipteridae) from South-west coast of India. Marine Biodiversity Records, 9(1), 74. https://doi.org/10.1186/s41200-016-0078-6.
National Museum of Marine Biology and Aquarium. https://www.nmmba.gov.tw/En/.
Near, T. J., & Thacker, C. E., 2024. Phylogenetic classification of living and fossil ray-finned fishes (Actinopterygii). Bulletin of the Peabody Museum of Natural History, 65(1), 3–302. https://doi.org/10.3374/014.065.0101.
Near, T. J., Dornburg, A., Eytan, R. I., Keck, B. P., Smith, W. L., Kuhn, K. L., Moore, J. A., Price, S. A., Burbrink, F. T., Friedman, M., & Wainwright, P. C., 2013. Phylogeny and tempo of diversification in the superradiation of spiny-rayed fishes. Proceedings of the National Academy of Sciences, 110(31), 12738–12743. https://doi.org/10.1073/pnas.1304661110.
Near, T. J., Eytan, R. I., Dornburg, A., Kuhn, K. L., Moore, J. A., Davis, M. P., Wainwright, P. C., Friedman, M., & Smith, W. L., 2012. Resolution of ray-finned fish phylogeny and timing of diversification. Proceedings of the National Academy of Sciences, 109(34), 13698–13703. https://doi.org/10.1073/pnas.1206625109.
Nelson, J., Grande, T., & Wilson, M., 2016. Fishes of the World (5th ed). John Wiley & Sons. https://doi.org/10.1002/9781119174844.
Newman, S. J., & Williams, D. M., 2001. Spatial and temporal variation in assemblages of Lutjanidae, Lethrinidae and associated fish species among mid-continental shelf reefs in the central Great Barrier Reef. Marine and Freshwater Research, 52(6), 843–851. https://doi.org/10.1071/MF99131.
Orrell, T. M., & Carpenter, K. E., 2004. A phylogeny of the fish family Sparidae (porgies) inferred from mitochondrial sequence data. Molecular Phylogenetics and Evolution, 32(2), 425–434. https://doi.org/10.1016/j.ympev.2004.01.012.
Palumbi, S. R., Martin, A. P., Romano, S., McMillan, W. O., Stice, L., & Grabowski, G., 1991. The Simple Fool’s Guide to PCR (Version 2.0). University of Hawaii.
Paul, M., Hajisamae, S., Pradit, S., Perngmark, P., & Islam, R., 2017. Trophic Ecology of Eight Sympatric Nemipterid Fishes (Nemipteridae) in the Lower Part of the South China Sea. Turkish Journal of Fisheries and Aquatic Sciences, 18, 277–287. https://doi.org/10.4194/1303-2712-v18_2_07.
Peixoto, B. R., Mikawa, Y., & Brenner, S., 2000. Characterization of the recombinase activating gene-1 and 2 locus in the Japanese pufferfish, Fugu rubripes. Gene, 246(12), 275–283. https://doi.org/10.1016/s0378-1119(00)00091-3.
Perrin, C., 2002. Tertiary: The emergence of modern reef ecosystems. In: Kiessling, W., Flügel, E., & Golonka, J. (Eds.), Phanerozoic Reef Patterns, SEPM Society for Sedimentary Geology. https://doi.org/10.2110/pec.02.72.0587.
Perry, W. B., 2021. Complexity is key: fish diversity and tropical inshore seascapes. Journal of Fish Biology, 99(4), 1157–1157. https://doi.org/10.1111/jfb.14912.
Philp, A. R., Bellingham, J., Garcia-Fernandez, J.-M., & Foster, R. G., 2000. A novel rod-like opsin isolated from the extra-retinal photoreceptors of teleost fish. FEBS Letters, 468(2), 181–188. https://doi.org/10.1016/S0014-5793(00)01217-5.
Pimentel, C. R., & Joyeux, J. C., 2010. Diet and food partitioning between juveniles of mutton Lutjanus analis, dog Lutjanus jocu and lane Lutjanus synagris snappers (Perciformes: Lutjanidae) in a mangrove-fringed estuarine environment. Journal of Fish Biology, 76(10), 2299–2317. https://doi.org/1095-8649.2010.02586.x.
Pope, E. C., Hays, G. C., Thys, T. M., Doyle, T. K., Sims, D. W., Queiroz, N., Hobson, V. J., Kubicek, L., & Houghton, J. D. R., 2010. The biology and ecology of the ocean sunfish Mola mola: a review of current knowledge and future research perspectives. Reviews in Fish Biology and Fisheries, 20(4), 471–487. https://doi.org/0.1007/s11160-009-9155-9.
Price, S. A., Claverie, T., Near, T. J., & Wainwright, P. C., 2015a. Phylogenetic insights into the history and diversification of fishes on reefs. Coral Reefs, 34(4), 997–1009. https://doi.org/10.1007/s00338-015-1326-7.
Price, S. A., Friedman, S. T., & Wainwright, P. C., 2015b. How predation shaped fish: the impact of fin spines on body form evolution across teleosts. Proceedings of the Royal Society B: Biological Sciences, 282(1819), 20151428. https://doi.org/10.1098/rspb.2015.1428.
Price, S. A., Friedman, S. T., Corn, K. A., Martinez, C. M., Larouche, O., & Wainwright, P. C., 2019. Building a body shape morphospace of teleostean fishes. Integrative and Comparative Biology, 59(3), 716–730. https://doi.org/10.1093/icb/icz115.
Price, S. A., Holzman, R., Near, T. J., & Wainwright, P. C., 2011. Coral reefs promote the evolution of morphological diversity and ecological novelty in labrid fishes. Ecology Letters, 14(5), 462–469. https://doi.org/10.1111/j.1461-0248.2011.01607.x.
Price, S. A., Schmitz, L., Oufiero, C. E., Eytan, R. I., Dornburg, A., Smith, W. L., Friedman, M., Near, T. J., & Wainwright, P. C., 2014. Two waves of colonization straddling the K–Pg boundary formed the modern reef fish fauna. Proceedings of the Royal Society B: Biological Sciences, 281(1783), 20140321. https://doi.org/10.1098/rspb.2014.0321.
Price, S. A., Tavera, J. J., Near, T. J., & Wainwright, P. C., 2013. Elevated rates of morphological and functional diversification in reef-dwelling haemulid fishes. Evolution, 67(2), 417–428. https://doi.org/10.1111/j.1558-5646.2012.01773.x.
Priede, I. G., & Froese, R., 2013. Colonization of the deep sea by fishes. Journal of Fish Biology, 83(6), 1528–1550. https://doi.org/10.1111/jfb.12265.
Psomadakis, P. N., Thein, H., Russell, B.C., & Tun, M., 2019. Field identification guide to the living marine resources of Myanmar. FAO Species Identification Guide for Fishery Purposes. FAO and MOALI.
Putra, R. D., 2023. The Assemblage of Carnivore Fish Composition (Lutjanidae, Lethrinidae, Haemulidae and Serranidae) of a Thousand Islands, Jakarta, Indonesia. BIO Web Conference, 70, 03010. https://doi.org/10.1051/bioconf/20237003010.
Pygas, D. R., Ferrari, R., & Figueira, W. F., 2020. Review and meta-analysis of the importance of remotely sensed habitat structural complexity in marine ecology. Estuarine, Coastal and Shelf Science, 235, 106468. https://doi.org/10.1016/j.ecss.2019.106468.
Rabosky, D. L., Chang, J., Title, P. O., Cowman, P. F., Sallan, L., Friedman, M., Kaschner, K., Garilao, C., Near, T. J., Coll, M., & Alfaro, M. E., 2018. An inverse latitudinal gradient in speciation rate for marine fishes. Nature, 559(7714), 392–395. https://doi.org/10.1038/s41586-018-0273-1.
R Core Team. 2024. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.
Rambaut, A. 2016. Figtree v 1.4.3. 2016. http://tree.bio.ed.ac.uk/software/figtree/.
Rambaut, A., Drummond, A. J., Xie, D., Baele, G., & Suchard, M. A., 2018. Posterior summarization in bayesian phylogenetics using Tracer 1.7. Systematic Biology, 67(5), 901–904. https://doi.org/10.1093/sysbio/syy032.
Ratnasingham, S., & Hebert, P. D. N., 2007. BOLD: The barcode of life data system (http://www.barcodinglife.org). Molecular Ecology Notes, 7(3), 355–364. https://doi.org/10.1111/j.1471-8286.2007.01678.x.
Ravitchandirane, V., Geetha, V., Ramya, V., Janifer, B., Thangaraj, M., Subburaj, J., Ramanadevi, V., & Ganesan, T., 2012. Molecular identification and phylogenetic relationships of threadfin breams (family: Nemipteridae) using mtDNA marker. Notulae Scientia Biologicae, 4(2), 13–18. https://doi.org/10.15835/nsb427602.
Reader, S. E., & Leis, J. M., 1996. Larval development in the lutjanid subfamily Caesioninae (Pisces): the genera Caesio, Dipterygonotus, Gymnocaesio, and Pterocaesio. Bulletin of Marine Science, 59(2), 310–369.
Renema, W., Bellwood, D. R., Braga, J. C., Bromfield, K., Hall, R., Johnson, K. G., Lunt, P., Meyer, C. P., McMonagle, L. B., Morley, R. J., O'Dea, A., Todd, J. A., Wesselingh, F. P., Wilson, M. E. J., & Pandolfi, J. M., 2008. Hopping hotspots: global shifts in marine biodiversity. Science, 321(5889), 654–657. https://doi.org/10.1126/science.1155674.
Revell, L. J., 2024. phytools 2.0: an updated R ecosystem for phylogenetic comparative methods (and other things). PeerJ, 12, e16505. https://doi.org/10.7717/peerj.16505.
Ribeiro, E., Davis, A. M., Rivero-Vega, R. A., Ortí, G., & Betancur-R, R., 2018. Post-Cretaceous bursts of evolution along the benthic-pelagic axis in marine fishes. Proceedings of the Royal Society B: Biological Sciences, 285(1893), 20182010. https://doi.org/10.1098/rspb.2018.2010.
Rincon-Sandoval, M., Duarte-Ribeiro, E., Davis, A. M., Santaquiteria, A., Hughes, L. C., Baldwin, C. C., Soto-Torres, L., Acero P., A., Walker, H. J., Carpenter, K. E., Sheaves, M., Ortí, G., Arcila, D., & Betancur-R., R., 2020. Evolutionary determinism and convergence associated with water-column transitions in marine fishes. Proceedings of the National Academy of Sciences, 117(52), 33396–33403. https://doi.org/10.1073/pnas.2006511117.
Rocha, L. A., Lindeman, K. C., Rocha, C. R., & Lessios, H. A., 2008. Historical biogeography and speciation in the reef fish genus Haemulon (Teleostei: Haemulidae). Molecular Phylogenetics and Evolution, 48(3), 918–928. https://doi.org/ 10.1016/j.ympev.2008.05.024.
Rogers, A. D., 2000. The role of the oceanic oxygen minima in generating biodiversity in the deep sea. Deep Sea Research Part II: Topical Studies in Oceanography, 47(1), 119–148. https://doi.org/10.1016/S0967-0645(99)00107-1.
Rohlf, F. J., 2006. tpsDig, Digitize Landmarks and Outlines (version 2.05). Department of Ecology and Evolution, State University of New York.
Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D. L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M. A., & Huelsenbeck, J. P., 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61(3), 539–542. https://doi.org/10.1093/sysbio/sys029.
Russell, B. C., & Chin, P. K., 1996. Parascolopsis melanophrys, a new species of dwarf monocle bream (Teleostei Nemipteridae) from the Indo-Malayan Archipelago. The Raffles Bulletin of Zoology, 44(2), 415–418.
Russell, B. C., & Golani, D., 1993. A review of the fish genus Parascolopsis (Nemipteridae) of the western Indian Ocean, with description of a new species from the northern Red Sea. Israel Journal of Zoology, 39(4), 337–347. https://doi.org/10.1080/00212210.1993.10688726.
Russell, B. C., 1990. FAO species catalogue: Vol. 12. Nemipterid Fishes of the World. (Threadfin breams, Whiptail breams, Monocle breams, Dwarf monocle breams, and Coral breams). Family Nemipteridae. An Annotated and Illustrated Catalogue of Nemipterid Species known to Date. FAO, Rome.
Russell, B. C., 1993. A Review of the Threadfin Breams of the Genus Nemipterus (Nemipteridae) from Japan and Taiwan, with Description of a New Species. Japanese Journal of Ichthyology, 39(4), 295–310. https://doi.org/10.11369/jji1950.39.295.
Sallan, L., Friedman, M., Sansom, R. S., Bird, C. M., & Sansom, I. J., 2018. The nearshore cradle of early vertebrate diversification. Science, 362(6413), 460–464. https://doi.org/10.1126/science.aar3689.
Sánchez, O., Stefanni, S., & Bhadury, P., 2024. The deep sea biodiversity and conservation collection. Scientific Reports, 14(1), 27559. https://doi.org/10.1038/s41598-024-77742-7.
Sanciangco, M. D., Carpenter, K. E., & Betancur-R, R., 2016. Phylogenetic placement of enigmatic percomorph families (Teleostei: Percomorphaceae). Molecular Phylogenetics and Evolution, 94, 565–576. https://doi.org/10.1016/j.ympev.2015.10.006.
Santini, F., & Tyler, J. C., 2003. A phylogeny of the families of fossil and extant tetraodontiform fishes (Acanthomorpha, Tetraodontiformes), Upper Cretaceous to Recent. Zoological Journal of the Linnean Society, 139(4), 565–617. https://doi.org/10.1111/j.1096-3642.2003.00088.x.
Santini, F. G. C., & Sorenson, L., 2013. First molecular scombrid timetree (Percomorpha: Scombridae) shows recent radiation of tunas following invasion of pelagic habitat. Italian Journal of Zoology, 80(2), 210–221. https://doi.org/10.1080/11250003.2013.775366.
Santini, F., Carnevale, G., & Sorenson, L., 2014. First multi-locus timetree of seabreams and porgies (Percomorpha: Sparidae). Italian Journal of Zoology, 81(1), 55–71. https://doi.org/10.1080/11250003.2013.878960.
Sarver, S. K., Freshwater, D. W., & Walsh, P. J., 1996. Phylogenetic relationships of Western Atlantic snappers (family Lutjanidae) based on mitochondrial DNA sequences. Copeia, 1996(3), 715–721. https://doi.org/10.2307/1447537.
Schwarzhans, W. W., Carnevale, G., & Stringer, G. L., 2024. The diversity of teleost fishes during the terminal Cretaceous and the consequences of the K/Pg boundary extinction event. Netherlands Journal of Geosciences, 103: e5. https://doi.org/10.1017/njg.2024.1.
Shen, S. C., 1997. A review of the genus Scolopsis of Nemipterid fishes, with descriptions of three new records from Taiwan. Zoological Studies, 36(4), 345–352.
Shibuya, S., Maekawa, T., Sakurai, Y., & Motomura, H., 2022. Redescription of Lethrinus longirostris Playfair, 1867 (Perciformes: Lethrinidae), previously regarded as a junior synonym of Lethrinus olivaceus Valenciennes, 1830, on the basis of morphological and molecular evidences. Ichthy, Natural History of Fishes of Japan, 17, 50–66. https://doi.org/10.34583/ichthy.17.0_50.
Sibert, E. C., & Norris, R. D., 2015. New age of fishes initiated by the Cretaceous−Paleogene mass extinction. Proceedings of the National Academy of Sciences, 112(28), 8537–8542. https://doi.org/10.1073/pnas.1504985112.
Sibert, E., Friedman, M., Hull, P., Hunt, G., & Norris, R., 2018. Two pulses of morphological diversification in Pacific pelagic fishes following the Cretaceous–Palaeogene mass extinction. Proceedings of the Royal Society B: Biological Sciences, 285(1888), 20181194. https://doi.org/10.1098/rspb.2018.1194.
Sidlauskas, B., 2008. Continuous and arrested morphological diversification in sister clades of characiform fishes: a phylomorphospace approach. Evolution, 62(12), 3135–3156. https://doi.org/10.1111/j.1558-5646.2008.00519.x.
Smith, W. L., Stern, J. H., Girard, M. G., & Davis, M. P., 2016. Evolution of venomous cartilaginous and ray-finned fishes. Integrative and Comparative Biology, 56(5), 950–961. https://doi.org/10.1093/icb/icw070.
Song, H. Y., Jung, Y.-H., Kim, B., Choi, Y. J., Nguyen, T. V., & Lee, D.-S., 2020. Complete mitochondrial genome of the double-lined fusileer, Pterocaesio digramma (Perciformes, Caesionidae): mitogenome characterization and phylogenetic analysis. Mitochondrial DNA Part B, 5(3), 2617–2618. https://doi.org/10.1080/23802359.2020.1778575.
Sorenson, L., Santini, F., Carnevale, G., & Alfaro, M. E., 2013. A multi-locus timetree of surgeonfishes (Acanthuridae, Percomorpha), with revised family taxonomy. Molecular Phylogenetics and Evolution, 68(1), 150–160. https://doi.org/10.1016/j.ympev.2013.03.014.
Steinthorsdottir, M., Coxall, H. K., de Boer, A. M., Huber, M., Barbolini, N., Bradshaw, C. D., Burls, N. J., Feakins, S. J., Gasson, E., Henderiks, J., Holbourn, A. E., Kiel, S., Kohn, M. J., Knorr, G., Kürschner, W. M., Lear, C. H., Liebrand, D., Lunt, D. J., Mörs, T., Pearson, P. N., Pound, M. J., Stoll, H., & Strömberg, C. A. E., 2021. The Miocene: The Future of the Past. Paleoceanography and Paleoclimatology, 36(4), e2020PA004037. https://doi.org/10.1029/2020PA004037.
Swift, C. C., & Ellwood, B., 1972. Hypsocephalus atlanticus, a new genus and species of lutjanid fish from marine Eocene limestones of northern Florida. Contributions in science, 230, 1–29. https://doi.org/10.5962/p.241214.
Swofford, D. L., 2002. PAUP: phylogenetic analysis using parsimony (and other methods), version 4.0 beta.
Szedlmayer, S. T., & Lee, J. D., 2004. Diet shifts of juvenile red snapper (Lutjanus campechanus) with changes in habitat and fish size. Fishery Bulletin, 102, 366.
Tavera, J. J., Acero, A. P., Balart, E. F., & Bernardi, G., 2012. Molecular phylogeny of grunts (Teleostei, Haemulidae), with an emphasis on the ecology, evolution, and speciation history of New World species. BMC Evolutionary Biology, 12(1), 57. https://doi.org/10.1186/1471-2148-12-57.
Tavera, J., Acero, P. A., & Wainwright, P. C., 2018. Multilocus phylogeny, divergence times, and a major role for the benthic-to-pelagic axis in the diversification of grunts (Haemulidae). Molecular Phylogenetics and Evolution, 121, 212–223. https://doi.org/10.1016/j.ympev.2017.12.032.
Thacker, C. E., & Near, T. J., 2025. Phylogeny, biology, and evolution of acanthopterygian fish clades. Reviews in Fish Biology and Fisheries, 35(2), 5–845. https://doi.org/10.1007/s11160-025-09935-w.
The Fish Database of Taiwan website at http://fishdb.sinica.edu.tw.
The Fishes of North Carolina. https://ncfishes.com/.
Tuset, V. M., Farré, M., Lombarte, A., Bordes, F., Wienerroither, R., & Olivar, P., 2014. A comparative study of morphospace occupation of mesopelagic fish assemblages from the Canary Islands (North-eastern Atlantic). Ichthyological Research, 61(2), 152–158. https://doi.org/10.1007/s10228-014-0390-2.
Tytell, E. D., Borazjani, I., Sotiropoulos, F., Baker, T. V., Anderson, E. J., & Lauder, G. V., 2010. Disentangling the functional roles of morphology and motion in the swimming of fish. Integrative and Comparative Biology, 50(6), 1140–1154. https://doi.org/10.1093/icb/icq057.
Veneza, I., Da Silva, R., Silva, D., Gomes, G., Sampaio, I., & Schneider, H., 2019. Multiloci analyses suggest synonymy among Rhomboplites, Ocyurus and Lutjanus and reveal the phylogenetic position of Lutjanus alexandrei (Lutjanidae: Perciformes). Neotropical Ichthyology, 17(1), e180109. https://doi.org/10.1590/1982-0224-20180109.
Vinson, C. C., Gomes, G., Schneider, H., & Sampaio, I., 2004. Sciaenidae fish of the Caeté River estuary, Northern Brazil: mitochondrial DNA suggests explosive radiation for the Western Atlantic assemblage. Genetics and Molecular Biology, 27(2), 174–180. https://doi.org/10.1590/S1415-47572004000200008.
Wakefield, C. B., Moore, G. I., Bertram, A. E., Snow, M., & Newman, S. J., 2016. Extraordinary capture of a Randall's snapper Randallichthys filamentosus in the temperate south-eastern Indian Ocean and its molecular phylogenetic relationship within the Etelinae. Journal of Fish Biology, 88(2), 735–740. https://doi.org/10.1111/jfb.12809.
Ward, R. D., Zemlak, T. S., Innes, B. H., Last, P. R., & Hebert, P. D. N., 2005. DNA barcoding Australia's fish species. Philosophical Transactions of the Royal Society B: Biological Sciences, 360(1462), 1847–1857. https://doi.org/10.1098/rstb.2005.1716.
Westerhold, T., Marwan, N., Drury, A. J., Liebrand, D., Agnini, C., Anagnostou, E., Barnet, J. S. K., Bohaty, S. M., De Vleeschouwer, D., Florindo, F., Frederichs, T., Hodell, D. A., Holbourn, A. E., Kroon, D., Lauretano, V., Littler, K., Lourens, L. J., Lyle, M., Pälike, H., Röhl, U., Tian, J., Wilkens, Wilson, P. A., & Zachos, J. C., 2020. An astronomically dated record of Earth’s climate and its predictability over the last 66 million years. Science, 369(6509), 1383–1387. https://doi.org/10.1126/science.aba6853.
Wiley, E., & Johnson, G. D., 2010. A teleost classification based on monophyletic groups. In: J. S. Nelson, H.-P. Schultze, & M. V. H. Wilson (Eds.), Origin and Phylogenetic Interrelationships of Teleosts. Munich: Verlag Dr. Friedrich Pfeil. pp. 123–183.
Williams, J. T., Carpenter, K. E., Van Tassell, J. L., Hoetjes, P., Toller, W., Etnoyer, P., & Smith, M., 2010. Biodiversity assessment of the fishes of Saba Bank atoll, Netherlands Antilles. PLOS ONE, 5(5), e10676. https://doi.org/10.1371/journal.pone.0010676.
Wong, M.-K., & Chen, W.-J., 2024. Exploring the phylogeny and depth evolution of cusk eels and their relatives (Ophidiiformes: Ophidioidei). Molecular Phylogenetics and Evolution, 199, 108164. https://doi.org/10.1016/j.ympev.2024.108164.
Yamanoue, Y., Miya, M., Doi, H., Mabuchi, K., Sakai, H., & Nishida, M., 2011. Multiple invasions into freshwater by pufferfishes (Teleostei: Tetraodontidae): A mitogenomic perspective. PLOS ONE, 6(2), e17410. https://doi.org/10.1371/journal.pone.0017410.
Yang, Z., & Rannala, B., 1997. Bayesian phylogenetic inference using DNA sequences: a Markov Chain Monte Carlo Method. Molecular Biology and Evolution, 14(7), 717–724. https://doi.org/10.1093/oxfordjournals.molbev.a025811.
Yue, G. H., Lo, L. C., Zhu, Z. Y., Lin, G., & Feng, F., 2006. The complete nucleotide sequence of the mitochondrial genome of Tetraodon nigroviridis. DNA Sequence, 17(2), 115–121. https://doi.org/10.1080/10425170600700378.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101073-
dc.description.abstract刺尾鯛目(Acanthuriformes)是棘鰭類 (Acanthomorpha)中一群多樣性極高的魚類類群,包含 54 科、超過 2,300 個物種。儘管該目的多樣性與演化已在部分科別中受到廣泛研究,但對於三個具重要生態及經濟價值的科:笛鯛科(Lutjanidae)、龍占魚科(Lethrinidae)及金線魚科(Nemipteridae)的探索仍不足。本研究使用三個粒線體基因(COI、12S、CYTB)及兩個核基因(RAG1、RH)建立新的多基因之序列資料矩陣,以重新評估三科內物種的親緣關係。接著利用五個單拷貝核蛋白編碼基因(EGR1、EGR2B、EGR3、RAG1、RH)重建刺尾鯛目主要譜系的時間校準親緣樹,以推估刺尾鯛目主要譜系的分歧時間,並探討三個關鍵的生態特徵:水深分布、棲地異質性及體型是如何影響該目及三個科別的演化。此外,本研究也應用幾何形態計量分析(geometric morphometrics)量化三科內物種間的體型差異,並視覺化其與親緣關係推論、水深及棲地的關聯。親緣關係分析結果支持三個科皆為單系群,但指出笛鯛科內有四個現行所認定的屬為多系群。在科間關係方面,笛鯛科與蓋刺魚科(Pomacanthidae)呈姊妹群關係,但支持度弱,而龍占魚科、金線魚科與鯛科(Sparidae)則形成一個高支持度的單系群,即先前所提出的 Sparoidea 超科。於生態多樣化及演化之探究上,笛鯛科中兩個亞科(Apsilinae 和Etelinae)內的物種,於始新世期間自淺海擴展至較深的水層,而金線魚科的部分譜系在中新世後擴張深度範圍至深水層。三科均多次獨立發生由非礁區向礁區的棲地轉變,而部分笛鯛科與金線魚科的部分譜系則演化出更為細長的體型。幾何形態計量分析結果顯示,體型變異主要受到親緣關係之連動,而非水深分布或棲地因子而衍生之差異。綜合而言,本研究提供了一個整合親緣關係、形態與生態的分析框架,揭示三科經歷了各自獨立的生態轉變,但棲息水深及棲地類型並非為驅動體型演化的主要因素。zh_TW
dc.description.abstractAcanthuriformes comprising over 2,300 species across 54 families is a diverse order of acanthomorph fishes. While the remarkable diversity and evolution of this order have been widely investigated in several families, studies focusing on three ecologically and economically important families—Lutjanidae, Lethrinidae, and Nemipteridae—remain limited. This study constructed three multi-gene datasets to re-evaluate the phylogenetic hypothesis of the three families. The datasets include DNA sequences from three mitochondrial (COI, 12S, CYTB) and two nuclear (RAG1, RH) markers. Furthermore, using a newly reconstructed time-calibrated phylogeny of Acanthuriformes based on five single-copy nuclear protein-coding gene (EGR1, EGR2B, EGR3, RAG1, RH) sequences, I intend to re-evaluate the divergence times of major acanthuriform lineages and to examine how the three key ecological traits—depth distribution, habitat association, and body shape—have evolved within the order and the three focal families. Additionally, the geometric morphometric analyses were employed to quantify body shape variation within each of the three families and to visualize its associations with the inferred phylogenies, as well as with depth and habitat. Phylogenetic results of the three focal families are consistent with previous studies, confirming their monophyly; however, four of the currently recognized genera in Lutjanidae are resolved as polyphyletic. As to the inter-familial relationship, Lutjanidae is weakly supported as the sister group of the Pomacanthidae. Lethrinidae, Nemipteridae, and Sparidae form a strongly supported clade, previously known as superfamily Sparoidea. Within the Lutjanidae, the most recent common ancestor of two subfamilies (Apsilinae and Etelinae) was inferred to expand its depth ranges from shallow to deep water during the Eocene, whereas several lineages in Nemipteridae underwent depth expansions to deeper waters after the Miocene. Transitions from non-reef to reef-associated habitats occurred independently across all three families. Additionally, some lineages in Lutjanidae and Nemipteridae evolved more slender body forms. Geometric morphometric analyses indicate that body shape variation is more associated with inferred phylogenies than with depth distribution or habitats. Together, this study provides an integrative framework that links phylogeny, ecology, and morphology in acanthuriform fishes with focus on the Lutjanidae, Lethrinidae, and Nemipteridae. These families have undergone lineage-specific ecological transitions; however, the expansion of depth range and the transition to complex habitats do not appear to be the primary drivers of body shape evolution within these families.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-11-27T16:09:49Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-11-27T16:09:49Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
謝辭 ii
摘要 iii
Abstract iv
Contents vi
List of Figures ix
List of Tables x
Chapter 1: General Introduction 1
1.1 Acanthuriformes 1
1.2 Classification of Acanthuriformes 2
1.3 Aims of this study 5
Chapter 2: Phylogenies of Lutjanidae, Lethrinidae, and Nemipteridae 7
2.1 Introduction 7
2.1.1 Phylogeny of Lutjanidae 9
2.1.2 Phylogeny of Lethrinidae 10
2.1.3 Phylogeny of Nemipteridae 11
2.1.4 Aim of this chapter 12
2.2 Materials and Methods 13
2.2.1 Sample collection and specimen examination 13
2.2.2 Molecular data collection 15
2.2.4 Phylogenetic inference 17
2.3 Results 18
2.3.1 Characteristics of sequence data 18
2.3.2 Phylogenetic inferences of Lutjanidae 19
2.3.3 Phylogenetic inferences of Lethrinidae 20
2.3.4 Phylogenetic inferences of Nemipteridae 21
2.4 Discussions 22
2.4.1 Generic level phylogeny in Lutjanidae 22
2.4.2 Generic level phylogeny in Lethrinidae and intra-relationship in Lethrinus 25
2.4.3 Generic level phylogeny in Nemipteridae 27
Chapter 3: Time-calibrated phylogeny and ecological diversification of Acanthuriformes, with emphasis on Lutjanidae, Lethrinidae, and Nemipteridae 39
3.1 Introduction 39
3.1.1 Ecological drivers in fish evolution 39
3.1.2 Correlation between body shape evolution and ecological factors 42
3.1.3 Aims of this chapter 43
3.2 Materials and Methods 44
3.2.1 Phylogenetic inference 44
3.2.2 Divergence time estimation 46
3.2.3 Ancestral state reconstruction 51
3.3 Results 54
3.3.1 Characteristics of sequence data 54
3.3.2 Phylogenetic inferences 55
3.3.3 Divergence time estimation and ancestor state reconstruction 56
3.4 Discussions 59
3.4.1 Phylogenetic inference of Acanthuriformes 59
3.4.2 Divergence time of the stem and crown lineages of Lutjanidae, Lethrinidae, and Nemipteridae 61
3.4.3 Depth expansion and habitat transition within the three focal families under the acanthuriform context 63
3.4.4 The correlation between depth expansion, habitat transition, and body shape within Acanthuriformes 65
Chapter 4: Morphospace of Lutjanidae, Lethrinidae, and Nemipteridae 80
4.1 Introduction 80
4.2 Materials and Methods 80
4.2.1 Image Acquisition and Landmark Digitization 80
4.2.2 Shape Analysis and Morphospace Construction 82
4.3 Results 84
4.3.1 Morphospace distribution of Lutjanidae 84
4.3.2 Morphospace distribution of Lethrinidae 85
4.3.3 Morphospace distribution of Nemipteridae 86
4.4 Discussions 87
Chapter 5: Conclusion 95
References 97
Appendix 1. List of Lutjanidae specimens used for multi-gene sequence data (Chapter 2) 128
Appendix 2. List of Lethrinidae specimens used for multi-gene sequence data (Chapter 2) 133
Appendix 3. List of Nemipteridae specimens used for multi-gene sequence data (Chapter 2) 137
Appendix 4. List of Acanthuriformes specimens used for multi-nuclear gene sequencing data (Chapter 3) 141
Appendix 5. List of sampled Acanthuriformes species trait state, including depth distribution, habitat association, and body shape (Chapter 3) 147
Appendix 6. List of Acanthuriformes sampled, laterally compressed form species, and measurements of morphological traits (Chapter 3) 151
Appendix 7. List of Acanthuriformes sampled, laterally compressed form genera, calculated ratio and body shape state (Chapter 3) 166
Appendix 8. List of sampled Lutjanidae species traits state, and individual photo source used for morphospace (Chapter 4) 170
Appendix 9. List of sampled Lethrinidae species traits state, and individual photo source used for morphospace (Chapter 4) 183
Appendix 10. List of sampled Nemipteridae species traits state, and individual photo source used for morphospace (Chapter 4) 190
-
dc.language.isoen-
dc.subject棘鰭類-
dc.subject分子親緣關係-
dc.subject生態轉變-
dc.subject體型演化-
dc.subject幾何形態計量分析-
dc.subjectAcanthomorph-
dc.subjectmolecular phylogeny-
dc.subjectecological transition-
dc.subjectbody shape evolution-
dc.subjectgeometric morphometric-
dc.title重新評估刺尾鯛目的演化歷史:基於時間校準框架探討笛鯛科、龍占魚科以及金線魚科的親緣關係與生態多樣化zh_TW
dc.titleRe-evaluating the evolutionary history of Acanthuriformes: phylogenetic relationships and ecological diversification in Lutjanidae, Lethrinidae, and Nemipteridae within a time-calibrated frameworken
dc.typeThesis-
dc.date.schoolyear114-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee陳天任;鄭任鈞;鍾明宗zh_TW
dc.contributor.oralexamcommitteeTin-Yam Chan;Ren-Chung Cheng;Ming-Tsung Chungen
dc.subject.keyword棘鰭類,分子親緣關係生態轉變體型演化幾何形態計量分析zh_TW
dc.subject.keywordAcanthomorph,molecular phylogenyecological transitionbody shape evolutiongeometric morphometricen
dc.relation.page196-
dc.identifier.doi10.6342/NTU202504606-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-11-03-
dc.contributor.author-college理學院-
dc.contributor.author-dept海洋研究所-
dc.date.embargo-lift2030-11-01-
顯示於系所單位:海洋研究所

文件中的檔案:
檔案 大小格式 
ntu-114-1.pdf
  未授權公開取用
12.06 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved