請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101060完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蔡育彰 | zh_TW |
| dc.contributor.advisor | Yu-Chang Tsai | en |
| dc.contributor.author | 許顥齡 | zh_TW |
| dc.contributor.author | Hao-Ling Hsu | en |
| dc.date.accessioned | 2025-11-27T16:06:19Z | - |
| dc.date.available | 2025-11-28 | - |
| dc.date.copyright | 2025-11-27 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-11-19 | - |
| dc.identifier.citation | 傅璿。2019。番茄耐高溫外表性狀評估方式之建立。國立臺灣大學生物資源暨農學院農藝系碩士論文。台北。
鄭嘉陽。2023。不同熱馴化處理對番茄耐熱表現之影響。國立臺灣大學生物資源暨農學院農藝系碩士論文。台北。 Ali, S., Rizwan, M., Arif, M. S., Ahmad, R., Hasanuzzaman, M., Ali, B., & Hussain, A. (2020). Approaches in enhancing thermotolerance in plants: an updated review. Journal of Plant Growth Regulation, 39(1), 456-480. Allen, K. D., & Sussex, I. M. (1996). Falsiflora and anantha control early stages of floral meristem development in tomato (Lycopersicon esculentum Mill.). Planta, 200(2), 254-264. Alonge, M., Wang, X., Benoit, M., Soyk, S., Pereira, L., Zhang, L., Suresh, H., Ramakrishnan, S., Maumus, F., & Ciren, D. (2020). Major impacts of widespread structural variation on gene expression and crop improvement in tomato. Cell, 182(1), 145-161. e123. Alsamir, M., Mahmood, T., Trethowan, R., & Ahmad, N. (2021). An overview of heat stress in tomato (Solanum lycopersicum L.). Saudi Journal of Biological Sciences, 28(3), 1654-1663. Ayenan, M. A. T., Danquah, A., Hanson, P., Ampomah-Dwamena, C., Sodedji, F. A. K., Asante, I. K., & Danquah, E. Y. (2019). Accelerating breeding for heat tolerance in tomato (Solanum lycopersicum L.): an integrated approach. Agronomy, 9(11), 720. Becker, A., & Theißen, G. (2003). The major clades of MADS-box genes and their role in the development and evolution of flowering plants. Molecular Phylogenetics and Evolution, 29(3), 464-489. Bhandari, K., Siddique, K. H., Turner, N. C., Kaur, J., Singh, S., Agrawal, S. K., & Nayyar, H. (2016). Heat stress at reproductive stage disrupts leaf carbohydrate metabolism, impairs reproductive function, and severely reduces seed yield in lentil. Journal of Crop Improvement, 30(2), 118-151. Borghi, M., Perez de Souza, L., Yoshida, T., & Fernie, A. R. (2019). Flowers and climate change: a metabolic perspective. New phytologist, 224(4), 1425-1441. Budiman, M., Chang, S., Lee, S., Yang, T., Zhang, H., De Jong, H., & Wing, R. (2004). Localization of jointless-2 gene in the centromeric region of tomato chromosome 12 based on high resolution genetic and physical mapping. Theoretical and Applied Genetics, 108(2), 190-196. Camejo, D., Rodríguez, P., Morales, M. A., Dell’Amico, J. M., Torrecillas, A., & Alarcón, J. J. (2005). High temperature effects on photosynthetic activity of two tomato cultivars with different heat susceptibility. Journal of Plant Physiology, 162(3), 281-289. Cammarano, D., Jamshidi, S., Hoogenboom, G., Ruane, A. C., Niyogi, D., & Ronga, D. (2022). Processing tomato production is expected to decrease by 2050 due to the projected increase in temperature. Nature Food, 3(6), 437-444. Cao, J., Yuan, J., Zhang, Y., Chen, C., Zhang, B., Shi, X., Niu, R., & Lin, F. (2023). Multi-layered roles of BBX proteins in plant growth and development. Stress Biology, 3(1), 1. Casal, J. J., & Balasubramanian, S. (2019). Thermomorphogenesis. Annual Review of Plant Biology, 70(1), 321-346. Cha, J.-Y., Kim, J., Kim, T.-S., Zeng, Q., Wang, L., Lee, S. Y., Kim, W.-Y., & Somers, D. E. (2017). GIGANTEA is a co-chaperone which facilitates maturation of ZEITLUPE in the Arabidopsis circadian clock. Nature Communications, 8(1), 3. Charles, W., & Harris, R. (1972). Tomato fruit-set at high and low temperatures. Canadian Journal of Plant Science, 52(4), 497-506. Choudhury, F. K., Rivero, R. M., Blumwald, E., & Mittler, R. (2017). Reactive oxygen species, abiotic stress and stress combination. The Plant Journal, 90(5), 856-867. Cui, L., Zheng, F., Wang, J., Zhang, C., Zhang, D., Gao, S., Zhang, C., Ye, J., Zhang, Y., & Ouyang, B. (2022). The tomato CONSTANS-LIKE protein SlCOL1 regulates fruit yield by repressing SFT gene expression. BMC Plant Biology, 22(1), 429. Delker, C., Sonntag, L., James, G. V., Janitza, P., Ibanez, C., Ziermann, H., Peterson, T., Denk, K., Mull, S., & Ziegler, J. (2014). The DET1-COP1-HY5 pathway constitutes a multipurpose signaling module regulating plant photomorphogenesis and thermomorphogenesis. Cell Reports, 9(6), 1983-1989. Ding, L., Wang, S., Song, Z.-T., Jiang, Y., Han, J.-J., Lu, S.-J., Li, L., & Liu, J.-X. (2018). Two B-box domain proteins, BBX18 and BBX23, interact with ELF3 and regulate thermomorphogenesis in Arabidopsis. Cell Reports, 25(7), 1718-1728. e1714. Eshed, Y., Gera, G., & Zamir, D. (1996). A genome-wide search for wild-species alleles that increase horticultural yield of processing tomatoes. Theoretical and applied genetics, 93(5), 877-886. Fiorucci, A.-S., Galvão, V. C., Ince, Y. Ç., Boccaccini, A., Goyal, A., Allenbach Petrolati, L., Trevisan, M., & Fankhauser, C. (2020). PHYTOCHROME INTERACTING FACTOR 7 is important for early responses to elevated temperature in Arabidopsis seedlings. New Phytologist, 226(1), 50-58. Gangappa, S. N., & Botto, J. F. (2014). The BBX family of plant transcription factors. Trends in Plant Science, 19(7), 460-470. Gil, K. E., & Park, C. M. (2019). Thermal adaptation and plasticity of the plant circadian clock. New Phytologist, 221(3), 1215-1229. Graci, S., & Barone, A. (2024). Tomato plant response to heat stress: a focus on candidate genes for yield-related traits. Frontiers in Plant Science, 14, 1245661. Guo, X., Chen, G., Naeem, M., Yu, X., Tang, B., Li, A., & Hu, Z. (2017). The MADS-box gene SlMBP11 regulates plant architecture and affects reproductive development in tomato plants. Plant Science, 258, 90-101. Haider, S., Raza, A., Iqbal, J., Shaukat, M., & Mahmood, T. (2022). Analyzing the regulatory role of heat shock transcription factors in plant heat stress tolerance: a brief appraisal. Molecular Biology Reports, 49(6), 5771-5785. Hartman IV, J. L., Garvik, B., & Hartwell, L. (2001). Principles for the buffering of genetic variation. Science, 291(5506), 1001-1004. Hazra, P., Ansary, S., Dutta, A., Balacheva, E., & Atanassova, B. (2008). Breeding tomato tolerant to high temperature stress. IV Balkan Symposium on Vegetables and Potatoes, 830. Henschel, K., Kofuji, R., Hasebe, M., Saedler, H., Münster, T., & Theißen, G. (2002). Two ancient classes of MIKC-type MADS-box genes are present in the moss Physcomitrella patens. Molecular Biology and Evolution, 19(6), 801-814. Hileman, L. C., Sundstrom, J. F., Litt, A., Chen, M., Shumba, T., & Irish, V. F. (2006). Molecular and phylogenetic analyses of the MADS-box gene family in tomato. Molecular Biology and Evolution, 23(11), 2245-2258. Hoshikawa, K., Pham, D., Ezura, H., Schafleitner, R., & Nakashima, K. (2021). Genetic and molecular mechanisms conferring heat stress tolerance in tomato plants. Frontiers in Plant Science, 12, 786688. Hu, G., Wang, K., Huang, B., Mila, I., Frasse, P., Maza, E., Djari, A., Hernould, M., Zouine, M., & Li, Z. (2022). The auxin-responsive transcription factor SlDOF9 regulates inflorescence and flower development in tomato. Nature Plants, 8(4), 419-433. Hu, Y., Xie, Q., & Chua, N.-H. (2003). The Arabidopsis auxin-inducible gene ARGOS controls lateral organ size. The Plant Cell, 15(9), 1951-1961. Huang, W., Pérez-García, P., Pokhilko, A., Millar, A. J., Antoshechkin, I., Riechmann, J. L., & Mas, P. (2012). Mapping the core of the Arabidopsis circadian clock defines the network structure of the oscillator. Science, 336(6077), 75-79. Huang, Y.-C., Niu, C.-Y., Yang, C.-R., & Jinn, T.-L. (2016). The heat stress factor HSFA6b connects ABA signaling and ABA-mediated heat responses. Plant Physiology, 172(2), 1182-1199. Huerga-Fernández, S., Detry, N., Orman-Ligeza, B., Bouché, F., Hanikenne, M., & Périlleux, C. (2024). JOINTLESS maintains inflorescence meristem identity in tomato. Plant and Cell Physiology, 65(7), 1197-1211. Jagadish, S. K., Way, D. A., & Sharkey, T. D. (2021). Plant heat stress: Concepts directing future research. Plant, Cell & Environment, 44(7), 1992-2005. Jiang, X. B., Lubini, G., Hernandes-Lopes, J., Rijnsburger, K., Veltkamp, V., de Maagd, R. A., Angenent, G. C., & Bemer, M. (2022). FRUITFULL-like genes regulate flowering time and inflorescence architecture in tomato. Plant Cell, 34(3), 1002-1019. Kang, M.-S., Kim, Y. J., Heo, J., Rajendran, S., Wang, X., Bae, J. H., Lippman, Z., & Park, S. J. (2022). Newly discovered alleles of the tomato antiflorigen gene SELF PRUNING provide a range of plant compactness and yield. International Journal of Molecular Sciences, 23(13), 7149. Kazan, K. (2015). Diverse roles of jasmonates and ethylene in abiotic stress tolerance. Trends in Plant Science, 20(4), 219-229. Khanna, R., Kronmiller, B., Maszle, D. R., Coupland, G., Holm, M., Mizuno, T., & Wu, S.-H. (2009). The Arabidopsis B-box zinc finger family. The Plant Cell, 21(11), 3416-3420. Kotak, S., Vierling, E., Baumlein, H., & Koskull-Döring, P. v. (2007). A novel transcriptional cascade regulating expression of heat stress proteins during seed development of Arabidopsis. The Plant Cell, 19(1), 182-195. Kunta, S., Dahan, Y., Torgeman, S., Chory, J., & Burko, Y. (2025). Species-specific PHYTOCHROME-INTERACTING FACTOR utilization in the plant morphogenetic response to environmental stimuli. The Plant Cell, 37(5), koaf048. Kürklü, A., Pearson, S., & Felek, T. (2025). Climate change impacts on tomato production in high-tech soilless greenhouses in Türki̇ye. BMC Plant Biology, 25(1), 339. Lemmon, Z. H., Park, S. J., Jiang, K., Van Eck, J., Schatz, M. C., & Lippman, Z. B. (2016). The evolution of inflorescence diversity in the nightshades and heterochrony during meristem maturation. Genome Research, 26(12), 1676-1686. Leseberg, C. H., Eissler, C. L., Wang, X., Johns, M. A., Duvall, M. R., & Mao, L. (2008). Interaction study of MADS-domain proteins in tomato. Journal of Experimental Botany, 59(8), 2253-2265. Li, G., Kuijer, H. N., Yang, X., Liu, H., Shen, C., Shi, J., Betts, N., Tucker, M. R., Liang, W., & Waugh, R. (2021). MADS1 maintains barley spike morphology at high ambient temperatures. Nature plants, 7(8), 1093-1107. Li, N., Euring, D., Cha, J. Y., Lin, Z., Lu, M., Huang, L.-J., & Kim, W. Y. (2021). Plant hormone-mediated regulation of heat tolerance in response to global climate change. Frontiers in Plant Science, 11, 627969. Li, N., Huang, B., Tang, N., Jian, W., Zou, J., Chen, J., Cao, H., Habib, S., Dong, X., & Wei, W. (2017). The MADS-box gene SlMBP21 regulates sepal size mediated by ethylene and auxin in tomato. Plant and Cell Physiology, 58(12), 2241-2256. Liang, X.-Q., Ma, N.-N., Wang, G.-D., Meng, X., Ai, X.-Z., & Meng, Q.-W. (2015). Suppression of SlNAC1 reduces heat resistance in tomato plants. Biologia Plantarum, 59(1), 92-98. Lifschitz, E., Eviatar, T., Rozman, A., Shalit, A., Goldshmidt, A., Amsellem, Z., Alvarez, J. P., & Eshed, Y. (2006). The tomato FT ortholog triggers systemic signals that regulate growth and flowering and substitute for diverse environmental stimuli. Proceedings of the National Academy of Sciences, 103(16), 6398-6403. Lin, T., Zhu, G., Zhang, J., Xu, X., Yu, Q., Zheng, Z., Zhang, Z., Lun, Y., Li, S., & Wang, X. (2014). Genomic analyses provide insights into the history of tomato breeding. Nature Genetics, 46(11), 1220-1226. Lippman, Z. B., Cohen, O., Alvarez, J. P., Abu-Abied, M., Pekker, I., Paran, I., Eshed, Y., & Zamir, D. (2008). The making of a compound inflorescence in tomato and related nightshades. PLoS Biology, 6(11), e288. Liu, D., Wang, D., Qin, Z., Zhang, D., Yin, L., Wu, L., Colasanti, J., Li, A., & Mao, L. (2014). The SEPALLATA MADS‐box protein SLMBP21 forms protein complexes with JOINTLESS and MACROCALYX as a transcription activator for development of the tomato flower abscission zone. The Plant Journal, 77(2), 284-296. Lu, H.-P., Wang, J.-J., Wang, M.-J., & Liu, J.-X. (2021). Roles of plant hormones in thermomorphogenesis. Stress Biology, 1(1), 20. Luo, J., Tang, Y., Chu, Z., Peng, Y., Chen, J., Yu, H., Shi, C., Jafar, J., Chen, R., & Tang, Y. (2023). SlZF3 regulates tomato plant height by directly repressing SlGA20ox4 in the gibberellic acid biosynthesis pathway. Horticulture Research, 10(4), uhad025. MacAlister, C. A., Park, S. J., Jiang, K., Marcel, F., Bendahmane, A., Izkovich, Y., Eshed, Y., & Lippman, Z. B. (2012). Synchronization of the flowering transition by the tomato TERMINATING FLOWER gene. Nature Genetics, 44(12), 1393-1398. Malakar, B. C., Singh, S., Garhwal, V., Chandramohan, R., Upadhyaya, G., Sethi, V., & Gangappa, S. N. (2025). BBX24 and BBX25 antagonize the function of thermosensor ELF3 to promote PIF4-mediated thermomorphogenesis in Arabidopsis. Plant Communications, 6(7). Mao, L., Deng, M., Jiang, S., Zhu, H., Yang, Z., Yue, Y., & Zhao, K. (2020). Characterization of the DREBA4-type transcription factor (SlDREBA4), which contributes to heat tolerance in tomatoes. Frontiers in Plant Science, 11, 554520. Menda, N., Semel, Y., Peled, D., Eshed, Y., & Zamir, D. (2004). In silico screening of a saturated mutation library of tomato. The Plant Journal, 38(5), 861-872. Molinero-Rosales, N., Latorre, A., Jamilena, M., & Lozano, R. (2004). SINGLE FLOWER TRUSS regulates the transition and maintenance of flowering in tomato. Planta, 218(3), 427-434. Molinero‐Rosales, N., Jamilena, M., Zurita, S., Gómez, P., Capel, J., & Lozano, R. (1999). FALSIFLORA, the tomato orthologue of FLORICAULA and LEAFY, controls flowering time and floral meristem identity. The Plant Journal, 20(6), 685-693. Mori, K., Lemaire-Chamley, M., Jorly, J., Carrari, F., Conte, M., Asamizu, E., Mizoguchi, T., Ezura, H., & Rothan, C. (2021). The conserved brassinosteroid-related transcription factor BIM1a negatively regulates fruit growth in tomato. Journal of Experimental Botany, 72(4), 1181-1197. Müller, F., Xu, J., Kristensen, L., Wolters-Arts, M., de Groot, P. F., Jansma, S. Y., Mariani, C., Park, S., & Rieu, I. (2016). High-temperature-induced defects in tomato (Solanum lycopersicum) anther and pollen development are associated with reduced expression of B-class floral patterning genes. PLoS One, 11(12), e0167614. Nakano, T., Fujisawa, M., Shima, Y., & Ito, Y. (2013). Expression profiling of tomato pre-abscission pedicels provides insights into abscission zone properties including competence to respond to abscission signals. BMC Plant Biology, 13(1), 40. Nam, J., Kim, J., Lee, S., An, G., Ma, H., & Nei, M. (2004). Type I MADS-box genes have experienced faster birth-and-death evolution than type II MADS-box genes in angiosperms. Proceedings of the National Academy of Sciences, 101(7), 1910-1915. Nicotra, A. B., Atkin, O. K., Bonser, S. P., Davidson, A. M., Finnegan, E. J., Mathesius, U., Poot, P., Purugganan, M. D., Richards, C. L., & Valladares, F. (2010). Plant phenotypic plasticity in a changing climate. Trends in plant science, 15(12), 684-692. Nieto, C., López-Salmerón, V., Davière, J.-M., & Prat, S. (2015). ELF3-PIF4 interaction regulates plant growth independently of the evening complex. Current Biology, 25(2), 187-193. Ortuño-Miquel, S., Rodríguez-Cazorla, E., Zavala-Gonzalez, E. A., Martínez-Laborda, A., & Vera, A. (2019). Arabidopsis HUA ENHANCER 4 delays flowering by upregulating the MADS-box repressor genes FLC and MAF4. Scientific Reports, 9(1), 1478. Park, S. J., Jiang, K., Schatz, M. C., & Lippman, Z. B. (2012). Rate of meristem maturation determines inflorescence architecture in tomato. Proceedings of the National Academy of Sciences, 109(2), 639-644. Park, S. J., Jiang, K., Tal, L., Yichie, Y., Gar, O., Zamir, D., Eshed, Y., & Lippman, Z. B. (2014). Optimization of crop productivity in tomato using induced mutations in the florigen pathway. Nature Genetics, 46(12), 1337-1342. Peet, M. M., Willits, D., & Gardner, R. (1997). Response of ovule development and post-pollen production processes in male-sterile tomatoes to chronic, sub-acute high temperature stress. Journal of Experimental Botany, 48(1), 101-111. Périlleux, C., & Huerga-Fernández, S. (2022). Reflections on the triptych of meristems that build flowering branches in tomato. Frontiers in Plant Science, 13, 798502. Périlleux, C., Lobet, G., & Tocquin, P. (2014). Inflorescence development in tomato: gene functions within a zigzag model. Frontiers in Plant Science, 5, 121. Pnueli, L., Carmel-Goren, L., Hareven, D., Gutfinger, T., Alvarez, J., Ganal, M., Zamir, D., & Lifschitz, E. (1998). The SELF-PRUNING gene of tomato regulates vegetative to reproductive switching of sympodial meristems and is the ortholog of CEN and TFL1. Development, 125(11), 1979-1989. Qu, A.-L., Ding, Y.-F., Jiang, Q., & Zhu, C. (2013). Molecular mechanisms of the plant heat stress response. Biochemical and Biophysical Research Communications, 432(2), 203-207. Quint, M., Delker, C., Franklin, K. A., Wigge, P. A., Halliday, K. J., & Van Zanten, M. (2016). Molecular and genetic control of plant thermomorphogenesis. Nature plants, 2(1), 1-9. Raja, M. M., Vijayalakshmi, G., Naik, M. L., Basha, P. O., Sergeant, K., Hausman, J. F., & Khan, P. S. S. V. (2019). Pollen development and function under heat stress: from effects to responses. Acta Physiologiae Plantarum, 41(4), 47. Rio, D. C., Ares, M., Hannon, G. J., & Nilsen, T. W. (2010). Purification of RNA using TRIzol (TRI reagent). Cold Spring Harbor Protocols, 2010(6), pdb. prot5439. Roldan, M. V. G., Périlleux, C., Morin, H., Huerga-Fernandez, S., Latrasse, D., Benhamed, M., & Bendahmane, A. (2017). Natural and induced loss of function mutations in SlMBP21 MADS-box gene led to jointless-2 phenotype in tomato. Scientific Reports, 7(1), 4402. Roohanitaziani, R., de Maagd, R. A., Lammers, M., Molthoff, J., Meijer-Dekens, F., van Kaauwen, M. P., Finkers, R., Tikunov, Y., Visser, R. G., & Bovy, A. G. (2020). Exploration of a resequenced tomato core collection for phenotypic and genotypic variation in plant growth and fruit quality traits. Genes, 11(11), 1278. Sato, S., Peet, M. M., & Thomas, J. F. (2002). Determining critical pre‐and post‐anthesis periods and physiological processes in Lycopersicon esculentum Mill. exposed to moderately elevated temperatures. Journal of Experimental Botany, 53(371), 1187-1195. Scheepens, J., Deng, Y., & Bossdorf, O. (2018). Phenotypic plasticity in response to temperature fluctuations is genetically variable, and relates to climatic variability of origin, in Arabidopsis thaliana. AoB Plants, 10(4), ply043. Shalit-Kaneh, A., Kumimoto, R. W., Filkov, V., & Harmer, S. L. (2018). Multiple feedback loops of the Arabidopsis circadian clock provide rhythmic robustness across environmental conditions. Proceedings of the National Academy of Sciences, 115(27), 7147-7152. Shi, J., Drummond, B. J., Wang, H., Archibald, R. L., & Habben, J. E. (2016). Maize and Arabidopsis ARGOS proteins interact with ethylene receptor signaling complex, supporting a regulatory role for ARGOS in ethylene signal transduction. Plant Physiology, 171(4), 2783-2797. Silva, C. S., Nayak, A., Lai, X., Hutin, S., Hugouvieux, V., Jung, J.-H., López-Vidriero, I., Franco-Zorrilla, J. M., Panigrahi, K. C., & Nanao, M. H. (2020). Molecular mechanisms of Evening Complex activity in Arabidopsis. Proceedings of the National Academy of Sciences, 117(12), 6901-6909. Silva, G. F., Silva, E. M., Correa, J. P., Vicente, M. H., Jiang, N., Notini, M. M., Junior, A. C., De Jesus, F. A., Castilho, P., & Carrera, E. (2019). Tomato floral induction and flower development are orchestrated by the interplay between gibberellin and two unrelated microRNA‐controlled modules. New Phytologist, 221(3), 1328-1344. Soyk, S., Lemmon, Z. H., Oved, M., Fisher, J., Liberatore, K. L., Park, S. J., Goren, A., Jiang, K., Ramos, A., & van der Knaap, E. (2017). Bypassing negative epistasis on yield in tomato imposed by a domestication gene. Cell, 169(6), 1142-1155. e1112. Soyk, S., Lemmon, Z. H., Sedlazeck, F. J., Jiménez-Gómez, J. M., Alonge, M., Hutton, S. F., Van Eck, J., Schatz, M. C., & Lippman, Z. B. (2019). Duplication of a domestication locus neutralized a cryptic variant that caused a breeding barrier in tomato. Nature Plants, 5(5), 471-479. Soyk, S., Müller, N. A., Park, S. J., Schmalenbach, I., Jiang, K., Hayama, R., Zhang, L., Van Eck, J., Jiménez-Gómez, J. M., & Lippman, Z. B. (2017). Variation in the flowering gene SELF PRUNING 5G promotes day-neutrality and early yield in tomato. Nature Genetics, 49(1), 162-168. Stephenson, A. G. (1981). Flower and fruit abortion: proximate causes and ultimate functions. Annual Review of Ecology and Systematics, 12, 253-279. Stotz, G. C., Salgado‐Luarte, C., Escobedo, V. M., Valladares, F., & Gianoli, E. (2021). Global trends in phenotypic plasticity of plants. Ecology Letters, 24(10), 2267-2281. Su, D., Wen, L., Xiang, W., Shi, Y., Lu, W., Liu, Y., Xian, Z., & Li, Z. (2022). Tomato transcriptional repressor SlBES1.8 influences shoot apical meristem development by inhibiting the DNA binding ability of SlWUS. The Plant Journal, 110(2), 482-498. Sun, S., Liu, Z., Wang, X., Song, J., Fang, S., Kong, J., Li, R., Wang, H., & Cui, X. (2024). Genetic control of thermomorphogenesis in tomato inflorescences. Nature Communications, 15(1), 1472. Sun, S., Wang, X. T., Liu, Z. Q., Bai, J. W., Song, J., Li, R., & Cui, X. (2023). Tomato APETALA2 family member SlTOE1 regulates inflorescence branching by repressing SISTER OF TM3. Plant Physiology, 192(1), 293-306. Szymkowiak, E. J., & Irish, E. E. (2006). JOINTLESS suppresses sympodial identity in inflorescence meristems of tomato. Planta, 223(4), 646-658. Thouet, J., Quinet, M., Lutts, S., Kinet, J.-M., & Périlleux, C. (2012). Repression of floral meristem fate is crucial in shaping tomato inflorescence. PLoS One, 7(2), e31096. Toledo-Ortiz, G., Johansson, H., Lee, K. P., Bou-Torrent, J., Stewart, K., Steel, G., Rodríguez-Concepción, M., & Halliday, K. J. (2014). The HY5-PIF regulatory module coordinates light and temperature control of photosynthetic gene transcription. PLoS Genetics, 10(6), e1004416. Wang, B., Sang, Y., Song, J., Gao, X.-Q., & Zhang, X. (2009). Expression of a rice OsARGOS gene in Arabidopsis promotes cell division and expansion and increases organ size. Journal of Genetics and Genomics, 36(1), 31-40. Wang, Q., & Zhan, X. (2024). Elucidating the role of SlBBX31 in plant growth and heat-stress resistance in tomato. International Journal of Molecular Sciences, 25(17), 9289. Wang, X., Liu, Z., Bai, J., Sun, S., Song, J., Li, R., & Cui, X. (2023). Antagonistic regulation of target genes by the SISTER OF TM3–JOINTLESS2 complex in tomato inflorescence branching. The Plant Cell, 35(6), 2062-2078. Wang, X. T., Liu, Z. Q., Sun, S., Wu, J. X., Li, R., Wang, H. J., & Cui, X. (2021). SISTER OF TM3 activates FRUITFULL1 to regulate inflorescence branching in tomato. Horticulture Research, 8(1), Article 251. Wang, Y., Gai, W., Yuan, L., Shang, L., Li, F., Gong, Z., Ge, P., Wang, Y., Tao, J., & Zhang, X. (2024). Heat-inducible SlWRKY3 confers thermotolerance by activating the SlGRXS1 gene cluster in tomato. Horticultural Plant Journal, 10(2), 515-531. Wang, Y., Zhang, J., Hu, Z., Guo, X., Tian, S., & Chen, G. (2019). Genome-wide analysis of the MADS-box transcription factor family in Solanum lycopersicum. International Journal of Molecular Sciences, 20(12), 2961. Wang Y., Pan C. T., Wang J., Qin L., Zou T., & Lu G. (2015). Effects of gibberellin on tomato stigma exsertion and hormone-related gene expression under moderate heat stress. Journal of Zhejiang University (Agriculture and Life Sciences), 41(4), 449-457. Wu, J., Li, P., Li, M., Zhu, D., Ma, H., Xu, H., Li, S., Wei, J., Bian, X., & Wang, M. (2024). Heat stress impairs floral meristem termination and fruit development by affecting the BR-SlCRCa cascade in tomato. Plant Communications, 5(4). Xu, X., Wang, Q., Li, W., Hu, T., Wang, Q., Yin, Y., Liu, X., He, S., Zhang, M., & Liang, Y. (2022). Overexpression of SlBBX17 affects plant growth and enhances heat tolerance in tomato. International Journal of Biological Macromolecules, 206, 799-811. Yadav, A., Ravindran, N., Singh, D., Rahul, P. V., & Datta, S. (2020). Role of Arabidopsis BBX proteins in light signaling. Journal of Plant Biochemistry and Biotechnology, 29(4), 623-635. Yoo, S. K., Chung, K. S., Kim, J., Lee, J. H., Hong, S. M., Yoo, S. J., Yoo, S. Y., Lee, J. S., & Ahn, J. H. (2005). CONSTANS activates SUPPRESSOR OFOVEREXPRESSION OFCONSTANS 1 through FLOWERING LOCUS T to promote flowering in Arabidopsis. Plant Physiology, 139(2), 770-778. Yuste-Lisbona, F. J., Quinet, M., Fernández-Lozano, A., Pineda, B., Moreno, V., Angosto, T., & Lozano, R. (2016). Characterization of vegetative inflorescence (mc-vin) mutant provides new insight into the role of MACROCALYX in regulating inflorescence development of tomato. Scientific Reports, 6, Article 18796. Zahn, I. E., Roelofsen, C., Angenent, G. C., & Bemer, M. (2023). TM3 and STM3 Promote Flowering Together with FUL2 and MBP20, but Act Antagonistically in Inflorescence Branching in Tomato. Plants, 12(15), Article 2754. Zhang, J., Hu, Z., Wang, Y., Yu, X., Liao, C., Zhu, M., & Chen, G. (2018). Suppression of a tomato SEPALLATA MADS-box gene, SlCMB1, generates altered inflorescence architecture and enlarged sepals. Plant Science, 272, 75-87. Zhang, J., Hu, Z., Xie, Q., Dong, T., Li, J., & Chen, G. (2024). Two SEPALLATA MADS-box genes, SlMBP21 and SlMADS1, have cooperative functions required for sepal development in tomato. International Journal of Molecular Sciences, 25(5), 2489. Zhang, L., Chen, L., Pang, S., Zheng, Q., Quan, S., Liu, Y., Xu, T., Liu, Y., & Qi, M. (2022). Function analysis of the ERF and DREB subfamilies in tomato fruit development and ripening. Frontiers in Plant Science, 13, 849048. Zhang, Z., Coenen, H., Ruelens, P., Hazarika, R., Al Hindi, T., Oguis, G. K., Van Noort, V., & Geuten, K. (2016). Resurrected protein interaction networks reveal the strong rewiring that leads to network organisation after whole genome duplication. bioRxiv, 074989. Zhang, Z., Coenen, H., Ruelens, P., Hazarika, R. R., Al Hindi, T., Oguis, G. K., Vandeperre, A., Van Noort, V., & Geuten, K. (2018). Resurrected protein interaction networks reveal the innovation potential of ancient whole-genome duplication. The Plant Cell, 30(11), 2741-2760. Zheng, H., & Kawabata, S. (2017). Identification and validation of new alleles of FALSIFLORA and COMPOUND INFLORESCENCE genes controlling the number of branches in tomato inflorescence. International Journal of Molecular Sciences, 18(7), 1572. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101060 | - |
| dc.description.abstract | 全球氣候變遷下,提高番茄耐熱特性為目前重要的議題。本研究旨在探討高溫下番茄 (Solanum lycopersicum L.) 花序高度分枝之突變體heat-induced inflorescence (hin) 發生機制。hin突變株隨環境溫度從20°C漸進提高到35°C,花序分枝數量隨之增加;相對地,對照品種LA3120在不同溫度下仍維持單一聚繖花序。序列分析顯示,hin在兩個MADS-box轉錄因子JOINTLESS-2 (J2) 與ENHANCER OF JOINTLESS-2 (EJ2) 的非編碼區域具有變異,導致兩基因功能異常。LA3120 × hin的F2分離後代分析證實,j2TE/ej2w雙突變是高溫誘導花序分枝所必需的基因型。花/花序分生組織 (floral/inflorescence meristem, FIM) 之轉錄體分析顯示,兩基因型共享部分逆境反應基因,但hin在分生組織命運、荷爾蒙訊號與晝夜節律等途徑呈現特異性重編程。高溫下,花序分枝促進因子MULTIPLE INFLORESCENCE BRANCH 2 (MIB2) 及CONSTANS-LIKE 1 (COL1) 在hin中顯著上調;而FIM正向調控基因TM5、TM29、TAG1與ANANTHA等則下調,顯示J2/EJ2功能缺失導致分生組織穩定性喪失並啟動下游分枝路徑。綜合上述結果,本研究證明J2/EJ2功能喪失可驅動高溫下FIM的重編程並促進花序分枝,為理解番茄花序熱形態發生提供分子線索。 | zh_TW |
| dc.description.abstract | Enhancing heat tolerance in tomato has become an important issue under global climate change. This study aimed to investigate the molecular mechanism underlying the heat-induced inflorescence branching mutant (heat-induced inflorescence, hin) in tomato (Solanum lycopersicum L.). As the ambient temperature increased from 20 °C to 35 °C, the hin mutants exhibited a progressive increase in inflorescence branching; in contrast, the control cultivar LA3120 maintained a simple cymose inflorescence across all temperature conditions. Sequence analyses revealed that hin carries non-coding variants in two MADS-box transcription factors, JOINTLESS-2 (J2) and ENHANCER OF JOINTLESS-2 (EJ2), resulting in abnormal expression and function of both genes. Segregation analysis of the LA3120 × hin F2 population confirmed that the j2TE/ej2w double mutation is required for heat-induced inflorescence branching. Transcriptome profiling of the floral/inflorescence meristem (FIM) showed that although the two genotypes shared several stress-responsive genes, hin displayed genotype-specific transcriptional reprogramming in pathways related to meristem identity, hormonal signaling, and circadian regulation. Under high temperature, the branching-promoting factors MULTIPLE INFLORESCENCE BRANCH 2 (MIB2) and CONSTANS-LIKE 1 (COL1) were significantly upregulated in hin, whereas positive regulators of FIM maintenance, including TM5, TM29, TAG1, and ANANTHA, were downregulated. These results suggest that the loss of J2/EJ2 function disrupts meristem stability and activates downstream branching programs. Together, our results demonstrate that the loss of J2/EJ2 function drives the reprogramming of the FIM under high temperature and promotes inflorescence branching, providing molecular insights into inflorescence thermomorphogenesis in tomato. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-11-27T16:06:19Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-11-27T16:06:19Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 II
誌謝 III 摘要 V Abstract VI 目次 VII 表次 X 圖次 X 表附錄 XII 圖附錄 XIII 縮寫字對照表 XVI 第一章 前言 1 1.1 番茄簡介 1 1.2 番茄花序發育 1 1.3 參與番茄花序發育的調控因子 2 1.3.1分生組織調控關鍵基因 2 1.3.2 MADS-box轉錄因子家族 3 1.4 高溫逆境對番茄生長之影響 7 1.5 熱形態發生機制 8 1.6 研究背景與目標 11 第二章 材料方法 12 2.1 試驗材料 12 2.2 植株生育條件及栽培管理 12 2.3 花序、花及果實產量調查 13 2.4 分生組織收獲與成像 14 2.5 DNA萃取 14 2.6 DNA聚合酶連鎖反應 (polymerase chain reaction, PCR) 14 2.7 PCR產物純化與定序分析 15 2.8 RNA組織收樣及萃取 15 2.9 反轉錄聚合酶連鎖反應 (Reverse transcription polymerase chain reaction, RT-PCR) 17 2.10 即時聚合酶鏈鎖反應 (Real-time polymerase chain reaction, Real-time PCR) 18 2.11 分生組織轉錄體定序 (RNA-seq) 資料分析 19 2.12 統計分析 20 第三章 結果 21 3.1 hin與LA3475在外表型上存在高度差異 21 3.2 hin隨生長溫度提升而增強花序分枝 22 3.3 hin與花序不分枝品種LA3120於外表型之差異 22 3.4 hin在S、J2及EJ2中存在序列變異 23 3.5 hin在分生組織相關基因存在表現差異 25 3.6 j2TE/ej2w是高溫下花序分枝增強所必需 26 3.7 j2TE/ej2w改變hin花序分生組織應對高溫的轉錄程序 28 3.7.1 LA3120和hin於高溫下之轉錄組變化 28 3.7.2 J2/EJ2可能涉及溫度訊號與植物荷爾蒙穩態對花序發育的影響 30 3.8 J2/EJ2與STM3於MIB2啟動子之潛在調控關聯與順式元件分析 34 第四章 討論 59 4.1 高溫對花序結構及生殖能力的影響 59 4.2 J2與EJ2在高溫花序分枝中作為核心角色 60 4.3 轉錄組分析揭示高溫下LA3120與hin在晝夜節律及生理代謝過程存在顯著差異 62 4.4 轉錄組分析揭示hin在生殖發育、熱形態發生及荷爾蒙調控相關基因存在差異 64 4.5 花序熱形態發生可能與幼苗熱形態發生共享部分調控特徵 67 第五章 結論 68 參考文獻 69 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 番茄 | - |
| dc.subject | 高溫逆境 | - |
| dc.subject | 花序結構 | - |
| dc.subject | MADS-box 轉錄因子 | - |
| dc.subject | 轉錄體分析 | - |
| dc.subject | tomato | - |
| dc.subject | heat stress | - |
| dc.subject | inflorescence structure | - |
| dc.subject | MADS-box transcription factors | - |
| dc.subject | Transcriptome analysis | - |
| dc.title | 初探高溫誘導番茄花序分枝 | zh_TW |
| dc.title | Preliminary Investigation of High Temperature–Induced Inflorescence Branching in Tomato | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 114-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 洪傳揚;陳凱儀;葉靖輝 | zh_TW |
| dc.contributor.oralexamcommittee | Chwan-Yang Hong;Kai-Yi Chen;Ching-Hui Yeh | en |
| dc.subject.keyword | 番茄,高溫逆境花序結構MADS-box 轉錄因子轉錄體分析 | zh_TW |
| dc.subject.keyword | tomato,heat stressinflorescence structureMADS-box transcription factorsTranscriptome analysis | en |
| dc.relation.page | 130 | - |
| dc.identifier.doi | 10.6342/NTU202504685 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-11-20 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 農藝學系 | - |
| dc.date.embargo-lift | 2030-11-19 | - |
| 顯示於系所單位: | 農藝學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-114-1.pdf 未授權公開取用 | 12.65 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
