Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物機電工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101072
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳林祈zh_TW
dc.contributor.advisorLin-Chi Chenen
dc.contributor.author梁桓瑜zh_TW
dc.contributor.authorHuan-Yu Liangen
dc.date.accessioned2025-11-27T16:09:31Z-
dc.date.available2025-11-28-
dc.date.copyright2025-11-27-
dc.date.issued2025-
dc.date.submitted2025-10-30-
dc.identifier.citation吳秉軒,2023。亞鐵氰化銅修飾電極於伏安式愈創木酚感測之研究。碩士論文。國立臺灣大學生物機電工程學系。
Abellán-Llobregat, A., González-Gaitán, C., Vidal, L., Canals, A., & Morallón, E. (2018). Portable electrochemical sensor based on 4-aminobenzoic acid-functionalized herringbone carbon nanotubes for the determination of ascorbic acid and uric acid in human fluids. Biosensors & Bioelectronics, 109, 123-131.
Akrami, S., Edalati, P., Fuji, M., & Edalati, K. (2021). High-entropy ceramics: Review of principles, production and applications. Materials Science & Engineering R-Reports, 146.
Bagal-Kestwal, D. R., & Chiang, B.-H. (2019). Exploration of chitinous scaffold-based interfaces for glucose sensing assemblies. Polymers, 11(12), 1958.
Bokov, D., Jalil, A. T., Chupradit, S., Suksatan, W., Ansari, M. J., Shewael, I. H., Valiev, G. H., & Kianfar, E. (2021). Nanomaterial by Sol-Gel Method: Synthesis and Application. Advances in Materials Science and Engineering, 2021, 21.
Chen, J., Wang, Q., Huang, L., Zhang, H., Rong, K., Zhang, H., & Dong, S. (2018). Prussian blue with intrinsic heme-like structure as peroxidase mimic. Nano Research, 11, 4905-4913.
Cheng, G., & Dong, S. (1987). Chronoabsorptometric study of Prussian blue modified film electrode. Electrochimica Acta, 32(11), 1561-1565.
Chiu, J.-Y., Yu, C.-M., Yen, M.-J., & Chen, L.-C. (2009). Glucose sensing electrodes based on a poly (3,4-ethylenedioxythiophene)/Prussian blue bilayer and multi-walled carbon nanotubes. Biosensors and Bioelectronics, 24(7), 2015-2020.
Cui, L., Zhu, J., Meng, X., Yin, H., Pan, X., & Ai, S. (2012). Controlled chitosan coated Prussian blue nanoparticles with the mixture of graphene nanosheets and carbon nanoshperes as a redox mediator for the electrochemical oxidation of nitrite. Sensors and Actuators B: Chemical, 161(1), 641-647.
El‐Latif, E. I. A., Kebede, M. A., Sekar, K., Hameed, T. A., Yahia, I. S., Gao, H., & Sheha, E. (2025). Modeling the Diffusion Coefficient of Charge Carriers in Metal Ion Batteries using the Randles‐Sevcik Equation. Advanced Theory and Simulations, 2500346.
Farrokhi-Rad, M., & Ghorbani, M. (2012). Stability of titania nano-particles in different alcohols. Ceramics International, 38(5), 3893-3900.
Feldman, B., & Murray, R. W. (1987). Electron diffusion in wet and dry Prussian blue films on interdigitated array electrodes. Inorganic Chemistry, 26(11), 1702-1708.
Gao, X. R., Wang, Q. W., Cheng, C., Lin, S. J., Lin, T., Liu, C., & Han, X. (2020). The Application of Prussian Blue Nanoparticles in Tumor Diagnosis and Treatment. Sensors, 20(23).
Garcia, N. G., Gonçalves, J. M., Real, C., Freitas, B., Ruiz-Montoya, J. G., & Zanin, H. (2024). Medium- and high-entropy materials as positive electrodes for sodium-ion batteries: Quo Vadis? Energy Storage Materials, 67, 32.
Gorton, L. (1995). Carbon paste electrodes modified with enzymes, tissues, and cells. Electroanalysis, 7(1), 23-45.
Hopkins, R. Z. (2017). Hydrogen peroxide in biology and medicine: an overview. Reactive Oxygen Species, 3(7), 26-37.
Huang, Q., Chen, J. Q., Zhao, Y. N., Huang, J., & Liu, H. (2025). Advancements in electrochemical glucose sensors. Talanta, 281, 15.
Huang, Y., Zhang, X., Ji, L., Wang, L., Bin Xu, B., Shahzad, M. W., Tang, Y. X., Zhu, Y. F., Yan, M., Sun, G. X., & Jiang, Y. Z. (2023). Boosting the sodium storage performance of Prussian blue analogs by single-crystal and high-entropy approach. Energy Storage Materials, 58, 1-8.
Jiang, D., Chu, Z., Peng, J., & Jin, W. (2016). Screen-printed biosensor chips with Prussian blue nanocubes for the detection of physiological analytes. Sensors and Actuators B: Chemical, 228, 679-687.
Jiang, W., Wang, T., Chen, H., Suo, X., Liang, J. Y., Zhu, W. S., Li, H. M., & Dai, S. (2021). Room temperature synthesis of high-entropy Prussian blue analogues. Nano Energy, 79, 7.

Jiang, Y., & Wu, J. (2019). Recent development in chitosan nanocomposites for surface‐based biosensor applications. Electrophoresis, 40(16-17), 2084-2097.
Karyakin, A. A. (2001). Prussian Blue and its analogues: Electrochemistry and analytical applications. Electroanalysis, 13(10), 813-819.
Kondratiev, V., Tikhomirova, A., & Malev, V. (1999). Study of charge transport processes in Prussian-blue film modified electrodes. Electrochimica Acta, 45(4-5), 751-759.
Li, C. L., Xiong, Y. C., Shen, X. J., Luo, D., Wu, W. J., Li, Z. T., Helal, M. H., El-Bahy, Z. M., Mai, Y. Y., Liu, Z., Yamauchi, Y., & Xu, X. T. (2024). Fundamental understanding of Prussian blue and its analogues for superior capacitive deionization: A perspective from nanoarchitectonics. Coordination Chemistry Reviews, 520, 17.
Li, G. L., & Wen, D. (2021). Sensing nanomaterials of wearable glucose sensors. Chinese Chemical Letters, 32(1), 221-228.
Liao, T.-C., Chen, W.-H., Liao, H.-Y., & Chen, L.-C. (2016). Multicolor electrochromic thin films and devices based on the Prussian blue family nanoparticles. Solar Energy Materials and Solar Cells, 145, 26-34.
Lin, Y., Hu, L., Yin, L., & Guo, L. (2015). Electrochemical glucose biosensor with improved performance based on the use of glucose oxidase and Prussian Blue incorporated into a thin film of self-polymerized dopamine. Sensors and Actuators B: Chemical, 210, 513-518.
Liu, Y., Wang, M., Zhao, F., Xu, Z., & Dong, S. (2005). The direct electron transfer of glucose oxidase and glucose biosensor based on carbon nanotubes/chitosan matrix. Biosensors and Bioelectronics, 21(6), 984-988.
Ma, C., Lin, C., Li, N., Chen, Y. F., Yang, Y. S., Tan, L. L., Wang, Z. L., Zhang, Q. F., & Zhu, Y. J. (2024). A High-Entropy Prussian Blue Analog for Aqueous Potassium-Ion Batteries. Small, 20(23), 10.
Ma, J. P., & Huang, C. D. (2023). High entropy energy storage materials: Synthesis and application. Journal of Energy Storage, 66.
Ma, Y. J., Ma, Y., Dreyer, S. L., Wang, Q. S., Wang, K., Goonetilleke, D., Omar, A., Mikhailova, D., Hahn, H., Breitung, B., & Brezesinski, T. (2021). High-Entropy Metal-Organic Frameworks for Highly Reversible Sodium Storage. Advanced Materials, 33(34), 10.
Marcus, Y. (1986). The hydration entropies of ions and their effects on the structure of water. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 82(1), 233-242.
Murugan, P., Annamalai, J., Atchudan, R., Govindasamy, M., Nallaswamy, D., Ganapathy, D., Reshetilov, A., & Sundramoorthy, A. K. (2022). Electrochemical sensing of glucose using glucose oxidase/PEDOT: 4-sulfocalix [4] arene/MXene composite modified electrode. Micromachines, 13(2), 304.
Naseem, B., Arif, I., & Jamal, M. A. (2021). Kosmotropic and chaotropic behavior of hydrated ions in aqueous solutions in terms of expansibility and compressibility parameters. Arabian Journal of Chemistry, 14(11), 103405.
Niu, Q. Q., Lu, W. B., Bao, C. C., Wei, M., Chen, Z. A., & Jia, J. F. (2020). Glucose-sensing abilities of mixed-metal (Ni-Co) Prussian blue analogs hollow nanocubes. Journal of Electroanalytical Chemistry, 874, 6.
O'Halloran, M. P., Pravda, M., & Guilbault, G. G. (2001). Prussian Blue bulk modified screen-printed electrodes for H2O2 detection and for biosensors. Talanta, 55(3), 605-611.
Olejnik, A., Karczewski, J., Dolega, A., Siuzdak, K., & Grochowska, K. (2020). Novel approach to interference analysis of glucose sensing materials coated with Nafion. Bioelectrochemistry, 135, 11, Article 107575. <Go to ISI>://WOS:000579730600028
Phadke, S., Mysyk, R., & Anouti, M. (2020). Effect of cation (Li+, Na+, K+, Rb+, Cs+) in aqueous electrolyte on the electrochemical redox of Prussian blue analogue (PBA) cathodes. Journal of Energy Chemistry, 40, 31-38.
Randviir, E. P. (2018). A cross examination of electron transfer rate constants for carbon screen-printed electrodes using Electrochemical Impedance Spectroscopy and cyclic voltammetry. Electrochimica Acta, 286, 179-186.
Ricci, F., Amine, A., Palleschi, G., & Moscone, D. (2003). Prussian Blue based screen printed biosensors with improved characteristics of long-term lifetime and pH stability. Biosensors & Bioelectronics, 18(2-3), 165-174.
Ricci, F., & Palleschi, G. (2005). Sensor and biosensor preparation, optimisation and applications of Prussian Blue modified electrodes. Biosensors & Bioelectronics, 21(3), 389-407.
Roig, A., Navarro, J., Tamarit, R., & Vicente, F. (1993). Stability of Prussian Blue films on ITO electrodes: effect of different anions. Journal of Electroanalytical Chemistry, 360(1-2), 55-69.
Shukla, S. K., Mishra, A. K., Arotiba, O. A., & Mamba, B. B. (2013). Chitosan-based nanomaterials: A state-of-the-art review. International journal of biological macromolecules, 59, 46-58.
Sitnikova, N. A., Komkova, M. A., Khomyakova, I. V., Karyakina, E. E., & Karyakin, A. A. (2014). Transition metal hexacyanoferrates in electrocatalysis of H2O2 reduction: an exclusive property of Prussian Blue. Analytical chemistry, 86(9), 4131-4134.
Thallapally, P. K., Motkuri, R. K., Fernandez, C. A., McGrail, B. P., & Behrooz, G. S. (2010). Prussian Blue Analogues for CO2 and SO2 Capture and Separation Applications. Inorganic Chemistry, 49(11), 4909-4915.
Tonelli, D., Gualandi, I., Scavetta, E., & Mariani, F. (2023). Focus review on nanomaterial-based electrochemical sensing of glucose for health applications. Nanomaterials, 13(12), 1883.
Tsai, M. H., & Yeh, J. W. (2014). High-Entropy Alloys: A Critical Review. Materials Research Letters, 2(3), 107-123.
Viehbeck, A., & DeBerry, D. W. (1985). Electrochemistry of Prussian blue films on metal and semiconductor electrodes. Journal of the Electrochemical Society, 132(6), 1369.
Wang, Q. C., Li, J. B., Jin, H. B., Xin, S., & Gao, H. C. (2022). Prussian-blue materials: Revealing new opportunities for rechargeable batteries. Infomat, 4(6), 22.
Wang, Z. H., Huang, Y. X., Luo, R., Wu, F., Li, L., Xie, M., Huang, J. Q., & Chen, R. J. (2019). Ion-exchange synthesis of high-energy-density prussian blue analogues for sodium ion battery cathodes with fast kinetics and long durability. Journal of Power Sources, 436, 9.
Wu, S. G., Liu, J. P., Bai, X., & Tan, W. G. (2010). Stability Improvement of Prussian Blue by a Protective Cellulose Acetate Membrane for Hydrogen Peroxide Sensing in Neutral Media. Electroanalysis, 22(16), 1906-1910.
Yeh, J. W., Chen, S. K., Lin, S. J., Gan, J. Y., Chin, T. S., Shun, T. T., Tsau, C. H., & Chang, S. Y. (2004). Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Advanced Engineering Materials, 6(5), 299-303.
Yi, H. C., Qin, R. Z., Ding, S. X., Wang, Y. T., Li, S. N., Zhao, Q. H., & Pan, F. (2021). Structure and Properties of Prussian Blue Analogues in Energy Storage and Conversion Applications. Advanced Functional Materials, 31(6).
Zhai, Q., Gong, S., Wang, Y., Lyu, Q., Liu, Y., Ling, Y., Wang, J., Simon, G. P., & Cheng, W. (2019). Enokitake mushroom-like standing gold nanowires toward wearable noninvasive bimodal glucose and strain sensing. ACS applied materials & interfaces, 11(10), 9724-9729.
Zhai, X., Wei, W., Zeng, J., Liu, X., & Gong, S. (2006). New nanocomposite based on prussian blue nanoparticles/carbon nanotubes/chitosan and its application for assembling of amperometric glucose biosensor. Analytical letters, 39(5), 913-926.
Zhang, Y. T., Li, W. Z., Gong, H., Zhang, Q. Q., Yan, L., & Wang, H. (2024). Recent progress in Prussian blue electrode for electrochromic devices. Frontiers in Energy.
Zhao, H. (2006). Are ionic liquids kosmotropic or chaotropic? An evaluation of available thermodynamic parameters for quantifying the ion kosmotropicity of ionic liquids. Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental & Clean Technology, 81(6), 877-891.
Zhou, X. C., Chen, X. H., Li, B. X., Zhu, H., Lan, S., Hahn, H., & Feng, T. (2025). Ameliorating water splitting by entropy regulation and electronic structure engineering on pristine Prussian blue analog. Journal of Colloid and Interface Science, 690, 10.
Zhu, B. Y., Li, X. R., Zhou, L., & Su, B. (2022). An Overview of Wearable and Implantable Electrochemical Glucose Sensors. Electroanalysis, 34(2), 237-245.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101072-
dc.description.abstract高熵材料(High-Entropy Materials, HEMs)因多元素組成所產生的高混合熵效應(configurational entropy effect),能提升晶格穩定性與電化學耐久性,近年廣泛應用於電池與儲能領域,並被證實可有效提升比容量與循環壽命。普魯士藍類似物(Prussian Blue Analogues, PBAs)因具可逆氧化還原特性與良好導電性,廣泛應用於電催化與電化學感測領域。然而,傳統普魯士藍材料(Prussian Blue, PB)於中性或鹼性環境中易受氫氧根攻擊,導致金屬配位鍵結斷裂,造成結構不穩與感測能力衰退,限制其於生理樣本中之應用。近年來,高熵普魯士藍類似物(High-Entropy Prussian Blue Analogues, HEPBA)因其多金屬活性位點與高熵效應,在電池與儲能領域展現優異的電化學循環穩定性與比容量表現,成為新興研究焦點。然而,其在中性水相環境中的電化學行為與結構穩定性仍缺乏系統性探討。基於此,本研究將HEPBA引入電化學感測領域,系統性探討其在中性環境中的穩定性與電化學催化特性,並驗證其於生理模擬條件下作為感測平台之可行性。本研究透過共沉澱法合成多種金屬元素(Fe、Mn、Ni、Cu、Co)組成之HEPBA粉末,並以次微米粒子墨水結合滴塗法製備修飾電極,以建立穩定且具重現性的修飾電極製程。藉由TEM、EDX、XRD與FTIR等材料分析確認,所得HEPBA具單相高熵固溶體而非多金屬混摻結構。高熵組成有效穩定晶格,使其在中性環境下具更高結構穩定性。電化學分析顯示,HEPBA修飾電極於中性生理環境條件(pH 7.4)中展現良好氧化還原可逆性與高循環穩定性,多次循環後電流保留率超過80%,遠優於傳統普魯士藍僅約2%的表現,證明高熵效應可顯著提升材料於中性環境中的化學穩定性與電化學耐久度。此外,透過金屬元素比例調控,可進一步提升HEPBA對過氧化氫之電催化能力,顯示其作為電子媒介體(mediator)之潛力。感測應用方面,透過結合葡萄糖氧化酶(glucose oxidase, GOx)與幾丁聚醣(chitosan)形成GOx/chitosan/HEPBA修飾電極,並於模擬生理環境中進行葡萄糖感測實驗。結果顯示,該電極在0.5–3.0 mM葡萄糖濃度範圍內具良好線性響應,理論偵測極限為840 μM,靈敏度為6.43 μA/mM·cm²。與幾丁聚醣複合後,能有效抑制干擾物(如尿酸與抗壞血酸)對電流訊號的影響,同時提升GOx酵素之固定效率與親和性,使其更適用於生理樣本分析並顯著提升感測表現。值得強調的是,葡萄糖在本研究中僅作為示範案例,若更換其他氧化酶(如乳酸氧化酶等)即可延伸至不同生理分子檢測,展現該材料的高通用性與應用延展性。綜合而言,本研究為高熵普魯士藍類似物於電化學感測領域的首次系統性應用研究,證實其於中性環境中具優異穩定性與電化學活性。HEPBA不僅克服傳統PB於中性條件下易失活的限制,也展示其作為穩定、通用且可延伸之電化學平台的潛力,為高熵材料跨足電化學感測與生理催化領域開啟新的研究方向。zh_TW
dc.description.abstractHigh-entropy materials (HEMs), characterized by their multi-element compositions and configurational entropy effects, exhibit enhanced lattice stability and electrochemical durability. In recent years, they have been widely applied in batteries and energy storage systems, demonstrating improvements in specific capacity and cycling performance. Prussian blue analogues (PBAs), known for their reversible redox behavior and good electrical conductivity, have been extensively studied for electrocatalysis and electrochemical sensing applications. However, conventional Prussian blue (PB) suffers from structural degradation in neutral or alkaline environments due to hydroxide attack that breaks metal–ligand coordination bonds, resulting in poor stability and limited applicability in physiological samples. Recently, high-entropy Prussian blue analogues (HEPBA) have emerged as promising materials in battery research, owing to their multiple active metal sites and entropy-stabilized structures that provide excellent cycling stability and capacity retention. Nevertheless, their electrochemical behavior and structural stability under neutral aqueous conditions remain largely unexplored. In this study, HEPBA was introduced into the electrochemical sensing field to systematically investigate its stability and electrocatalytic characteristics under neutral conditions, and to evaluate its feasibility as a sensing platform in simulated physiological environments. HEPBA powders composed of Fe, Mn, Ni, Cu, and Co were synthesized via a co-precipitation method, and submicron-particle inks combined with drop-casting techniques were employed to fabricate modified electrodes with high reproducibility. Structural analyses (TEM, EDX, XRD, and FTIR) confirmed the formation of a single-phase high-entropy solid solution rather than a mixed-metal composite. The high-entropy configuration effectively stabilized the lattice, leading to superior electrochemical stability in neutral media. Electrochemical measurements revealed that HEPBA-modified electrodes exhibited excellent redox reversibility and cycling stability under physiological conditions (pH 7.4), retaining over 80% of the initial current after multiple cycles, whereas traditional PB retained only about 2%. Furthermore, tuning the metal ratios enhanced the electrocatalytic activity toward hydrogen peroxide, indicating its potential as an effective redox mediator. For sensing applications, a GOx/chitosan/HEPBA modified electrode was constructed by incorporating glucose oxidase (GOx) and chitosan. The electrode showed a linear response to glucose concentrations ranging from 0.5 to 3.0 mM, with a theoretical detection limit of 840 μM and a sensitivity of 6.43 μA/mM·cm2. The chitosan layer effectively suppressed interference from uric acid and ascorbic acid while improving enzyme immobilization and biocompatibility, making the electrode suitable for physiological sample analysis. Importantly, glucose was used only as a demonstration; by substituting other oxidases (e.g., lactate oxidase), the system could be extended to detect various biomolecules. In summary, this work represents the first systematic application of HEPBA in electrochemical sensing, demonstrating its remarkable stability and electrocatalytic activity under neutral conditions. HEPBA not only overcomes the instability of conventional PB in neutral media but also establishes a stable, versatile, and extendable platform for electrochemical and biosensing applications.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-11-27T16:09:31Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-11-27T16:09:31Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 i
中文摘要 ii
Abstract iv
目次 vi
圖次 x
表次 xiii
符號說明 xv
第一章 緒論 1
1.1 前言 1
1.2 研究動機 2
1.3 研究目的 3
1.4 研究架構 4
第二章 文獻回顧 6
2.1 普魯士藍類似物 6
2.1.1 簡介 6
2.1.2 應用與挑戰 7
2.1.3 製備方法 7
2.2 高熵普魯士藍 9
2.2.1 高熵材料之簡介 9
2.2.2 高熵普魯士藍類似物簡介 11
2.3 生理分子感測 12
2.3.1 過氧化氫感測 12
2.3.2 葡萄糖感測 13
第三章 材料與方法 18
3.1 實驗材料與儀器 18
3.1.1 實驗儀器 18
3.1.2 實驗藥品 20
3.1.3 電化學三電極系統 22
3.2 共沉澱法合成高熵普魯士藍類似物 23
3.2.1 合成配方–HE-5 24
3.2.2 合成方法 – HE-4與HE-4 (pH3) 24
3.2.3 材料命名方式與研究所用材料統整 26
3.2.4 普魯士藍共沉澱法與修飾電極製備 27
3.3 製備普高熵普魯士藍類似物修飾電極 27
3.3.1 次微米粒子墨水 27
3.3.2 滴塗法 28
3.4 高熵普魯士藍類似物修飾電極性能分析 29
3.4.1 電化學循環伏安法分析 29
3.4.2 循環壽命分析 30
3.4.3 電化學阻抗頻譜分析法 31
3.4.4 電催化過氧化氫之初步驗證 32
3.4.5 電催化葡萄糖之初步驗證 32
3.5 高熵普魯士藍類似物修飾電極應用於葡萄糖感測 33
3.5.1 伏安式感測分析法 33
3.5.2 過氧化氫感測 34
3.5.3 葡萄糖感測 34
3.5.4 製備葡萄糖氧化酶修飾電極 35
3.5.5 葡萄糖感測動力學 35
3.5.6 干擾物測試與抗干擾策略 36
3.6 高熵普魯士藍與幾丁聚醣修飾電極 38
3.6.1 幾丁聚醣薄膜修飾方法 38
3.6.2 電化學分析 38
3.7 高熵普魯士藍類似物材料分析 39
3.7.1 SEM 39
3.7.2 TEM 39
3.7.3 XRD 40
3.7.4 FTIR 40
3.7.5 DLS 41
第四章 結果與討論 42
4.1 高熵普魯士藍類似物材料分析 42
4.1.1 TEM & EDX:驗證高熵特性與理論熵值計算 42
4.1.2 SEM:觀察薄膜表面 46
4.1.3 DLS:驗證次微米粒子墨水粒徑與分散性 49
4.1.4 FTIR:驗證材料之化學鍵結 50
4.1.5 XRD:驗證晶格結構 51
4.1.6 小結 53
4.2 高熵普魯士藍類似物電化學分析 54
4.2.1 陽離子對高熵普魯士藍電化學行為之影響分析 54
4.2.2 陰離子對高熵普魯士藍電化學行為之影響分析 58
4.2.3 高熵普魯士藍修飾電極循環壽命 69
4.2.4 磷酸根影響 75
4.2.5 厚度與循環壽命 81
4.2.6 小結 83
4.3 高熵普魯士藍類似物之催化能力 85
4.3.1 過氧化氫感測 85
4.3.2 金屬元素調控對於過氧化氫催化能力之影響 89
4.4 高熵普魯士藍類似物應用於葡萄糖感測 92
4.4.1 葡萄糖感測 92
4.4.2 干擾物測試 99
4.4.3 幾丁聚醣薄膜抗干擾能力分析 101
4.4.4 幾丁聚醣薄膜對電化學表現之影響分析 105
4.4.5 幾丁聚醣薄膜對葡萄糖感測之影響分析 107
4.4.6 葡萄糖感測動力學 112
4.4.7 小結 113
第五章 結論與未來展望 115
5.1 結論 115
5.2 未來展望 117
參考文獻 119
附錄 125
附錄一 金屬元素調控對於高氧化電位物質催化能力影響—以咖啡風味分子之黃嘌呤類物質為例 125
-
dc.language.isozh_TW-
dc.subject高熵普魯士藍類似物-
dc.subject高熵材料-
dc.subject電化學感測-
dc.subject生理感測-
dc.subject葡萄糖感測-
dc.subjectHigh-entropy Prussian blue analogue-
dc.subjectHigh-entropy materials-
dc.subjectElectrochemical sensing-
dc.subjectPhysiological sensing-
dc.subjectGlucose sensing-
dc.title高熵普魯士藍類似物在中性環境之電化學催化與葡萄糖感測研究zh_TW
dc.titleElectrochemical Catalysis and Glucose Sensing of High-Entropy Prussian Blue Analogues in a Neutral Environmenten
dc.typeThesis-
dc.date.schoolyear114-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee何國川;林正嵐;鍾博文;謝博全zh_TW
dc.contributor.oralexamcommitteeKuo-Chuan Ho;Cheng-Lan Lin;Po-Wen Chung;Po-Chuan Hsiehen
dc.subject.keyword高熵普魯士藍類似物,高熵材料電化學感測生理感測葡萄糖感測zh_TW
dc.subject.keywordHigh-entropy Prussian blue analogue,High-entropy materialsElectrochemical sensingPhysiological sensingGlucose sensingen
dc.relation.page128-
dc.identifier.doi10.6342/NTU202504626-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-10-30-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept生物機電工程學系-
dc.date.embargo-lift2030-10-30-
顯示於系所單位:生物機電工程學系

文件中的檔案:
檔案 大小格式 
ntu-114-1.pdf
  此日期後於網路公開 2030-10-30
25.3 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved