請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101022完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 周家蓓 | zh_TW |
| dc.contributor.advisor | Chia-Pei Chou | en |
| dc.contributor.author | 李易 | zh_TW |
| dc.contributor.author | Yi Li | en |
| dc.date.accessioned | 2025-11-26T16:30:24Z | - |
| dc.date.available | 2025-11-27 | - |
| dc.date.copyright | 2025-11-26 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-09-18 | - |
| dc.identifier.citation | [1]. World Health Organization. (2021). Global plan for the decade of action for road safety 2021–2030. World Health Organization: Geneva, Switzerland, 20.
[2]. 交通部,交通工程規範,2021年 [3]. Steyvers, F. J., & De Waard, D. (2000). Road-edge delineation in rural areas: effects on driving behaviour. Ergonomics, 43(2), 223-238. [4]. 周家蓓主持,陳艾懃協同主持,「熱處理聚酯標線於不同使用環境下抗滑能力與反光強度標準之研究」,公路總局材料試驗所委託研究,民國106年11月。 [5]. 曾翊瑄,「雙效標線材料配比分析與實務應用探討」,國立臺灣大學土木工程學系碩士論文,民國112年8月。 [6]. 董皓,「雙效標線之長期績效與成本效益分析」,國立臺灣大學土木工程學系碩士論文,民國113年7月。 [7]. 黃柏勛,「應用VR虛擬實境技術以探討標線反光性能」,國立臺灣大學土木工程學系碩士論文,民國109年7月。 [8]. 中華民國國家標準 CNS15834,道路標線使用性能,經濟部標準檢驗局,2015年。 [9]. Ozelim, L., & Turochy, R. E. (2014). Modeling retroreflectivity performance of thermoplastic pavement markings in Alabama. Journal of Transportation Engineering, 140(6), 05014001. [10]. Barrette, T. P., & Pike, A. M. (2021). Human factors assessment of pavement marking retroreflectivity in simulated rain and dry conditions. Transportation research record, 2675(10), 241-253. [11]. Lee, J., T. Maleck, & W. Taylor. (1999). Pavement making material evaluation study in Michigan. Institute of Transportation Engineers. ITE Journal, 69(7), 44. [12]. Dravitzki, V. K., Wilkie, S. M., & Lester, T. J. (2006). The safety benefits of brighter roadmarkings (No. 310). [13]. Masliah, M., Bahar, G., & Hauer, E. (2007). Application of innovative time series methodology to relationship between retroreflectivity of pavement markings and crashes. Transportation research record, 2019(1), 119-126. [14]. Smadi, O., Souleyrette, R. R., Ormand, D. J., & Hawkins, N. (2008). Pavement marking retroreflectivity: Analysis of safety effectiveness. Transportation Research Record, 2056(1), 17-24. [15]. Horberry, T., Anderson, J., & Regan, M. A. (2006). The possible safety benefits of enhanced road markings: a driving simulator evaluation. Transportation Research Part F: Traffic Psychology and Behaviour, 9(1), 77-87. [16]. Carlson, P. J., Park, E. S., & Kang, D. H. (2013). Investigation of longitudinal pavement marking retroreflectivity and safety. Transportation research record, 2337(1), 59-66. [17]. Avelar, R. E., & Carlson, P. J. (2014). Link between pavement marking retroreflectivity and night crashes on Michigan two-lane highways. Transportation research record, 2404(1), 59-67. [18]. Bektas, B. A., Gkritza, K., & Smadi, O. (2016). Pavement marking retroreflectivity and crash frequency: segmentation, line type, and imputation effects. Journal of Transportation Engineering, 142(8), 04016030. [19]. Park, E. S., Carlson, P. J., & Pike, A. (2019). Safety effects of wet-weather pavement markings. Accident Analysis & Prevention, 133, 105271. [20]. Giles, C. G., Sabey, B. E., & Cardew, K. H. F. (1965). Development and performance of the portable skid resistance tester. Rubber Chemistry and Technology, 38(4), 840-862. [21]. Mayora, J. M. P., & Piña, R. J. (2009). An assessment of the skid resistance effect on traffic safety under wet-pavement conditions. Accident Analysis & Prevention, 41(4), 881-886. [22]. Rodin III, H., Nassiri, S., Yekkalar, M., & Pacific Northwest Transportation Consortium. (2018). Evaluation of motorcyclists’ and bikers’ safety on wet pavement markings. [23]. Su, Y. M., Chen, J. H., Cheng, J. Y., Hsu, Y. T., & Huang, M. C. (2022). Rough-set based association rules toward performance of high-friction road markings. Journal of Transportation Engineering, Part B: Pavements, 148(2), 05022001. [24]. Najafi, S., Flintsch, G. W., & Medina, A. (2017). Linking roadway crashes and tire–pavement friction: A case study. International Journal of Pavement Engineering, 18(2), 119-127. [25]. 中華民國國家標準 CNS 1333,道路標線塗料,經濟部標準檢驗局,2017年。 [26]. 中華民國國家標準 CNS 4342,交通反光標誌塗料用玻璃珠,經濟部標準檢驗局,2016年。 [27]. 周家蓓,111年度臺北市區道路熱處理聚酯標線之抗滑與反光性能追蹤委託專業服務,2024年。 [28]. 周家蓓,提升道路標線夜間與潮濕狀態下之反光性能與 發展VR於檢測管理應用,科技部補助專題研究計畫成果報告,2019年。 [29]. 周家蓓,提升道路標線夜間與潮濕狀態下之反光性能與發展VR於檢測管理應用,科技部補助專題研究計畫成果報告,2020年。 [30]. 李耀瑄,「發展機器視覺法自動化量測標線夜間反光性能」,國立臺灣大學土木工程學系碩士論文,民國110年7月。 [31]. 李佩耘,「改良車載式機器視覺檢測儀量測標線反光性能」,國立臺灣大學土木工程學系碩士論文,民國112年8月。 [32]. 周家蓓,雙效道路標線現地實驗與虛擬實驗技術於駕駛環境之拓展應用,科技部補助專題研究計畫成果報告,2022年。 [33]. King, L. E., and J. R. Graham. Evaluation of Pavement Marking Materials for Wet Night Conditions. Report FHWA/NC/89-003, North Carolina Department of Transportation, 1989. [34]. Graham, J. R., Harrold, J. K., & King, L. E. (1996). Pavement marking retroreflectivity requirements for older drivers. Transportation Research Record, 1529(1), 65-70. [35]. Loetterle, F. E., Beck, R. A., & Carlson, J. (2000). Public perception of pavement-marking brightness. Transportation Research Record, 1715(1), 51-59. [36]. Parker, N. A., & Meja, M. S. (2003). Evaluation of performance of permanent pavement markings. Transportation Research Record, 1824(1), 123-132. [37]. Zwahlen, H. T., & Schnell, T. (1999). Visibility of road markings as a function of age, retroreflectivity under low-beam and high-beam illumination at night. Transportation Research Record, 1692(1), 152-163. [38]. Schnell, T., & Zwahlen, H. T. (1999). Driver preview distances at night based on driver eye scanning recordings as a function of pavement marking retroreflectivities. Transportation Research Record, 1692(1), 129-141. [39]. Zwahlen, H. T., & Schnell, T. (2000). Minimum in-service retroreflectivity of pavement markings. Transportation Research Record, 1715(1), 60-70. [40]. Schnell, T., Aktan, F., & Lee, Y. C. (2003). Nighttime visibility and retroreflectance of pavement markings in dry, wet, and rainy conditions. Transportation research record, 1824(1), 144-155. [41]. Aktan, F., & Schnell, T. (2004). Performance evaluation of pavement markings under dry, wet, and rainy conditions in the field. Transportation research record, 1877(1), 38-49. [42]. Burns, D. M., Hodson, N., Haunschild, D., & May, D. (2006). Pavement marking photometric performance and visibility under dry, wet, and rainy conditions: Pilot field study. Transportation research record, 1973(1), 113-119. [43]. Higgins, L., Miles, J. D., Carlson, P., Burns, D., Aktan, F., Zender, M., & Kaczmarczik, J. M. (2009). Nighttime visibility of prototype work zone markings under dry, wet-recovery, and rain conditions. Transportation research record, 2107(1), 69-75. [44]. Gibbons, R. B., Andersen, C., & Hankey, J. (2005). Wet night visibility of pavement markings: A static experiment. Transportation research record, 1911(1), 113-122. [45]. Gibbons, R. B., & Hankey, J. (2007). Wet night visibility of pavement markings: dynamic experiment. Transportation Research Record, 2015(1), 73-80 [46]. Gibbons, R. B., Williams, B., & Cottrell, B. (2012). Refinement of drivers' visibility needs during wet night conditions. Transportation research record, 2272(1), 113-120. [47]. Chou, C. P., Leong, K. W., Chen, A. C., & Lee, Y. X. (2020). Road marking retroreflectivity study via a visual algorithm. International Journal of Pavement Research and Technology, 13, 614-620. [48]. Chou, C. P., Huang, P. H., Chen, A. C., & Lee, Y. X. (2021). Virtual reality application on road markings’ visibility analysis. Transportation research record, 2675(11), 460-471. [49]. Guan, Y., Hu, J., & Wang, R. (2024). Study on the Enrichment of Pavement Marking Width and Retroreflectivity on Elderly Drivers’ Safety. Transportation Research Record, 2678(9), 540-549. [50]. Burghardt, T. E., Pashkevich, A., Babić, D., Mosböck, H., Babić, D., & Żakowska, L. (2022). Microplastics and road markings: the role of glass beads and loss estimation. Transportation research part D: transport and environment, 102, 103123. [51]. Yakopson, S., & Greer, R. W. (2016). Preformed thermoplastic pavement marking and method for high skid resistance with maintained high retroreflectivity (World Intellectual Property Organization Patent WO2016081078A1). https://patents.google.com/patent/WO2016081078A1/en [52]. 周家蓓, 曾翊瑄, 董皓, 宋品佑, & 邹佳琪. (2023). 標線反光和抗滑之雙性能配比與追蹤. 鋪面工程, 21(2), 99-108. [53]. 周家蓓, 歐逸宣, 劉家銘, 董皓, 洪瑜雯, 李易, & 黃義帆. (2024). 台北市雙效標線試辦計畫初步成效探討. 鋪面工程, 22(4), 1-14. [54]. 周家蓓, 李易, 林昆虎, 董皓, 賴至竑, 歐逸宣, & 黃義帆. (2024). 雙效標線現地試驗績效評比探討. 鋪面工程, 22(3), 103-116. [55]. Chia-pei Chou, Yi-hsuan Tseng, & Hao Tung (2025, January 5-9). Influence of drop-on application method on the retroreflection and skid resistance of road markings. [Poster presentation]. Transportation Research Board 104th Annual Meeting, Washington, DC, United States. [56]. Swarco,https://www.swarco.com/,於2025年7月18日參閱。 [57]. Harlow, A. (2005). Skid resistance and pavement marking materials. In International Surface Friction Conference: Roads and Runways: Improving Safety Through Assessment and Design, Christchurch. [58]. 交通部,道路交通安全規則,民國113年9月。 [59]. Rumar, K., & Marsh, D. K. (1998). Lane markings in night driving: A review of past research and of the present situation. Ann Arbor, MI: University of Michigan Transportation Research Institute. [60]. 行政院性別平等處(n.d.)。性別統計資料庫:按駕照種類、性別及年齡分之人數-年. 性別平等資料庫。檢自 https://www.gender.ey.gov.tw/GECDB/Stat_Statistics_Query.aspx?sn=KRTBBErXDuLQxzY9EpLj6g%40%40&statsn=LYPoJD9Q6x85ktHnvtM9HA%40%40,於2025年7月18日參閱 [61]. 交通部統計處「111年民眾日常使用運具狀況調查摘要分析」,112年4月 [62]. Pike, A. M., & Bommanayakanahalli, B. (2018). Development of a pavement marking life cycle cost tool. Transportation research record, 2672(12), 148-157. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101022 | - |
| dc.description.abstract | 在近期重大交通事件頻繁發生的背景下,臺灣政府對於交通安全議題的重視亦逐漸升高,而主要政策推動的重點集中於交通法規的修訂與道路線型的調整,在道路基礎設施中,道路標線亦在維護行車安全中以其反光與抗滑性能扮演關鍵角色。標線之反光性能主要影響用路人標線辨識,抗滑性能則為兩輪車用路人較為影響,但兩者難以兼顧。國內針對於同時滿足標線反光與抗滑性能之研究雖然近期已有成果。然而此些研究以標線在乾燥狀態下之反光性能為主要探討重點,對於潮濕狀態下的反光表現與用路人實際所需之反光性能值則較缺乏明確的探討與分析。此外該材料也較無針對不同種類玻璃珠進行相關探討。
本研究先透過標線外撒實驗進行不同外撒材料與其外撒重量的性能檢測,在檢測其數據後,發現本次實驗中以280克玻璃珠混合140克抗滑骨材混合之外撒材料能提供最佳性能,長期而言,反光RL值在R4(≥200mcd/m2/lx)等級以上,濕反光在RW5 (≥100mcd/m2/lx)等級以上,抗滑值皆可維持在S5(≥65)等級以上。 檢測結束後則利用繪設試片進行標線辨識暗房實驗,透過本研究與廠商合作所建置之限制光源僅有車燈的暗房,邀請53位受測者進行不同乾反光與濕反光值之觀測實驗,透過60歲以上受測者結果,建議白色標線維護標準為乾反光RL值100mcd/m2/lx(R2等級)與濕反光值35mcd/m2/lx(RW2等級)。最後線上發放問卷詢問針對於不同天候之標線清晰度與防滑重要性。將其結果與暗房實驗結果與整合標線績效模型,進行不同外撒材料之成本效益評估,其中除了在日間乾燥環境為玻璃碎有最高的成本效益,其餘天候條件下皆為以170克玻璃珠混合170克抗滑骨材混合之外撒材料能提供最佳成本效益。此外在大部分天候環境下,雙效標線其成本效益皆高於玻璃碎材料,顯示雖然雙效標線材料成本較高,但其整體績效優勢足以彌補成本差異,具備更佳的實務應用潛力。 | zh_TW |
| dc.description.abstract | Due to the recent surge in major traffic incidents, the Taiwanese government has increasingly emphasized the importance of traffic safety. The current policies have primarily focused on revising traffic regulations and adjusting road alignments. Among road infrastructure elements, road markings also play a key role in ensuring driving safety through their retroreflective and skid-resistant properties. While retroreflectivity primarily aids drivers in line recognition, skid resistance is especially critical for two-wheeled vehicle drivers. However, these two performance aspects are often difficult to balance. Although recent domestic studies have made progress in developing materials that fulfill both retroreflective and skid-resistant requirements, most have focused on dry-condition retroreflectivity, with limited analysis of wet-condition retroreflectivity and the actual retroreflectivity needs of drivers. Furthermore, few studies have investigated the effects of different types of glass beads on these properties.
This study first conducted an experimental application of road marking materials, evaluating various combinations of glass bead types and anti-skid aggregate and spreading rates. Performance testing revealed that the optimal result was achieved using a mixture of 280 grams of glass beads and 140 grams of anti-skid material. Over time, this configuration maintained a retroreflectivity (RL) above the R4 level (≥ 200 mcd/m²/lx), wet retroreflectivity (RLwet) above RW5 (≥ 100 mcd/m²/lx), and skid resistance above S5 (≥ 65 BPN). Subsequently, a darkroom visibility experiment was carried out. The test was conducted in a custom-designed environment developed in collaboration with industry partners, where the only light source simulated vehicle headlights. A total of 53 participants evaluated markings with various RL and RLwet values. Based on the results by participants aged 60 and above, it is recommended that the maintenance standards for white road markings be set at RL ≥ 100 mcd/m²/lx (R2 level) and RLwet ≥ 35 mcd/m²/lx (RW2 level). Finally, an online questionnaire was distributed to collect public perceptions regarding the importance of marking visibility and skid resistance under different weather conditions. These results were integrated with the darkroom findings to develop a comprehensive pavement marking performance model. A cost-effectiveness evaluation of different bead-aggregate combinations revealed that, aside from daytime dry conditions where crushed glass showed the best cost-effectiveness, the mixture of 170 grams of glass beads and 170 grams of anti-skid material offered superior performance in all other scenarios. Moreover, under most weather conditions, dual-performance markings consistently outperformed crushed glass in terms of cost-effectiveness. This indicates that despite their higher material costs, dual-performance markings provide superior overall performance, making them a more practical and sustainable solution for real-world applications. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-11-26T16:30:24Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-11-26T16:30:24Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 中文摘要 iii ABSTRACT iv 目次 vi 圖次 ix 表次 xii 第一章、 緒論 1 1.1 研究動機與目的 1 1.2 研究內容與方法 3 1.3 研究流程 3 第二章、 文獻回顧 5 2.1 標線性能指標 5 2.1.1 標線反光性能 5 2.1.2 標線抗滑性能 9 2.2 標線性能指標 10 2.2.1 我國標線相關規範 10 2.2.2 國際標線相關規範 17 2.3 研究團隊標線相關研究 21 2.4 標線性能視覺相關實驗 29 第三章、 研究方法 40 3.1 標線檢測方法 40 3.1.1 標線反光性能檢測 40 3.1.2 標線抗滑性能檢測 41 3.2 實驗室標線試片劃設說明 42 3.2.1 實驗室標線試片繪設設備 42 3.2.2 標線試片外撒材料設計 45 3.3 暗房實驗設計規劃 52 第四章、 標線試片實驗結果 57 4.1 白色聚酯標線外撒量成效之實驗結果 57 4.1.1 單一外撒材料於白色熱拌聚酯標線 57 4.1.2 玻璃珠與抗滑骨材1:1重量比於白色熱拌聚酯標線之結果 62 4.1.3 玻璃珠與抗滑骨材以2:1重量比混合於白色熱拌聚酯標線 67 4.2 黃色聚酯標線外撒量成效之實驗結果 70 4.2.1 單一外撒材料於黃色熱拌聚酯標線之實驗結果 70 4.2.2 玻璃珠與抗滑骨材1:1重量比於黃色熱拌聚酯標線之結果 72 第五章、 暗房結果探討 75 5.1 暗房數據分析 75 5.1.1 暗房實驗受測者基本資料 75 5.1.2 各標線試片組合之分析結果 76 5.1.3 以臺灣1.5折射率珠為基準分析結果 80 5.1.4 以年齡層分群之分析結果 82 第六章、 暗房結果探討 91 6.1 標線服務績效分析 91 6.1.1 標線性能指標模型建置 91 6.1.2 標線試片標線性能指標分析 94 6.2 標線服務績效模型 95 6.2.1 標線服務績效模型建置 95 6.2.2 標線服務績效模型結果 100 6.3 標線成本效益模型 102 6.3.1 日間晴朗情境 103 6.3.2 日間陰雨情境 104 6.3.3 夜間晴朗照明充足情境 105 6.3.4 夜間晴朗照明不足情境 106 6.3.5 夜間陰雨照明充足情境 107 6.3.6 夜間晴朗照明不足情境 108 6.3.7 小結 109 第七章、 結論與建議 110 7.1 結論 110 7.2 建議 112 參考文獻 113 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 回歸反射輝度係數RL | - |
| dc.subject | 英式擺錘數BPN | - |
| dc.subject | 標線辨識暗房實驗 | - |
| dc.subject | 成本效益分析 | - |
| dc.subject | Coefficient of Retroreflected Luminance (RL) | - |
| dc.subject | British Pendulum Number (BPN) | - |
| dc.subject | Darkroom Experiment for Road Marking Recognition | - |
| dc.subject | Cost-Effectiveness Analysis | - |
| dc.title | 基於暗房實驗之標線績效模型建構與成本效益分析 | zh_TW |
| dc.title | Pavement Marking Performance Model and Cost-Effectiveness Analysis Based on Darkroom Experiments | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 114-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 蘇育民;陳艾懃 | zh_TW |
| dc.contributor.oralexamcommittee | Yu-Min Su;Ai-Chin Chen | en |
| dc.subject.keyword | 回歸反射輝度係數RL,英式擺錘數BPN標線辨識暗房實驗成本效益分析 | zh_TW |
| dc.subject.keyword | Coefficient of Retroreflected Luminance (RL),British Pendulum Number (BPN)Darkroom Experiment for Road Marking RecognitionCost-Effectiveness Analysis | en |
| dc.relation.page | 119 | - |
| dc.identifier.doi | 10.6342/NTU202504441 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-09-18 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 土木工程學系 | - |
| dc.date.embargo-lift | 2030-09-01 | - |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-114-1.pdf 未授權公開取用 | 5.23 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
