Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 海洋研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101066
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃致展zh_TW
dc.contributor.advisorjyh-Jaan Steven Huangen
dc.contributor.author劉曜鳴zh_TW
dc.contributor.authorYao-Ming Liuen
dc.date.accessioned2025-11-27T16:07:59Z-
dc.date.available2025-11-28-
dc.date.copyright2025-11-27-
dc.date.issued2025-
dc.date.submitted2025-11-06-
dc.identifier.citationAkin, S., & Kovscek, A. R. (2003). Computed tomography in petroleum engineering research. In F. Mees, R. Swennen, M. V. Geet, & P. Jacobs (Eds.), Applications of X-ray Computed Tomography in the Geosciences (Vol. 215, pp. 0). Geological Society of London. https://doi.org/10.1144/gsl.Sp.2003.215.01.03
Allen, C. M. (2022). Radiographic distances. Digital Radiographic Exposure: Principles & Practice.
Alyafei, N., McKay, T. J., & Solling, T. I. (2016). Characterization of petrophysical properties using pore-network and lattice-Boltzmann modelling: Choice of method and image sub-volume size. Journal of Petroleum Science and Engineering, 145, 256-265. https://doi.org/10.1016/j.petrol.2016.05.021
Alyafei, N., Raeini, A. Q., Paluszny, A., & Blunt, M. J. (2015). A sensitivity study of the effect of image resolution on predicted petrophysical properties. Transport in Porous Media, 110(1), 157-169. https://doi.org/10.1007/s11242-015-0563-0
Andrä, H., Combaret, N., Dvorkin, J., Glatt, E., Han, J., Kabel, M., Keehm, Y., Krzikalla, F., Lee, M., Madonna, C., Marsh, M., Mukerji, T., Saenger, E. H., Sain, R., Saxena, N., Ricker, S., Wiegmann, A., & Zhan, X. (2013). Digital rock physics benchmarks—Part I: Imaging and segmentation. Computers & Geosciences, 50, 25-32. https://doi.org/10.1016/j.cageo.2012.09.005
Arns, C. H., Knackstedt, M. A., Pinczewski, M. V., & Lindquist, W. B. (2001). Accurate estimation of transport properties from microtomographic images. Geophysical Research Letters, 28(17), 3361-3364. https://doi.org/10.1029/2001GL012987
Arns, C. H., Knackstedt, M. A., Pinczewski, W. V., & Garboczi, E. J. (2002). Computation of linear elastic properties from microtomographic images: Methodology and agreement between theory and experiment. GEOPHYSICS, 67(5), 1396-1405. https://doi.org/10.1190/1.1512785
Arns, C. H., Knackstedt, M. A., Pinczewski, W. V., & Martys, N. S. (2004). Virtual permeametry on microtomographic images. Journal of Petroleum Science and Engineering, 45(1), 41-46. https://doi.org/10.1016/j.petrol.2004.05.001
Bachmat, Y., & Bear, J. (1986). Macroscopic modelling of transport phenomena in porous media. 1: The continuum approach. Transport in Porous Media, 1(3), 213-240. https://doi.org/10.1007/BF00238181
Bear, J. (1972). Dynamics of Fluids in Porous Media. American Elsevier Publishing Company. https://books.google.com.tw/books?id=9JVRAAAAMAAJ
Blunt, M. J., Bijeljic, B., Dong, H., Gharbi, O., Iglauer, S., Mostaghimi, P., Paluszny, A., & Pentland, C. (2013). Pore-scale imaging and modelling. Advances in Water Resources, 51, 197-216. https://doi.org/10.1016/j.advwatres.2012.03.003
Botha, P. W. S. K., & Sheppard, A. P. (2016). Mapping permeability in low-resolution micro-CT images: A multiscale statistical approach. Water Resources Research, 52(6), 4377-4398. https://doi.org/10.1002/2015WR018454
Brace, W. F., Walsh, J. B., & Frangos, W. T. (1968). Permeability of granite under high pressure. Journal of Geophysical Research, 73, 2225-2236. https://doi.org/10.1029/JB073i006p02225
Bui, M., Adjiman, C. S., Bardow, A., Anthony, E. J., Boston, A., Brown, S., Fennell, P. S., Fuss, S., Galindo, A., Hackett, L. A., Hallett, J. P., Herzog, H. J., Jackson, G., Kemper, J., Krevor, S., Maitland, G. C., Matuszewski, M., Metcalfe, I. S., Petit, C., . . . Mac Dowell, N. (2018). Carbon capture and storage (CCS): the way forward [10.1039/C7EE02342A]. Energy & Environmental Science, 11(5), 1062-1176. https://doi.org/10.1039/C7EE02342A
Callow, B., Falcon-Suarez, I., Marin-Moreno, H., Bull, J. M., & Ahmed, S. (2020). Optimal X-ray micro-CT image based methods for porosity and permeability quantification in heterogeneous sandstones. Geophysical Journal International, 223(2), 1210-1229. https://doi.org/10.1093/gji/ggaa321
Canat, L., Atalay, H. A., Değirmentepe, R. B., Bayraktarlı, R., Aykan, S., Çakır, S. S., ... & Altunrende, F. (2019). Stone volume measuring methods: should the CT based three-dimensional-reconstructed algorithm be proposed as the gold standard? What did the three-dimensional printed models show us. Arch Esp Urol, 72(6), 596-601. https://www.aeurologia.com/EN/Y2019/V72/I6/596
Darcy, H. (1856). Les fontaines publiques de la ville de Dijon: Exposition et application des principes à suivre et des formules à employer dans les questions de distribution d'eau: Ouvrage terminé par un appendice relatif aux fournitures d'eau de plusieurs villes, au filtrage des eaux et à la fabrication des tuyaux de fonte, de plomb, de tôle et de bitume (Vol. 2). Victor Dalmont, éditeur.
Diwakar, M., & Kumar, M. (2018). A review on CT image noise and its denoising. Biomedical Signal Processing and Control, 42, 73-88. https://doi.org/10.1016/j.bspc.2018.01.010
Dongxing, D., Xu, Z., Chunhao, W., Jiaqi, L., Yinjie, S., & Yingge, L. (2021). Determination of the effective thermal conductivity of the porous media based on digital rock physics. Geothermics, 97, 102267. https://doi.org/10.1016/j.geothermics.2021.102267
Dott, R. H., & Batten, R. L. (1976). Evolution of the Earth. McGraw-Hill. https://books.google.com.tw/books?id=HdaRAAAAIAAJ
Dvorkin, J. (2020). Rock Physics: Recent History and Advances. In K. S. Essa, M. Di Risio, D. Celli, & D. Pasquali (Eds.), Geophysics and Ocean Waves Studies. IntechOpen. https://doi.org/10.5772/intechopen.92161
Ferréol, B., & Rothman, D. H. (1995). Lattice-Boltzmann simulations of flow through Fontainebleau sandstone. Transport in Porous Media, 20(1), 3-20. https://doi.org/10.1007/BF00616923
Freeze, R. A., & Cherry, J. A. (1979). Groundwater. Prentice-Hall. https://books.google.com.tw/books?id=8P7kFowKnGUC
Gershenzon, N. I., Ritzi Jr., R. W., Dominic, D. F., Soltanian, M., Mehnert, E., & Okwen, R. T. (2015). Influence of small-scale fluvial architecture on CO2 trapping processes in deep brine reservoirs. Water Resources Research, 51(10), 8240-8256. https://doi.org/10.1002/2015WR017638
Goldfarb, E. J., Ikeda, K., Ketcham, R. A., Prodanović, M., & Tisato, N. (2022). Predictive digital rock physics without segmentation. Computers & Geosciences, 159, 105008. https://doi.org/10.1016/j.cageo.2021.105008
Gostick, J., Aghighi, M., Hinebaugh, J., Tranter, T., Hoeh, M. A., Day, H., Spellacy, B., Sharqawy, M. H., Bazylak, A., Burns, A., Lehnert, W., & Putz, A. (2016). OpenPNM: A Pore Network Modeling Package. Computing in Science & Engineering, 18(4), 60-74. https://doi.org/10.1109/MCSE.2016.49
Gostick, J. T. (2017). Versatile and efficient pore network extraction method using marker-based watershed segmentation. Physical Review E, 96(2), 023307. https://doi.org/10.1103/PhysRevE.96.023307
Gostick, J. T., Khan, Z., Tranter, T. G., Kok, M. D. R., Agnaou, M., Sadeghi, M., & Jervis, R. (2019). PoreSpy: A Python Toolkit for Quantitative Analysis of Porous Media Images. J. Open Source Softw., 4, 1296. https://doi.org/10.21105/joss.01296
Gupta, L. P., Tanikawa, W., Hamada, Y., Hirose, T., Ahagon, N., Sugihara, T., Abe, N., Nomura, S., Masaki, Y., Wu, H. Y., Lin, W., Kinoshita, M., & Yamada, Y. (2019). Examination of gas hydrate-bearing deep ocean sediments by X-ray Computed Tomography and verification of physical property measurements of sediments. Marine and Petroleum Geology, 108, 239-248. https://doi.org/10.1016/j.marpetgeo.2018.05.033
Head, K. H., & Epps, R. (1980). Manual of soil laboratory testing (Vol. 1). Pentech press London.
Han, G., Han, W. S., Kim, K.-Y., Baek, J., Kim, M., Kim, C. Y., & Lim, J.-H. (2021). Characterizing locality-and scale-dependent heterogeneity in conglomerate core and associated fluid flow using X-ray CT imaging. Journal of Hydrology, 602, 126736. https://doi.org/10.1016/j.jhydrol.2021.126736
Hounsfield, G. N. (1973). Computerized transverse axial scanning (tomography): Part 1. Description of system. British Journal of Radiology, 46(552), 1016-1022. https://doi.org/10.1259/0007-1285-46-552-1016
Huang, D. D., & Honarpour, M. M. (1998). Capillary end effects in coreflood calculations. Journal of Petroleum Science and Engineering, 19(1-2), 103-117. https://doi.org/10.1016/S0920-4105(97)00040-5
Intergovernmental Panel on Climate Change. (2022). Global Warming of 1.5°C: IPCC Special Report on Impacts of Global Warming of 1.5°C above Pre-industrial Levels in Context of Strengthening Response to Climate Change, Sustainable Development, and Efforts to Eradicate Poverty. Cambridge University Press. https://doi.org/10.1017/9781009157940
ASTM International. (2014a). Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer. In. West Conshohocken, PA.
ASTM International. (2014b). Standard Test Method for Specific Gravity of Soil Solids by Gas Pycnometer. In. West Conshohocken, PA.
ASTM International. (2016). Standard Test Methods for Measurement of Hydraulic Conductivity of Saturated Porous Materials Using a Flexible Wall Permeameter. In. West Conshohocken, PA.
Jaques, V. A., Du Plessis, A., Zemek, M., Šalplachta, J., Stubianová, Z., Zikmund, T., & Kaiser, J. (2021). Review of porosity uncertainty estimation methods in computed tomography dataset. Measurement Science and Technology, 32(12), 122001. https://doi.org/10.1088/1361-6501/ac1b40
Jiang, F., Guo, Y., Tsuji, T., Kato, Y., Shimokawara, M., Esteban, L., Seyyedi, M., Pervukhina, M., Lebedev, M., & Kitamura, R. (2023). Upscaling permeability using multiscale X‐ray‐CT images with digital rock modeling and deep learning techniques. Water Resources Research, 59(3), e2022WR033267. https://doi.org/10.1029/2022WR033267
Juanes, R., Spiteri, E. J., Orr Jr, F. M., & Blunt, M. J. (2006). Impact of relative permeability hysteresis on geological CO2 storage. Water Resources Research, 42(12). https://doi.org/10.1029/2005WR004806
Kato, M., Takahashi, M., Kawasaki, S., Mukunoki, T., & Kaneko, K. (2013). Evaluation of Porosity and Its Variation in Porous Materials Using Microfocus X-ray Computed Tomography Considering the Partial Volume Effect. MATERIALS TRANSACTIONS, 54(9), 1678-1685. https://doi.org/10.2320/matertrans.M-M2013813
Katz, A. J., & Thompson, A. H. (1986). Quantitative prediction of permeability in porous rock. Physical Review B, 34(11), 8179-8181. https://doi.org/10.1103/PhysRevB.34.8179
Ketcham, R. A., & Mote, A. S. (2019). Accurate Measurement of Small Features in X-Ray CT Data Volumes, Demonstrated Using Gold Grains. Journal of Geophysical Research: Solid Earth, 124(4), 3508-3529. https://doi.org/10.1029/2018JB017083
Ketcham, R. A., Slottke, D. T., & Sharp, J. M., Jr. (2010). Three-dimensional measurement of fractures in heterogeneous materials using high-resolution X-ray computed tomography. Geosphere, 6(5), 499-514. https://doi.org/10.1130/GES00552.1
Klinkenberge, L. (1941). The permeability of porous media to liquids and gases. Drilling and production practice, 200-213.
Kolodzie, S., Jr. (1980). Analysis of Pore Throat Size and Use of the Waxman-Smits Equation to Determine OOIP in Spindle Field, Colorado. SPE Annual Technical Conference and Exhibition, Dallas, Texas. https://doi.org/10.2118/9382-MS
Krause, M., Krevor, S., & Benson, S. M. (2013). A Procedure for the Accurate Determination of Sub-Core Scale Permeability Distributions with Error Quantification. Transport in Porous Media, 98(3), 565-588. https://doi.org/10.1007/s11242-013-0161-y
Krause, M., Perrin, J. C., & Benson, S. M. (2011). Recent Progress in Predicting Permeability Distributions for History Matching Core Flooding Experiments. Energy Procedia, 4, 4354-4361. https://doi.org/10.1016/j.egypro.2011.02.387
Krause, M., Perrin, J. C., & Benson, S. M. (2011). Modeling permeability distributions in a sandstone core for history matching coreflood experiments. Spe Journal, 16(04), 768-777. https://doi.org/10.2118/126340-MS
Krevor, S. C. M., Pini, R., Li, B., & Benson, S. M. (2011). Capillary heterogeneity trapping of CO2 in a sandstone rock at reservoir conditions. Geophysical Research Letters, 38(15). https://doi.org/10.1029/2011GL048239
Kurotori, T., Murugesu, M. P., Zahasky, C., Vega, B., Druhan, J. L., Benson, S. M., & Kovscek, A. R. (2023). Mixed imbibition controls the advance of wetting fluid in multiscale geological media. Advances in Water Resources, 175, 104429. https://doi.org/10.1016/j.advwatres.2023.104429
Leu, L., Berg, S., Enzmann, F., Armstrong, R. T., & Kersten, M. (2014). Fast X-ray Micro-Tomography of Multiphase Flow in Berea Sandstone: A Sensitivity Study on Image Processing. Transport in Porous Media, 105(2), 451-469. https://doi.org/10.1007/s11242-014-0378-4
Leverett, M. (1941). Capillary behavior in porous solids. Transactions of the AIME, 142(01), 152-169.
Li, B., & Benson, S. M. (2015). Influence of small-scale heterogeneity on upward CO2 plume migration in storage aquifers. Advances in Water Resources, 83, 389-404. https://doi.org/10.1016/j.advwatres.2015.07.010
Liu, J., & Regenauer-Lieb, K. (2021). Application of percolation theory to microtomography of rocks. Earth-Science Reviews, 214, 103519. https://doi.org/10.1016/j.earscirev.2021.103519
Lowell, S., Shields, J. E., Thomas, M. A., & Thommes, M. (2012). Characterization of porous solids and powders: surface area, pore size and density (Vol. 16). Springer Science & Business Media. https://link.springer.com/book/10.1007/978-1-4020-2303-3
MacGre, A. E., (1926). SEVERAL GAS EXPANSION POROSIMETERS. Journal of the American Ceramic Society, 9(12), 814-822. https://doi.org/10.1111/j.1151-2916.1926.tb17961.x
McBeck, J. A., Cordonnier, B., & Renard, F. (2021). The influence of spatial resolution and noise on fracture network properties calculated from X-ray microtomography data. International Journal of Rock Mechanics and Mining Sciences, 147, 104922. https://doi.org/10.1016/j.ijrmms.2021.104922
Lv, M., Song, B., Tian., C. & Mao, X. (2021). Relationship between pore throat and permeability of porous carbonate reservoir in the Middle East. Arabian Journal of Geosciences, 15(1), 15. https://doi.org/10.1007/s12517-021-08462-9
Mostaghimi, P., Blunt, M. J., & Bijeljic, B. (2013). Computations of absolute permeability on micro-CT images. Mathematical Geosciences, 45(1), 103-125. https://doi.org/10.1007/s11004-012-9431-4
Nabipour, I., Raoof, A., Cnudde, V., Aghaei, H., & Qajar, J. (2024). A computationally efficient modeling of flow in complex porous media by coupling multiscale digital rock physics and deep learning: Improving the tradeoff between resolution and field-of-view. Advances in Water Resources, 188, 104695. https://doi.org/10.1016/j.advwatres.2024.104695
Ni, H., Li, B., Darraj, N., Ren, B., Harris, C., Krishnamurthy, P. G., Bukar, I., Berg, S., Snippe, J., Ringrose, P., Meckel, T. A., Krevor, S., & Benson, S. (2025). The impact of capillary heterogeneity on CO2 flow and trapping across scales. Earth-Science Reviews, 270, 105257. https://doi.org/10.1016/j.earscirev.2025.105257
Niblack, W. (1985). An introduction to digital image processing. Strandberg Publishing Company.
Nishiyama, N., & Yokoyama, T. (2017). Permeability of porous media: Role of the critical pore size. Journal of Geophysical Research: Solid Earth, 122(9), 6955-6971. https://doi.org/10.1002/2016JB013793
Oostveen, L. J., Boedeker, K. L., Brink, M., Prokop, M., de Lange, F., & Sechopoulos, I. (2020). Physical evaluation of an ultra-high-resolution CT scanner. European Radiology, 30(5), 2552-2560. https://doi.org/10.1007/s00330-019-06635-5
Otsu, N. (1979). A Threshold Selection Method from Gray-Level Histograms. IEEE Transactions on Systems, Man, and Cybernetics, 9(1), 62-66. https://doi.org/10.1109/TSMC.1979.4310076
Peng, S., Marone, F., & Dultz, S. (2014). Resolution effect in X-ray microcomputed tomography imaging and small pore’s contribution to permeability for a Berea sandstone. Journal of Hydrology, 510, 403-411. https://doi.org/10.1016/j.jhydrol.2013.12.028
Perrin, J.-C., & Benson, S. (2010). An Experimental Study on the Influence of Sub-Core Scale Heterogeneities on CO2 Distribution in Reservoir Rocks. Transport in Porous Media, 82(1), 93-109. https://doi.org/10.1007/s11242-009-9426-x
Pini, R., Krevor, S. C. M., & Benson, S. M. (2012). Capillary pressure and heterogeneity for the CO2/water system in sandstone rocks at reservoir conditions. Advances in Water Resources, 38, 48-59. https://doi.org/10.1016/j.advwatres.2011.12.007
Purcell, W. R. (1949). Capillary Pressures - Their Measurement Using Mercury and the Calculation of Permeability Therefrom. Journal of Petroleum Technology, 1(02), 39-48. https://doi.org/10.2118/949039-G
Rabbani, A., Jamshidi, S., & Salehi, S. (2014). An automated simple algorithm for realistic pore network extraction from micro-tomography images. Journal of Petroleum Science and Engineering, 123, 164-171. https://doi.org/10.1016/j.petrol.2014.08.020
Rezaee, M. R., Jafari, A., & Kazemzadeh, E. (2006). Relationships between permeability, porosity and pore throat size in carbonate rocks using regression analysis and neural networks. Journal of Geophysics and Engineering, 3(4), 370-376. https://doi.org/10.1088/1742-2132/3/4/008
Richards, S., & Bouazza, A. (2007). Determination of particle density using water and gas pycnometry. Géotechnique, 57(4), 403-406. https://doi.org/10.1680/geot.2007.57.4.403
Rogelj, J., Luderer, G., Pietzcker, R. C., Kriegler, E., Schaeffer, M., Krey, V., & Riahi, K. (2015). Energy system transformations for limiting end-of-century warming to below 1.5 °C. Nature Climate Change, 5(6), 519-527. https://doi.org/10.1038/nclimate2572
Sander, R., Pan, Z., & Connell, L. D. (2017). Laboratory measurement of low permeability unconventional gas reservoir rocks: A review of experimental methods. Journal of Natural Gas Science and Engineering, 37, 248-279. https://doi.org/10.1016/j.jngse.2016.11.041
Saxena, N., Hofmann, R., Alpak, F. O., Berg, S., Dietderich, J., Agarwal, U., Tandon, K., Hunter, S., Freeman, J., & Wilson, O. B. (2017). References and benchmarks for pore-scale flow simulated using micro-CT images of porous media and digital rocks. Advances in Water Resources, 109, 211-235. https://doi.org/10.1016/j.advwatres.2017.09.007
Saxena, N., Hows, A., Hofmann, R., Alpak, F. O., Freeman, J., Hunter, S., & Appel, M. (2018). Imaging and computational considerations for image computed permeability: operating envelope of digital rock physics. Advances in Water Resources, 116, 127-144. https://doi.org/10.1016/j.advwatres.2018.04.001
Schofield, R., King, L., Tayal, U., Castellano, I., Stirrup, J., Pontana, F., Earls, J., & Nicol, E. (2020). Image reconstruction: Part 1 – understanding filtered back projection, noise and image acquisition. Journal of Cardiovascular Computed Tomography, 14(3), 219-225. https://doi.org/10.1016/j.jcct.2019.04.008
Shannon, C. E. (1948). A mathematical theory of communication. The Bell System Technical Journal, 27(3), 379-423. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
Shepard, M. K., Campbell, B. A., Bulmer, M. H., Farr, T. G., Gaddis, L. R., & Plaut, J. J. (2001). The roughness of natural terrain: A planetary and remote sensing perspective. Journal of Geophysical Research: Planets, 106(E12), 32777-32795. https://doi.org/10.1029/2000JE001429
Shi, J.-Q., Xue, Z., & Durucan, S. (2011). Supercritical CO2 core flooding and imbibition in Tako sandstone—Influence of sub-core scale heterogeneity. International Journal of Greenhouse Gas Control, 5(1), 75-87. https://doi.org/10.1016/j.ijggc.2010.07.003
Singh, A., Regenauer-Lieb, K., Walsh, S. D. C., Armstrong, R. T., van Griethuysen, J. J. M., & Mostaghimi, P. (2020). On Representative Elementary Volumes of Grayscale Micro-CT Images of Porous Media. Geophysical Research Letters, 47(15), e2020GL088594. https://doi.org/10.1029/2020GL088594
Steinwinder, J., & Beckingham, L. E. (2019). Role of pore and pore‐throat distributions in controlling permeability in heterogeneous mineral dissolution and precipitation scenarios. Water Resources Research, 55(7), 5502-5517. https://doi.org/10.1029/2019WR024793
Sun, Y., Li, Q., Yang, D., & Liu, X. (2016). Laboratory core flooding experimental systems for CO2 geosequestration: An updated review over the past decade. Journal of Rock Mechanics and Geotechnical Engineering, 8(1), 113-126. https://doi.org/10.1016/j.jrmge.2015.12.001
Swanson, B. F. (1981). A Simple Correlation Between Permeabilities and Mercury Capillary Pressures. Journal of Petroleum Technology, 33(12), 2498-2504. https://doi.org/10.2118/8234-PA
Syu, W.-D., Lin, A. T.-S., Yu, C.-W., Dong, J.-J., Yang, M.-W., Huang, C., & Hsu, S.-K. (2025). Characterization of carbon storage systems in central Taiwan and its offshore area. Terrestrial, Atmospheric and Oceanic Sciences, 36(1), 22. https://doi.org/10.1007/s44195-025-00096-8
Taud, H., Martinez-Angeles, R., Parrot, J. F., & Hernandez-Escobedo, L. (2005). Porosity estimation method by X-ray computed tomography. Journal of Petroleum Science and Engineering, 47(3), 209-217. https://doi.org/10.1016/j.petrol.2005.03.009
Toda, H. (2021). 3D Image Reconstruction. In H. Toda (Ed.), X-Ray CT: Hardware and Software Techniques (pp. 51-113). Springer Singapore. https://doi.org/10.1007/978-981-16-0590-1_3
United Nations Framework Convention on Climate Change. (2015). Paris Agreement. United Nations Treaty Collection. https://unfccc.int/process-and-meetings/the-paris-agreement
Van der Walt, S., Schönberger, J. L., Nunez-Iglesias, J., Boulogne, F., Warner, J. D., Yager, N., Gouillart, E., & Yu, T. (2014). scikit-image: image processing in Python. PeerJ, 2, e453. https://doi.org/10.7717/peerj.453
Van Geet, M., Swennen, R., & Wevers, M. (2000). Quantitative analysis of reservoir rocks by microfocus X-ray computerised tomography. Sedimentary Geology, 132(1), 25-36. https://doi.org/10.1016/S0037-0738(99)00127-X
Vinegar, H. J., & Wellington, S. L. (1987). Tomographic imaging of three‐phase flow experiments. Review of Scientific Instruments, 58(1), 96-107. https://doi.org/10.1063/1.1139522
Wang, G., Liu, Y., Xiong, W., & Li, Y. (2018). An improved non-local means filter for color image denoising. Optik, 173, 157-173. https://doi.org/10.1016/j.ijleo.2018.08.013
Wildenschild, D., & Sheppard, A. P. (2013). X-ray imaging and analysis techniques for quantifying pore-scale structure and processes in subsurface porous medium systems. Advances in Water Resources, 51, 217-246. https://doi.org/10.1016/j.advwatres.2012.07.018
Withjack, E. M. (1988). Computed tomography for rock-property determination and fluid-flow visualization. SPE formation evaluation, 3(04), 696-704. https://doi.org/10.2118/16951-PA
Wlthjack, E. M., Graham, S. K., & Yang, C. T. (1991). CT Determination of Heterogeneities and Miscible Displacement Characteristics. SPE formation evaluation, 6(04), 447-452. https://doi.org/10.2118/20490-PA
Xiong, Q., Baychev, T. G., & Jivkov, A. P. (2016). Review of pore network modelling of porous media: Experimental characterisations, network constructions and applications to reactive transport. Journal of Contaminant Hydrology, 192, 101-117. https://doi.org/10.1016/j.jconhyd.2016.07.002
Yan, Y. T., Chua, S., DeCarlo, T. M., Kempf, P., Morgan, K. M., & Switzer, A. D. (2021). Core-CT: A MATLAB application for the quantitative analysis of sediment and coral cores from X-ray computed tomography (CT). Computers & Geosciences, 156, 104871. https://doi.org/10.1016/j.cageo.2021.104871
Zahasky, C., Jackson, S. J., Lin, Q., & Krevor, S. (2020). Pore Network Model Predictions of Darcy-Scale Multiphase Flow Heterogeneity Validated by Experiments. Water Resources Research, 56(6), e2019WR026708. https://doi.org/10.1029/2019WR026708
Zhuang, L., Shin, H.-S., Yeom, S., Pham, C. N., & Kim, Y.-J. (2022). A novel method for estimating subresolution porosity from CT images and its application to homogeneity evaluation of porous media. Scientific Reports, 12(1), 16229. https://doi.org/10.1038/s41598-022-20086-x
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101066-
dc.description.abstract在全球氣候變遷的背景下,地質封存被視為減少大氣中二氧化碳濃度的有效途徑。為提升二氧化碳在地下環境傳輸過程的理解,建立岩芯尺度之滲透性模型並據此進行數值模擬至關重要。然而,傳統滲透性測量透過採取岩芯栓進行實驗,通常僅能給出單一樣本的平均值且樣本量有限;醫學電腦斷層掃描配合灌注實驗可呈現岩芯尺度之滲透性分布但解析度不足;微米級電腦斷層掃描能解析孔隙資訊並可透過模擬方法計算滲透性,卻受限於視場,無法描述公分尺度以上的異質性。因此,本研究整合多解析度電腦斷層影像,藉此同時呈現岩芯尺度的異質性與孔隙尺度的特徵,以改善岩芯尺度滲透性模型估計的準確性。為此,本研究選取桂竹林層大埔段、南莊層與卓蘭層的四個岩芯栓樣本,於5.0、22.3 與 68.9 微米解析度下獲取電腦斷層掃描資料,透過閾值分割建立其二值化影像與孔隙網路模型以取得孔隙率、孔隙與孔頸尺寸、連通度與模擬滲透性,並與實驗測量對照評估其可靠性。結果顯示5.0微米影像的模擬滲透性與實驗測量相近,而22.3與68.9微米影像受點擴散與部分體積效應影響導致模擬滲透性結果不佳,但其孔頸尺寸仍與實驗滲透性呈高度正相關。在此基礎上,為降低閾值分割不確定性,本研究提出下偏標準差作為影像訊號的統計指標,以描述孔隙尺寸的變化,結果發現其在各解析度下均與孔隙尺寸、孔頸尺寸及實驗滲透性之關係呈現顯著正相關,顯示下偏標準差可作為跨解析度的滲透性指標。進一步以南莊層之非均質樣本進行跨解析度驗證,結果顯示,採用下偏標準差於68.9微米解析度下推估之滲透性分布,與22.3微米解析度結果高度一致。鑑於68.9微米解析度可應用於約十公分口徑之全岩芯電腦斷層掃描,本研究之作法可拓展至全岩芯影像以建立岩芯尺度滲透性分布,可更忠實呈現次岩芯尺度的材料異質性,並提升岩芯尺度二氧化碳傳輸模擬之可信度,有助於場址注入規劃、封存成效評估與長期安全性之模型校正與決策。zh_TW
dc.description.abstractIn response to escalating climate challenges, geological sequestration is regarded as an effective means of reducing atmospheric CO₂ concentrations. To advance the understanding of CO₂ transport processes in the subsurface, it is essential to construct core-scale permeability models and conduct numerical simulations. However, conventional permeability measurements conducted on core plugs provide only an average value for a single specimen and are limited in sample amount. Medical CT scans combined with core flooding experiments reveal core-scale permeability distributions but lack sufficient resolution. Micro-CT resolves pore-scale features and enables permeability simulation, but its limited field of view hinders characterization of heterogeneity beyond a few centimeters. Accordingly, this study integrates multi-resolution CT imaging to simultaneously capture core-scale heterogeneity and pore-scale features, thereby improving the accuracy of core-scale permeability models. To this end, four core-plug samples from the Kueichulin Formation (Dapu Member), the Nanchuang Formation, and the Cholan Formation were selected and scanned at resolutions of 5.0 μm, 22.3 μm, and 68.9 μm. Thresholded binary images and pore network models (PNM) were constructed at each resolution to obtain porosity, pore size, throat size, connectivity, and simulated permeability, which were then compared with experimental measurements to evaluate their reliability. The results show that simulated permeability derived from the 5.0 μm images is consistent with experimental measurements, whereas the 22.3 μm and 68.9 μm images are affected by point-spread and partial volume effects, leading to poor simulated permeability. Nevertheless, throat size remains highly correlated with experimental permeability at three resolutions. Building on this, to reduce threshold segmentation uncertainty, this study introduces the lower partial standard deviation (LPSD) as a grayscale-based indicator of pore-size variation. The results demonstrate that LPSD exhibits significant positive correlations with pore size, throat size, and experimental permeability across all resolutions, indicating its potential as a cross-resolution permeability proxy. Further cross-resolution validation on a heterogeneous sample from the Nanchuang Formation shows that permeability distributions estimated using LPSD at 68.9 μm and 22.3 μm are highly consistent. Given that 68.9 μm resolution can be applied to whole-core CT scans with diameters of ~10 cm, the proposed approach thus establishes core-scale permeability distributions. This enables a more faithful representation of sub-core-scale heterogeneity and enhances the reliability of core-scale CO₂ transport simulations, thereby supporting injection strategies, storage performance evaluation, and long-term safety assessment for geological storage projects.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-11-27T16:07:59Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-11-27T16:07:59Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 I
中文摘要 II
ABSTRACT III
目次 V
圖次 VII
表次 IX
第一章 緒論 1
第二章 文獻回顧 3
2.1 滲透性的定義與尺度限制 3
2.2 岩芯尺度的滲透性分布 5
2.3 孔隙尺度的滲透性計算 8
2.4 CT的觀測尺度限制 10
2.5 岩芯尺度滲透性的改善方法 13
第三章 研究方法 14
3.1 研究材料 15
3.1.1 採樣流程 15
3.1.2 研究樣本 17
3.2 CT影像分析方法 19
3.2.1 CT掃描與重建原理 19
3.2.2 異質性分析 22
3.2.3 多解析度CT掃描 24
3.2.4 影像前處理 26
3.2.5 閾值分割 26
3.2.6 孔隙網路模型 29
3.2.7 水力傳輸模擬 32
3.2.8 代表性體積單元 33
3.2.9 下偏標準差 35
3.3 實驗室分析方法 38
3.3.1 統體密度測量 38
3.3.2 實驗室孔隙率測量 40
3.3.3 實驗室滲透性測量 43
第四章 研究結果 44
4.1 異質性分析結果 44
4.2 閾值分割結果 49
4.2.1 影像品質檢查 49
4.2.2 解析度5.0微米的分割孔隙率 51
4.2.3 解析度22.3微米的分割孔隙率 53
4.2.4 解析度68.9微米的分割孔隙率 55
4.3 孔隙網路模型結果 57
4.3.1 解析度5.0微米的PNM孔隙結構 57
4.3.2 解析度22.3微米的PNM孔隙結構 59
4.3.3 解析度68.9微米的PNM孔隙結構 60
4.4 水力傳輸模擬結果 61
4.4.1 解析度5.0微米的模擬滲透性 61
4.4.2 解析度22.3微米的模擬滲透性 63
4.4.3 解析度68.9微米的模擬滲透性 65
4.5 代表性體積單元結果 67
4.5.1 孔隙率的代表性體積單元 67
4.5.2 滲透性的代表性體積單元 70
4.6 下偏標準差結果 73
4.6.1 解析度22.3微米的訊號 73
4.6.2 解析度68.9微米的訊號 74
4.7 實驗室分析結果 75
4.7.1 統體密度 75
4.7.2 顆粒密度與骨架密度 77
4.7.3 實驗孔隙率與連通度 79
4.7.4 實驗滲透性 81
第五章 討論 82
5.1 不同解析度CT影像模擬滲透性的可靠性 82
5.1.1 孔隙率作為閾值分割品質標準的適用性 82
5.1.2 不同解析度模擬滲透性與實驗滲透性的差異 86
5.1.3 不同解析度孔隙結構對於模擬滲透性的影響 89
5.2 利用PNM孔隙尺寸估計實驗滲透性 92
5.3 下偏標準差與實驗滲透性的關係 95
5.4 利用下偏標準差建立岩芯滲透率模型的可行性 99
第六章 結論 102
參考文獻 103
附錄A、PNM孔隙尺寸分布 117
附錄B、PNM孔頸尺寸分布 120
-
dc.language.isozh_TW-
dc.subject滲透性-
dc.subject孔隙率-
dc.subject異質性-
dc.subject孔隙網路模型-
dc.subjectX光電腦斷層掃描-
dc.subjectPermeability-
dc.subjectPorosity-
dc.subjectHeterogeneity-
dc.subjectPore Network Model (PNM)-
dc.subjectX-ray Computed Tomography (CT)-
dc.title利用多解析度X光電腦斷層掃描與統計指標進行砂岩滲透性之研究zh_TW
dc.titleInvestigation of Permeability in Sandstone using Multi-resolution X-ray Computed Tomography and Statistical Indexesen
dc.typeThesis-
dc.date.schoolyear114-1-
dc.description.degree碩士-
dc.contributor.coadvisor喜岡新zh_TW
dc.contributor.coadvisorArata Kiokaen
dc.contributor.oralexamcommittee許少瑜;郭家瑋;卓雨璇zh_TW
dc.contributor.oralexamcommitteeShao-Yiu Hsu;Chia-Wei Kuo;Yu-Syuan Jhuoen
dc.subject.keyword滲透性,孔隙率異質性孔隙網路模型X光電腦斷層掃描zh_TW
dc.subject.keywordPermeability,PorosityHeterogeneityPore Network Model (PNM)X-ray Computed Tomography (CT)en
dc.relation.page122-
dc.identifier.doi10.6342/NTU202504566-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-11-06-
dc.contributor.author-college理學院-
dc.contributor.author-dept海洋研究所-
dc.date.embargo-lift2029-10-02-
顯示於系所單位:海洋研究所

文件中的檔案:
檔案 大小格式 
ntu-114-1.pdf
  此日期後於網路公開 2029-10-02
8 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved