Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農藝學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101068
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蔡育彰zh_TW
dc.contributor.advisorYu-Chang Tsaien
dc.contributor.author張宇欣zh_TW
dc.contributor.authorYu-Hsing Changen
dc.date.accessioned2025-11-27T16:08:32Z-
dc.date.available2025-11-28-
dc.date.copyright2025-11-27-
dc.date.issued2025-
dc.date.submitted2025-09-16-
dc.identifier.citation何新奇 (1994 ) 。台南地區水稻直播栽培技術綜合示範。臺南區農業專訊,(8),2-3。
林國清. (2005). 林國清 (2005 ) 。水稻新品種台南11號之育成。臺南區農業改良場研究彙報,(45),1-25。
許志聖. (2013). 水稻直播栽培的探討. 臺中區農業改良場特刊(116號), 43-50。
許龍欣、陳榮坤、羅正宗 (2019 ) 。水稻稻種鐵粉粉衣技術之開發與應用。臺南區農業改良場研究彙報,(73),1-8。
曾繁茵 (2023 ) 。評估耐旱相關 QTL 導入水稻台南 11 及台稉14對生理、水分利用之影響〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU202304295
楊嘉凌、吳詩都、曾富生 (1997 ) 。水稻不同品種間在直播下之萌芽能力。臺中區農業改良場研究彙報,(56),1-9。
鄭智允、楊志維、簡禎佑 (2023 ) 。抗旱之「稻」-水稻品種桃園5號於旱田直播之應用。桃園區農業專訊,(125),12-14。
Barbour, M. M., Tcherkez, G., Bickford, C. P., Mauve, C., Lamothe, M., Sinton, S., & Brown, H. (2011). Delta 13C of leaf-respired CO2 reflects intrinsic water-use efficiency in barley. Plant, Cell & Environment, 34(5), 792-799. https://doi.org/10.1111/j.1365-3040.2011.02282.x
Bernier, J., Kumar, A., Ramaiah, V., Spaner, D., & Atlin, G. (2007). A large-effect QTL for grain yield under reproductive-stage drought stress in upland rice. Crop Science, 47(2), 507-518. https://doi.org/10.2135/cropsci2006.07.0495
Bordeos, A., Henry, A., Pocsedio, A., Dixit, S., Lai, M. H., & Leung, H. (2025). qDTY introgression to improve the drought tolerance of Taiwanese japonica rice variety Tainan 11. Journal of Crop Improvement. https://doi.org/10.1080/15427528.2025.2515047
Bramley, H., Turner, N. C., Turner, D. W., & Tyerman, S. D. (2009). Roles of morphology, anatomy, and aquaporins in determining contrasting hydraulic behavior of roots. Plant Physiology, 150(1), 348-364. https://doi.org/10.1104/pp.108.134098
Chakraborty, D., Ladha, J. K., Rana, D. S., Jat, M. L., Gathala, M. K., Yadav, S., Rao, A. N., Ramesha, M. S., & Raman, A. (2017). A global analysis of alternative tillage and crop establishment practices for economically and environmentally efficient rice production. Scientific Reports, 7(1), 9342. https://doi.org/10.1038/s41598-017-09742-9
Clark, L. J., Price, A. H., Steele, K. A., & Whalley, W. R. (2008). Evidence from near-isogenic lines that root penetration increases with root diameter and bending stiffness in rice. Functional Plant Biology, 35(11), 1163-1171. https://doi.org/10.1071/fp08132
Condon, A. G. (2020). Drying times: plant traits to improve crop water use efficiency and yield. Journal of Experimental Botany , 71(7), 2239-2252. https://doi.org/10.1093/jxb/eraa002
Condon, A. G., Richards, R. A., Rebetzke, G. J., & Farquhar, G. D. (2002). Improving intrinsic Water-Use Efficiency and crop yield. Crop Sci, 42(1), 122-131. https://doi.org/10.2135/cropsci2002.1220
Cui, Y., Li, M., Yin, X., Song, S., Xu, G., Wang, M., Li, C., Peng, C., & Xia, X. (2018). OsDSSR1, a novel small peptide, enhances drought tolerance in transgenic rice. Plant science, 270, 85-96. https://doi.org/10.1016/j.plantsci.2018.02.015
De Nittis, M., De Vivo, M., Dello Ioio, R., & Sabatini, S. (2025). Hormonal regulation of primary root development. Cell Reports, 44(6). https://doi.org/10.1016/j.celrep.2025.115751
Dharmappa, P. M., Doddaraju, P., Malagondanahalli, M. V., Rangappa, R. B., Mallikarjuna, N. M., Rajendrareddy, S. H., Ramanjinappa, R., Mavinahalli, R. P., Prasad, T. G., Udayakumar, M., & Sheshshayee, S. M. (2019). Introgression of root and Water Use Efficiency traits enhances water productivity: An evidence for physiological breeding in rice (Oryza sativa L.). Rice (N Y), 12(1), 14. https://doi.org/10.1186/s12284-019-0268-z
Dixit, S., Grondin, A., Lee, C. R., Henry, A., Olds, T. M., & Kumar, A. (2015). Understanding rice adaptation to varying agro-ecosystems: trait interactions and quantitative trait loci. BMC Genet, 16, 86. https://doi.org/10.1186/s12863-015-0249-1
Dixit, S., Kumar Biswal, A., Min, A., Henry, A., Oane, R. H., Raorane, M. L., Longkumer, T., Pabuayon, I. M., Mutte, S. K., Vardarajan, A. R., Miro, B., Govindan, G., Albano-Enriquez, B., Pueffeld, M., Sreenivasulu, N., Slamet-Loedin, I., Sundarvelpandian, K., Tsai, Y. C., Raghuvanshi, S., . . . Kohli, A. (2015). Action of multiple intra-QTL genes concerted around a co-localized transcription factor underpins a large effect QTL. Scientific Reports, 5, 15183. https://doi.org/10.1038/srep15183
Dixit, S., Singh, A., Cruz, M. T. S., Maturan, P. T., Amante, M., & Kumar, A. (2014). Multiple major QTL lead to stable yield performance of rice cultivars across varying drought intensities. BMC Genetics, 15, Article 16. https://doi.org/10.1186/1471-2156-15-16
Dixit, S., Swamy, B. P., Vikram, P., Ahmed, H. U., Sta Cruz, M. T., Amante, M., Atri, D., Leung, H., & Kumar, A. (2012). Fine mapping of QTLs for rice grain yield under drought reveals sub-QTLs conferring a response to variable drought severities. Theor Appl Genet, 125(1), 155-169. https://doi.org/10.1007/s00122-012-1823-9
Dwivedi, P., Ramawat, N., Raju, D., Dhawan, G., Gopala Krishnan, S., Chinnusamy, V., Bhowmick, P. K., Vinod, K. K., Pal, M., Nagarajan, M., Ellur, R. K., Bollinedi, H., & Singh, A. K. (2021). Drought tolerant near isogenic lines of pusa 44 pyramided with qDTY2.1 and qDTY3.1, show accelerated recovery response in a high throughput phenomics based phenotyping. Frontiers in Plant Science, 12, 752730. https://doi.org/10.3389/fpls.2021.752730
Eweda, M. A., Jalil, S., Rashwan, A. K., Tsago, Y., Hassan, U., & Jin, X. (2025). Molecular and physiological characterizations of roots under drought stress in rice: A comprehensive review. Plant Physiology Biochem, 225, 110012. https://doi.org/10.1016/j.plaphy.2025.110012
Farooq, M., Siddique, K. H. M., Rehman, H., Aziz, T., Lee, D.-J., & Wahid, A. (2011). Rice direct seeding: Experiences, challenges and opportunities. Soil and Tillage Research, 111(2), 87-98. https://doi.org/10.1016/j.still.2010.10.008
Farooq, M., Wahid, A., Kobayashi, N., Fujita, D., & Basra, S. M. A. (2009). Plant drought stress: effects, mechanisms and management. Agronomy for Sustainable Development, 29(1), 185-212. https://doi.org/10.1051/agro:2008021
Farquhar, G. D., Ehleringer, J. R., & Hubick, K. T. (1989). Carbon isotope discrimination and photosynthesis. Annual Review of Plant Physiologyogy and Plant Molecular Biology, 40, 503-537. https://doi.org/10.1146/annurev.pp.40.060189.002443
Fernando, Y., Adams, M., Kuhlmann, M., & Jr, V. B. (2025). Stomatal and non-stomatal leaf traits for enhanced water use efficiency in rice. Biology (Basel), 14(7). https://doi.org/10.3390/biology14070843
Gao, Z., Wang, Y., Chen, G., Zhang, A., Yang, S., Shang, L., Wang, D., Ruan, B., Liu, C., Jiang, H., Dong, G., Zhu, L., Hu, J., Zhang, G., Zeng, D., Guo, L., Xu, G., Teng, S., Harberd, N. P., & Qian, Q. (2019). The indica nitrate reductase gene OsNR2 allele enhances rice yield potential and nitrogen use efficiency.Nature Communications, 10(1), 5207. https://doi.org/10.1038/s41467-019-13110-8
Grondin, A., Dixit, S., Torres, R., Venkateshwarlu, C., Rogers, E., Mitchell-Olds, T., Benfey, P. N., Kumar, A., & Henry, A. (2018). Physiological mechanisms contributing to the QTL qDTY3.2 effects on improved performance of rice Moroberekan x Swarna BC2F3:4 lines under drought. Rice (N Y), 11(1), 43. https://doi.org/10.1186/s12284-018-0234-1
Guo, Y., Zhu, C., Gan, L., Ng, D., & Xia, K. (2014). Ethylene is involved in the complete-submergence induced increase in root iron and manganese plaques in Oryza sativa. Plant Growth Regulation, 76(3), 259-268. https://doi.org/10.1007/s10725-014-9996-7
Hasegawa, T., Lucob-Agustin, N., Yasufuku, K., Kojima, T., Nishiuchi, S., Ogawa, A., Takahashi-Nosaka, M., Kano-Nakata, M., Inari-Ikeda, M., Sato, M., Tsuji, H., Wainaina, C. M., Yamauchi, A., & Inukai, Y. (2021). Mutation of OUR1/OsbZIP1, which encodes a member of the basic leucine zipper transcription factor family, promotes root development in rice through repressing auxin signaling. Plant science, 306, 110861. https://doi.org/10.1016/j.plantsci.2021.110861
Hazman, M., & Brown, K. M. (2018). Progressive drought alters architectural and anatomical traits of rice roots. Rice (N Y), 11(1), 62. https://doi.org/10.1186/s12284-018-0252-z
Henry, A., Cal, A. J., Batoto, T. C., Torres, R. O., & Serraj, R. (2012). Root attributes affecting water uptake of rice (Oryza sativa) under drought. Journal of Experimental Botany , 63(13), 4751-4763. https://doi.org/10.1093/jxb/ers150
Henry, A., Dixit, S., Mandal, N. P., Anantha, M. S., Torres, R., & Kumar, A. (2014). Grain yield and physiological traits of rice lines with the drought yield QTL qDTY12.1 showed different responses to drought and soil characteristics in upland environments. Functional Plant Biology, 41(10-11), 1066-1077. https://doi.org/10.1071/fp13324
Henry, A., Swamy, B. P., Dixit, S., Torres, R. D., Batoto, T. C., Manalili, M., Anantha, M. S., Mandal, N. P., & Kumar, A. (2015). Physiological mechanisms contributing to the QTL-combination effects on improved performance of IR64 rice NILs under drought. Journal of Experimental Botany , 66(7), 1787-1799. https://doi.org/10.1093/jxb/eru506
Hildebrandt, T. M., Nunes Nesi, A., Araujo, W. L., & Braun, H. P. (2015). Amino acid catabolism in plants. Molecular Plant, 8(11), 1563-1579. https://doi.org/10.1016/j.molp.2015.09.005
Hsieh, P. H., Kan, C. C., Wu, H. Y., Yang, H. C., & Hsieh, M. H. (2018). Early molecular events associated with nitrogen deficiency in rice seedling roots. Scientific Reports, 8(1), 12207. https://doi.org/10.1038/s41598-018-30632-1
Jia, Y., Wang, T., Zhou, G., Tang, L., Yue, X., Liu, X., Cao, T., Yang, J., Tao, Y., Deng, F., Zhou, W., Ren, W., & Chen, Y. (2023). Importance of controlling mesocotyl elongation in the development of rice seedlings intended for mechanical transplantation. Frontiers in Plant Science, 14, 1213609. https://doi.org/10.3389/fpls.2023.1213609
Kawai, T., Akahoshi, R., Shelley, I. J., Kojima, T., Sato, M., Tsuji, H., & Inukai, Y. (2022). Auxin distribution in lateral root primordium development affects the size and lateral root diameter of rice. Frontiers in Plant Science, 13, 834378. https://doi.org/10.3389/fpls.2022.834378
Kawai, T., Shibata, K., Akahoshi, R., Nishiuchi, S., Takahashi, H., Nakazono, M., Kojima, T., Nosaka-Takahashi, M., Sato, Y., Toyoda, A., Lucob-Agustin, N., Kano-Nakata, M., Suralta, R. R., Niones, J. M., Chen, Y., Siddique, K. H. M., Yamauchi, A., & Inukai, Y. (2022). WUSCHEL-related homeobox family genes in rice control lateral root primordium size. Proc Natl Acad Sci U S A, 119(1). https://doi.org/10.1073/pnas.2101846119
Kumar, V., & Ladha, J. K. (2011). Direct Seeding of Rice. Recent Developments and Future Research Needs (Vol. 111) . https://doi.org/10.1016/B978-0-12-387689-8.00001-1
Lee, D. K., Chung, P. J., Jeong, J. S., Jang, G., Bang, S. W., Jung, H., Kim, Y. S., Ha, S. H., Choi, Y. D., & Kim, J. K. (2017). The rice OsNAC6 transcription factor orchestrates multiple molecular mechanisms involving root structural adaptions and nicotianamine biosynthesis for drought tolerance. Plant Biotechnology Journal, 15(6), 754-764. https://doi.org/10.1111/pbi.12673
Li, J., Meng, L., Ren, S., Jia, C., Liu, R., Jiang, H., & Chen, J. (2023). OsGSTU17, a tau class glutathione s-transferase gene, positively regulates drought stress tolerance in Oryza sativa. Plants (Basel), 12(17). https://doi.org/10.3390/plants12173166
Li, X., Dong, J., Zhu, W., Zhao, J., & Zhou, L. (2023). Progress in the study of functional genes related to direct seeding of rice. Molecular Breeding, 43(6), 46. https://doi.org/10.1007/s11032-023-01388-y
Liu, W., Fan, X., Liu, Y. y., Bao, S., Lu, Y., Gai, D., Fu, X., Du, J., Guo, L., Zhang, Q., Geng, Y., & Shao, X. (2023). Relationship between characteristics of basal internodes and lodging and its physiological mechanism in direct‐seeded rice. Journal of Agronomy and Crop Science, 209(5), 632-650. https://doi.org/10.1111/jac.12651
Lv, Y., Shao, G., Jiao, G., Sheng, Z., Xie, L., Hu, S., Tang, S., Wei, X., & Hu, P. (2021). Targeted mutagenesis of POLYAMINE OXIDASE 5 that negatively regulates mesocotyl elongation enables the generation of direct-seeding rice with improved grain yield. Molecular Plant, 14(2), 344-351. https://doi.org/10.1016/j.molp.2020.11.007
Meng, D., & Fricke, W. (2017). Changes in root hydraulic conductivity facilitate the overall hydraulic response of rice (Oryza sativa L.) cultivars to salt and osmotic stress. Plant Physiologyogy and Biochemistry, 113, 64-77. https://doi.org/10.1016/j.plaphy.2017.02.001
Meng, F., Xiang, D., Zhu, J., Li, Y., & Mao, C. (2019). Molecular mechanisms of root development in rice. Rice (N Y), 12(1), 1. https://doi.org/10.1186/s12284-018-0262-x
Meng, Y., Zhan, J., Liu, H., Liu, J., Wang, Y., Guo, Z., He, S., Nie, L., Kohli, A., & Ye, G. (2023). Natural variation of OsML1, a mitochondrial transcription termination factor, contributes to mesocotyl length variation in rice. Plant J, 115(4), 910-925. https://doi.org/10.1111/tpj.16267
Mininni, A. N. N., Tuzio, A. C. C., Brugnoli, E., Dichio, B., & Sofo, A. (2022). Carbon isotope discrimination and water use efficiency in interspecific Prunus hybrids subjected to drought stress. Plant Physiologyogy and Biochemistry, 175, 33-43. https://doi.org/10.1016/j.plaphy.2022.01.030
Mishra, K. K., Vikram, P., Yadaw, R. B., Swamy, B. P. M., Dixit, S., Cruz, M. T. S., Maturan, P., Marker, S., & Kumar, A. (2013). qDTY12.1: a locus with a consistent effect on grain yield under drought in rice. Bmc Genetics, 14, Article 12. https://doi.org/10.1186/1471-2156-14-12
Mohd Ikmal, A., Noraziyah, A. A. S., & Wickneswari, R. (2021). Incorporating drought and submergence tolerance QTL in Rice (Oryza sativa L.) the effects under reproductive stage drought and vegetative stage submergence stresses. Plants (Basel), 10(2). https://doi.org/10.3390/plants10020225
Muzaffar, A., Chen, Y. S., Lee, H. T., Wu, C. C., Le, T. T., Liang, J. Z., Lu, C. H., Balasubramaniam, H., Lo, S. F., Yu, L. C., Chan, C. H., Chen, K. T., Lee, M. H., Hsing, Y. I., Ho, T. D., & Yu, S. M. (2024). A newly evolved rice-specific gene JAUP1 regulates jasmonate biosynthesis and signalling to promote root development and multi-stress tolerance. Plant Biotechnology Journal, 22(5), 1417-1432. https://doi.org/10.1111/pbi.14276
Mwakyusa, L., Kilasi, N. L., Madege, R. R., Heredia, M. C., Dixit, S., & Herzog, M. (2024). Adaptation to floods: exploring coleoptile variability for flooding resilience of direct seeded rice during germination. Cogent Food & Agriculture, 10(1). https://doi.org/10.1080/23311932.2024.2388600
Ohno, H., Banayo, N. P. M. C., Bueno, C. S., Kashiwagi, J.-i., Nakashima, T., Corales, A. M., Garcia, R., Sandhu, N., Kumar, A., & Kato, Y. (2018). Longer mesocotyl contributes to quick seedling establishment, improved root anchorage, and early vigor of deep-sown rice. Field Crops Research, 228, 84-92. https://doi.org/10.1016/j.fcr.2018.08.015
Pan, X., Welti, R., & Wang, X. (2010). Quantitative analysis of major plant hormones in crude plant extracts by high-performance liquid chromatography-mass spectrometry. Nat Protoc, 5(6), 986-992. https://doi.org/10.1038/nprot.2010.37
Panda, S., Majhi, P. K., Anandan, A., Mahender, A., Veludandi, S., Bastia, D., Guttala, S. B., Singh, S. K., Saha, S., & Ali, J. (2021). Proofing Direct-Seeded Rice with Better Root Plasticity and Architecture. Int J Mol Sci, 22(11). https://doi.org/10.3390/ijms22116058
Pandey, A., Wu, L. B., Murugaiyan, V., Schaaf, G., Ali, J., & Frei, M. (2023). Differential effects of arsenite and arsenate on rice (Oryza sativa) plants differing in glutathione S-transferase gene expression. Environmental Science and Pollution Research, 30(40), 92268-92281. https://doi.org/10.1007/s11356-023-28833-x
Pathak, H., Sankhyan, S., Dubey, D. S., Bhatia, A., & Jain, N. (2013). Dry direct-seeding of rice for mitigating greenhouse gas emission: field experimentation and simulation. Paddy and Water Environment, 11(1-4), 593-601. https://doi.org/10.1007/s10333-012-0352-0
Pitaloka, M. K., Caine, R. S., Hepworth, C., Harrison, E. L., Sloan, J., Chutteang, C., Phunthong, C., Nongngok, R., Toojinda, T., Ruengphayak, S., Arikit, S., Gray, J. E., & Vanavichit, A. (2022). Induced genetic variations in stomatal density and size of rice strongly affects water use efficiency and responses to drought stresses. Frontiers in Plant Science, 13, 801706. https://doi.org/10.3389/fpls.2022.801706
Qiao, J., Quan, R., Wang, J., Li, Y., Xiao, D., Zhao, Z., Huang, R., & Qin, H. (2024). OsEIL1 and OsEIL2, two master regulators of rice ethylene signaling, promote the expression of ROS scavenging genes to facilitate coleoptile elongation and seedling emergence from soil. Plant Commun, 5(3), 100771. https://doi.org/10.1016/j.xplc.2023.100771
Rebouillat, J., Dievart, A., Verdeil, J. L., Escoute, J., Giese, G., Breitler, J. C., Gantet, P., Espeout, S., Guiderdoni, E., & Périn, C. (2008). Molecular genetics of rice root development. Rice, 2(1), 15-34. https://doi.org/10.1007/s12284-008-9016-5
Sagare, D. B., Abbai, R., Jain, A., Jayadevappa, P. K., Dixit, S., Singh, A. K., Challa, V., Alam, S., Singh, U. M., Yadav, S., Sandhu, N., Kabade, P. G., Singh, V. K., & Kumar, A. (2020). More and more of less and less: Is genomics-based breeding of dry direct-seeded rice (DDSR) varieties the need of hour? Plant Biotechnology Journal, 18(11), 2173-2186. https://doi.org/10.1111/pbi.13454
Sai Karnatam, K., Jaganathan, D., Dilip, K. R., Manikanda Boopathi, N., & Muthurajan, R. (2020). Shortlisting putative candidate genes underlying qDTY1.1, a major effect drought tolerant QTL in rice (Oryza sativa L.) . Electronic Journal of Plant Breeding, 11(3), 916-924. https://doi.org/10.37992/2020.1103.149
Sandhu, N., Dixit, S., Swamy, B. P. M., Raman, A., Kumar, S., Singh, S. P., Yadaw, R. B., Singh, O. N., Reddy, J. N., Anandan, A., Yadav, S., Venkataeshwarllu, C., Henry, A., Verulkar, S., Mandal, N. P., Ram, T., Badri, J., Vikram, P., & Kumar, A. (2019). Marker assisted breeding to develop multiple stress tolerant varieties for flood and drought prone areas. Rice (N Y), 12(1), 8. https://doi.org/10.1186/s12284-019-0269-y
Sandhu, N., Yadav, S., Catolos, M., Cruz, M. T. S., & Kumar, A. (2021). Developing climate-resilient, direct-seeded, adapted multiple-stress-tolerant rice applying genomics-assisted breeding. Frontiers in Plant Science, 12, 637488. https://doi.org/10.3389/fpls.2021.637488
Seo, J. S., Joo, J., Kim, M. J., Kim, Y. K., Nahm, B. H., Song, S. I., Cheong, J. J., Lee, J. S., Kim, J. K., & Choi, Y. D. (2011). OsbHLH148, a basic helix-loop-helix protein, interacts with OsJAZ proteins in a jasmonate signaling pathway leading to drought tolerance in rice. Plant J, 65(6), 907-921. https://doi.org/10.1111/j.1365-313X.2010.04477.x
Sharp, R. E. (2002). Interaction with ethylene: changing views on the role of abscisic acid in root and shoot growth responses to water stress. Plant, Cell & Environment, 25(2), 211-222. https://doi.org/10.1046/j.1365-3040.2002.00798.x
Singh, H., Singh, J., Ade, P. A., Raigar, O. P., Kaur, R., Khanna, R., Mangat, G. S., & Sandhu, N. (2022). Genetic evaluation of a diverse rice panel for direct seeded adapted traits using kompetitive allele specific primer assay. Agronomy, 12(9). https://doi.org/10.3390/agronomy12092083
Singh, Z., Singh, H., Garg, T., Mushahary, K. K. K., & Yadav, S. R. (2023). Genetic and hormonal blueprint of shoot-borne adventitious root development in rice and maize. Plant and Cell Physiology, 63(12), 1806-1813. https://doi.org/10.1093/pcp/pcac084
Suh, J.-P., Won, Y.-J., Ahn, E.-K., Lee, J.-H., Ha, W.-G., Kim, M.-K., Cho, Y.-C., Jeong, E.-G., & Kim, B.-K. (2014). Field performance and SSR analysis of drought qtl introgression lines of rice. Plant Breeding and Biotechnology, 2(2), 158-166. https://doi.org/10.9787/pbb.2014.2.2.158
Swamy, B. P., Ahmed, H. U., Henry, A., Mauleon, R., Dixit, S., Vikram, P., Tilatto, R., Verulkar, S. B., Perraju, P., Mandal, N. P., Variar, M., Robin, S., Chandrababu, R., Singh, O. N., Dwivedi, J. L., Das, S. P., Mishra, K. K., Yadaw, R. B., Aditya, T. L., . . . Kumar, A. (2013). Genetic, physiological, and gene expression analyses reveal that multiple QTL enhance yield of rice mega-variety IR64 under drought. PLoS One, 8(5), e62795. https://doi.org/10.1371/journal.pone.0062795
Takeuchi, K., Hasegawa, H., Gyohda, A., Komatsu, S., Okamoto, T., Okada, K., Terakawa, T., & Koshiba, T. (2016). Overexpression of RSOsPR10, a root-specific rice PR10 gene, confers tolerance against drought stress in rice and drought and salt stresses in bentgrass. Plant Cell, Tissue and Organ Culture, 127(1), 35-46. https://doi.org/10.1007/s11240-016-1027-0
Vadez, V., Grondin, A., Chenu, K., Henry, A., Laplaze, L., Millet, E. J., & Carminati, A. (2024). Crop traits and production under drought. Nature Reviews Earth & Environment, 5(3), 211-225. https://doi.org/10.1038/s43017-023-00514-w
Venuprasad, R., Dalid, C. O., Del Valle, M., Zhao, D., Espiritu, M., Sta Cruz, M. T., Amante, M., Kumar, A., & Atlin, G. N. (2009). Identification and characterization of large-effect quantitative trait loci for grain yield under lowland drought stress in rice using bulk-segregant analysis. Theoretical and Applied Genetics, 120(1), 177-190. https://doi.org/10.1007/s00122-009-1168-1
Vikram, P., Swamy, B. P., Dixit, S., Singh, R., Singh, B. P., Miro, B., Kohli, A., Henry, A., Singh, N. K., & Kumar, A. (2015). Drought susceptibility of modern rice varieties: an effect of linkage of drought tolerance with undesirable traits. Scientific Reports, 5, 14799. https://doi.org/10.1038/srep14799
Vikram, P., Swamy, B. P. M., Dixit, S., Ahmed, H. U., Cruz, M. T. S., Singh, A. K., & Kumar, A. (2011). qDTY1.1, a major QTL for rice grain yield under reproductive-stage drought stress with a consistent effect in multiple elite genetic backgrounds. BMC Genetics, 12, Article 89. https://doi.org/10.1186/1471-2156-12-89
Vinana,W,G., Scharwies, J. D., & Dinneny, J. R. (2022). Deconstructing the root system of grasses through an exploration of development, anatomy and function. Plant, Cell & Environment, 45(3), 602-619. https://doi.org/10.1111/pce.14270
Watanabe, Y., Kabuki, T., Kakehashi, T., Kano-Nakata, M., Mitsuya, S., & Yamauchi, A. (2020). Morphological and histological differences among three types of component roots and their differential contribution to water uptake in the rice root system. Plant Production Science, 23(2), 191-201. https://doi.org/10.1080/1343943x.2020.1730701
Wu, W., & Cheng, S. (2014). Root genetic research, an opportunity and challenge to rice improvement. Field Crops Research, 165, 111-124. https://doi.org/10.1016/j.fcr.2014.04.013
Xu, L., Li, X., Wang, X., Xiong, D., & Wang, F. (2019). Comparing the grain yields of direct-seeded and transplanted rice: a meta-analysis. Agronomy, 9(11). https://doi.org/10.3390/agronomy9110767
Xu, W., Jia, L., Shi, W., Liang, J., Zhou, F., Li, Q., & Zhang, J. (2013). Abscisic acid accumulation modulates auxin transport in the root tip to enhance proton secretion for maintaining root growth under moderate water stress. New Phytologist, 197(1), 139-150. https://doi.org/10.1111/nph.12004
Yamamoto, T., Yoshida, Y., Nakajima, K., Tominaga, M., Gyohda, A., Suzuki, H., Okamoto, T., Nishimura, T., Yokotani, N., Minami, E., Nishizawa, Y., Miyamoto, K., Yamane, H., Okada, K., & Koshiba, T. (2018). Expression of RSOsPR10 in rice roots is antagonistically regulated by jasmonate/ethylene and salicylic acid via the activator OsERF87 and the repressor OsWRKY76, respectively. Plant Direct, 2(3), e00049. https://doi.org/10.1002/pld3.49
Yamane, K., Garcia, R., Imayoshi, K., Mabesa‐Telosa, R. C., Banayo, N. P. M. C., Vergara, G., Yamauchi, A., Sta. Cruz, P., & Kato, Y. (2017). Seed vigour contributes to yield improvement in dry direct‐seeded rainfed lowland rice. Annals of Applied Biology, 172(1), 100-110. https://doi.org/10.1111/aab.12405
Yamauchi, T., Tanaka, A., Inahashi, H., Nishizawa, N. K., Tsutsumi, N., Inukai, Y., & Nakazono, M. (2019). Fine control of aerenchyma and lateral root development through AUX/IAA- and ARF-dependent auxin signaling. Proceedings of the National Academy of Sciences of the United States of America, 116(41), 20770-20775. https://doi.org/10.1073/pnas.1907181116
Yan, Y., Ding, C., Zhang, G., Hu, J., Zhu, L., Zeng, D., Qian, Q., & Ren, D. (2023). Genetic and environmental control of rice tillering. The Crop Journal, 11(5), 1287-1302. https://doi.org/10.1016/j.cj.2023.05.009
Yoshida, S. (1976). Routine procedures for growing rice plants in culture solution. Laboratory Manual for Physiological Studies of Rice, 61-66. https://cir.nii.ac.jp/crid/1572543026232505472
Yu, J., Xuan, W., Tian, Y., Fan, L., Sun, J., Tang, W., Chen, G., Wang, B., Liu, Y., Wu, W., Liu, X., Jiang, X., Zhou, C., Dai, Z., Xu, D., Wang, C., & Wan, J. (2021). Enhanced OsNLP4-OsNiR cascade confers nitrogen use efficiency by promoting tiller number in rice. Plant Biotechnology Journal, 19(1), 167-176. https://doi.org/10.1111/pbi.13450
Yu, S., Ligang, C., Liping, Z., & Diqiu, Y. (2010). Overexpression of OsWRKY72 gene interferes in the abscisic acid signal and auxin transport pathway of Arabidopsis. Journal of Biosciences, 35(3), 459-471. https://doi.org/10.1007/s12038-010-0051-1
Yuan, X., Wang, H., Cai, J., Bi, Y., Li, D., & Song, F. (2019). Rice NAC transcription factor ONAC066 functions as a positive regulator of drought and oxidative stress response. BMC Plant Biology, 19(1), 278. https://doi.org/10.1186/s12870-019-1883-y
Zhang, D., Ding, X., Wang, Z., Li, W., Li, L., Liu, L., Zhou, H., Yu, J., Zheng, C., Wu, H., Yuan, D., Duan, M., & Liu, C. (2025). A C2H2 zinc finger protein, OsZOS2-19, modulates ABA sensitivity and cold response in rice. Plant Cell Physiol, 66(5), 753-765. https://doi.org/10.1093/pcp/pcaf018
Zhang, Y., Li, J., Chen, S., Ma, X., Wei, H., Chen, C., Gao, N., Zou, Y., Kong, D., Li, T., Liu, Z., Yu, S., & Luo, L. (2020). An APETALA2/ethylene responsive factor, OsEBP89 knockout enhances adaptation to direct-seeding on wet land and tolerance to drought stress in rice. Molecular Genetics and Genomics, 295(4), 941-956. https://doi.org/10.1007/s00438-020-01669-7
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101068-
dc.description.abstract直播水稻系統具節省水資源與勞力的特點,是面對氣候變遷、水資源減少與農業勞動力缺乏的一種栽培模式。乾旱產量相關基因座 (qDTYs) 能在乾旱下促進深根與提高水分利用效率,被認為具有提升直播適應性的潛力。本研究導入qDTY 2.1、qDTY 3.1、qDTY 1.1, 3.1、qDTY 1.1, 2.1, 3.1、qDTY 3.2 、qDTY 2.2, 4.1 、qDTY 12.1 評估對台南11號直播適應性的影響。幼苗期 qDTYs 導入系株高高於台南11號,並影響根系形態,其中 qDTY2.2, 4.1 與 qDTY12.1 可提升地上部生長勢,qDTY3.1 與 qDTY1.1, 3.1 除幼苗期水分利用效率較佳外,在移植、濕式與乾式直播系統中水分利用效率也優於台南11號。在乾式直播環境中qDTY3.1 與 qDTY1.1, 3.1氣孔密度較低,且在乾式直播幼苗期具發育良好的根系,使其幼苗生地上部乾重較佳。在低滲透壓下qDTY3.1 與 qDTY1.1, 3.1發芽率高於台南11號,且qDTY3.1 根系延長最明顯。轉錄體分析顯示,低滲透壓下qDTY3.1 與 qDTY1.1, 3.1提高對 ABA 敏感的抗旱基因表現,單獨導入 qDTY3.1 效果尤為明顯,且胺基酸與氮利用相關基因亦同。本研究顯示qDTY3.1 與 qDTY1.1, 3.1可提升水分利用效率與乾式直播下根系結構,具有提升親本直播適應性之潛力。zh_TW
dc.description.abstractDirect-seeded rice (DSR) is a cultivation method that addresses climate change, water scarcity, and labor shortages through reduced water and labor input. Drought-yield quantitative trait loci (qDTYs), which enhance deep rooting and improve water use efficiency (WUE) under drought stress, have the potential to increase the adaptability of rice to DSR. In this study, qDTY2.1, qDTY3.1, qDTY1.1, 3.1, qDTY1.1, 2.1, 3.1, qDTY3.2, qDTY2.2, 4.1, and qDTY12.1 were introgressed into TN11 to evaluate their effects on adaptability under DSR. At the seedling stage, most qDTY lines exhibited greater plant height and changed root morphology compared to TN11. Among them, qDTY2.2, 4.1 and qDTY12.1 enhanced shoot vigor, while qDTY3.1 and qDTY1.1, 3.1 showed superior WUE not only at the seedling stage but also under transplanted, wet-DSR, and dry-DSR (DDS). Under DDS, these lines exhibited lower stomatal density and well-developed root systems during seedling stage, contributing to increase shoot dry weight. Under low osmotic treatment, they showed higher germination rates, with qDTY3.1 displaying the most pronounced root elongation. Transcriptome analysis revealed upregulation of drought-responsive genes related to ABA sensitivity, particularly in qDTY3.1, along with genes involved in amino acid metabolism and nitrogen utilization. These results suggest that qDTY3.1 and qDTY1.1, 3.1 enhance WUE, and specifically improve root structural development under DDS conditions, indicating their potential to increase the adaptability of recurrent parent to direct seeding systems.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-11-27T16:08:32Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-11-27T16:08:32Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents目次
口試委員審定書 I
謝誌 II
摘要 III
Abstract IV
縮寫表 V
目次 VII
圖次 IX
附錄 XI
第一章 前言 1
1.1 直播稻系統介紹 1
1.2 水稻根系結構 3
1.3 水分利用效率 6
1.4 乾旱產量相關數量基因座 7
第二章 材料與方法 10
2.1 qDTY導入系背景 10
2.2 生長箱試驗 10
2.3 土耕栽培試驗 10
2.4發芽率試驗 12
2.5地上部生長勢調查 12
2.6水耕幼苗根部性狀調查 12
2.7水分利用效率測量 13
2.8穩定碳同位素測量 14
2.9氣孔密度調查 14
2.10荷爾蒙液像層析質譜分析LC/MS/MS 15
2.11 DNA萃取 16
2.12 DNA聚合酶連鎖反應(polymerase chain reaction, PCR) 16
2.13凝膠電泳基因型分析 17
2.14 純化DNA定序 17
2.15 RNA萃取 17
2.16 RT-PCR (Reverse Transcription,RT) 與Real Time qPCR 17
2.17 轉錄體定序資料分析 19
2.18統計分析方法 19
第三章 結果 20
3.1 qDTYs導入系基因型檢測 20
3.2 導入qDTYs幼苗地上部生長勢之差異 20
3.3 導入qDTYs對幼苗根系之影響 21
3.4 導入qDTYs對水耕幼苗期水分利用效率之影響 22
3.5 導入qDTYs於濕式直播適應性之影響 23
3.6 相關性分析 25
3.7 導入qDTY3.1與qDTY1.1, 3.1於乾式直播適應性之影響 25
3.8 導入qDTY3.1與qDTY1.1, 3.1對種子活力之影響 27
3.9 導入qDTY3.1與qDTY1.1, 3.1在5%PEG處理下對幼苗形態之影響 27
3.10 導入qDTY3.1與qDTY1.1, 3.1對根部荷爾蒙含量之分析 29
3.11 導入qDTY3.1與qDTY1.1, 3.1之差異基因表現功能分析 30
3.12 導入qDTY3.1與qDTY1.1, 3.1之KEGG分析 32
3.13 導入qDTY3.1與qDTY1.1,3.1對荷爾蒙與乾旱反應基因之影響 33
3.14 導入qDTY3.1與qDTY1.1, 3.1對氮利用與胺基酸代謝基因之影響 33
3.15 導入qDTY3.1與qDTY1.1, 3.1對根部發育基因之影響 34
3.16 qDTY1.1區間差異基因表現量 34
3.17 qDTY3.1區間差異基因表現量 34
3.18 轉錄體分析結果驗證 35
第四章 討論 70
4.1 導入qDTYs對幼苗活力與根系之影響 70
4.2 導入qDTYs對水分利用效率之影響 71
4.3 導入qDTYs於直播適應性之影響 74
4.4 低滲透壓下導入qDTY3.1與qDTY1.1, 3.1影響根系之機制 76
第五章 結論 81
參考文獻 82

圖次
Figure 1. Analysis of shoot growth of qDTYs lines seedlings under hydroponic cultivation. 36
Figure 2. Morphology of 7-day-old rice root structure under hydroponic condition 38
Figure 3. Analysis of crown root and whole root traits in seven-day-old seedlings of qDTYs lines under hydroponic condition 38
Figure 4. Morphology of primary root in 7-day-old rice seedling under hydroponic condition 39
Figure 5. Analysis of primary root and lateral root trait in seven-day-old seedlings of qDTYs lines under hydroponic cultivation 40
Figure 6. Comparison of WUE between the qDTYs lines and TN11 during the seedling stage under hydroponic cultivation 41
Figure 7. Morphology of 44-day-old rice shoot under transplanted condition 42
Figure 8. Morphology of 44-day-old rice shoot under wet-direct-seeded condition 43
Figure 9. Analysis of shoot traits in 44-day-old qDTY lines under wet-direct-seeded condition 44
Figure 10. Morphology of 44-day-old rice root under transplanted condition 45
Figure 11. Morphology of 44-day-old rice root under wet-direct-seeded condition 46
Figure 12. Analysis of root traits in 44-day-old qDTY lines under wet-direct-seeded condition 47
Figure 13. Analysis of lateral root length ratio in 44-day-old of qDTYs lines under wet direct-seeded condition. 48
Figure 14. Analysis of shoot carbon isotope discrimination (CID) under wet direct-seeded condition 49
Figure 15. Comparison of 5-leaf stage shoot of qDTY3.1, qDTY1.1, 3.1 lines and TN11 under dry-direct-seeded condition 50
Figure 16. Comparison of 5-leaf stage root trait of qDTY3.1, qDTY1.1, 3.1 lines and TN11 under dry-direct-seeded condition. 51
Figure 17. Comparison of lateral root trait between qDTY3.1, qDTY1.1, 3.1 lines and TN11 at different soil depths under dry-direct-seeded condition 52
Figure 18. Comparison of stomata density and CID of qDTY3.1, qDTY1.1, 3.1 lines and TN11 under dry-direct-seeded condition. 53
Figure 19. Comparison of germination rate of qDTY3.1, qDTY1.1, 3.1 lines and TN11 under osmotic stress 54
Figure 20. Effects of osmotic treatment on qDTY3.1 and qDTY1.1, 3.1 lines. 55
Figure 21. Effects of osmotic treatment on qDTY3.1 and qDTY1.1, 3.1 lines root trait 56
Figure 22. Effects of osmotic treatment on hormone content in qDTY3.1 and qDTY1.1, 3.1 lines root 56
Figure 23. Venn diagram of differentially expressed gene (DEG) between qDTY3.1, qDTY 1.1, 3.1 and TN11 root under control condition 58
Figure 24. Venn diagram of differentially expressed gene (DEG) in qDTY3.1, qDTY1.1, 3.1 and TN11 root under 5% PEG treatment. 59
Figure 25. Gene ontology categorization of DEGs between qDTY3.1 and TN11 under 5% PEG treatment in root 60
Figure 26. Gene ontology categorization of DEGs between qDTY1.1, 3.1 and TN11 under 5% PEG treatment in root 61
Figure 27. KEGG metabolism pathway of DEGs between qDTY3.1 and TN11 under 5% PEG treatment in root 62
Figure 28. KEGG metabolism pathway of DEGs between qDTY1.1, 3.1 and TN11 under 5% PEG treatment in root 63
Figure 29. Heat map of genes related to hormone and drought responses in root under 5% PEG treatment 64
Figure 30. Heat map of genes related to amino acid metabolism and nitrogen utilization in root under 5% PEG treatment 65
Figure 31. Heat map of root development related genes in root under 5% PEG treatment 66
Figure 32. Heat map of genes expressed in the qDTY1.1 region in root 67
Figure 33. Heat map of genes expressed in the qDTY3.1 region 68
Figure 34. qRT-PCR to verify RNA Sequencing gene expression results 69
Figure 35. Schematic diagram of the effects of qDTY introgression on TN11 adaptability under direct-seeded condition 80

附錄
Suppmentalry table 1. Introgression line parent 90
Suppmentalry table 2. Suppmentalry table 2. Predicted genomic intervals of qDTY regions 90
Suppmentalry table 3. qDTYs introgression line background 91
Supplementary table 4. Kimura solution recipe 92
Supplementary table 5.CTAB DNA extraction buffer recipe 93
Supplementary table 6. qRT-PCR primer 94
Supplementary table 7. qDTY SSR marker 95
Supplementary table 8. Plant height changes of TN11 and qDTYs lines from 3 to 14-day-old hydroponic seedling 96
Supplementary table 9. Shoot dry weight changes of TN11 and qDTYs lines from 3 to 14-day-old hydroponic seedlings 98
Supplementary figure 1. Greenhouse wet-direct-seeded experimental environment data 99
Supplementary figure 2. Greenhouse dry-direct-seeded experimental environment data 100
Supplementary figure 3. Analysis of dry-direct-seeded rice lateral roots with RhizoVision 101
Supplementary figure 4. Genotyping of qDTYs introgression lines use gel electrophoresis 102
Supplementary figure 5. Alignment of SSR marker regions for qDTY1.1, qDTY2.1, qDTY3.1, qDTY3.2 with TN11 103
Supplementary figure 6. Alignment of SSR marker regions for qDTY2.2, qDTY4.1, qDTY12.1 with TN11 104
Supplementary figure 7. WUE data under hydroponic condition 105
Supplementary figure 8. The growth condition of qDTYs lines 66 days after transplantatio 106
Supplementary figure 9. The growth condition of qDTYs lines line 66 days after transplantation 107
Supplementary figure 10. CID at the maturity stage of the 112 II in Taichung 108
Supplementary figure 11. Correlation analysis between traits of hydroponic rice seedlings and transplanted ric 109
Supplementary figure 12. Correlation analysis between traits of wet-direct-seeded and transplanted ric 110
Supplementary figure 13. Mesocotyl length and emergence rate of qDTY 3.1 and qDTY 1.1, 3.1 lines under dry direct seeded. 111
Supplementary figure 14. Root water uptake of qDTY 3.1 and qDTY 1.1, 3.1 lines at the five-leaf stage under dry direct-seeded condition 112
Supplementary figure 15. Morphology of qDTY 3.1 and qDTY 1.1, 3.1 lines under dry-direct–seeded condition 113
Supplementary figure 16. Germination rate of TN11 on the 7th day under different PEG concentrations 114
Supplementary figure 17. Analysis of germination rate of 112II qDTYs lines under osmotic stress 115
Supplementary figure 18. Analysis of germination rate of 112I qDTYs lines under osmotic stress 116
Supplementary figure 19. Analysis of lateral root length ratio of qDTY 3.1 and qDTY 1.1, 3.1 lines under 5% PEG treatment 117
Supplementary figure 20. Gene ontology categorization of DEGs between qDTY3.1 and TN11 under control condition in root 118
Supplementary figure 21. Gene ontology categorization of DEGs between 119
Supplementary figure 22. Gene ontology categorization of DEGs in TN11 roots under 5% PEG treatment compared to the control 120
Supplementary figure 23. Gene ontology categorization of DEGs in qDTY3.1 roots under 5% PEG treatment compared to the contro 121
Supplementary figure 24. Gene ontology categorization of DEGs in qDTY1.1, 3.1 roots under 5% PEG treatment compared to the control 122
Supplementary figure 25. Gene ontology categorization of DEGs between 123
Supplementary figure 26. KEGG metabolism pathway of DEGs between qDTY 3.1 and qDTY 1.1, 3.1 and TN11 under control condition in root 124
Supplementary figure 27. KEGG metabolism pathway of DEGs in TN11 roots under 5% PEG treatment compared to the control 125
Supplementary figure 28. KEGG metabolism pathway of DEGs in qDTY 3.1 and qDTY 1.1, 3.1 roots under 5% PEG treatment compared to the control 126
Supplementary figure29. KEGG metabolism pathway of DEGs between qDTY1.1, 3.1 and qDTY3.1 under 5% PEG treatment in root. RNA was extracted from the 2.5 cm section behind the root tip. Gene with fold change≧2 were defined DEG. 127
-
dc.language.isozh_TW-
dc.subject水稻-
dc.subjectqDTY-
dc.subject直播栽培-
dc.subject根系-
dc.subject水分利用效率-
dc.subject轉錄體分析-
dc.subjectOryza sativa-
dc.subjectqDTY-
dc.subjectdirect-seeded-
dc.subjectroot-
dc.subjectWUE-
dc.subjecttranscriptome analysis-
dc.title探討導入乾旱產量相關QTL 對稉稻台南11號直播適應性之影響zh_TW
dc.titleEffect of Introgressing Drought-Yield QTLs on Adaptability of Japonnica Rice Tainan 11 under Direct Seedingen
dc.typeThesis-
dc.date.schoolyear114-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee董致韡;林香君;許奕婷zh_TW
dc.contributor.oralexamcommitteeChih-Wei Tung;Hsiang-Chun Lin;Yi-Ting Hsuen
dc.subject.keyword水稻,qDTY直播栽培根系水分利用效率轉錄體分析zh_TW
dc.subject.keywordOryza sativa,qDTYdirect-seededrootWUEtranscriptome analysisen
dc.relation.page127-
dc.identifier.doi10.6342/NTU202504470-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-09-16-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept農藝學系-
dc.date.embargo-lift2030-09-10-
顯示於系所單位:農藝學系

文件中的檔案:
檔案 大小格式 
ntu-114-1.pdf
  未授權公開取用
12.93 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved