Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 生醫電子與資訊學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101009
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳志宏zh_TW
dc.contributor.advisorJyh-Horng Chenen
dc.contributor.author阮唯紘zh_TW
dc.contributor.authorWei-Hong Ruanen
dc.date.accessioned2025-11-26T16:27:11Z-
dc.date.available2025-11-27-
dc.date.copyright2025-11-26-
dc.date.issued2025-
dc.date.submitted2025-09-22-
dc.identifier.citation[1] R. S. Fisher, C. Acevedo, A. Arzimanoglou, A. Bogacz, J. H. Cross, C. E. Elger, J. Engel Jr, L. Forsgren, J. A. French, M. Glynn et al., “Ilae official report: a practical clinical definition of epilepsy,” Epilepsia, vol. 55, no. 4, pp. 475–482, 2014.
[2] D. J. Thurman, G. Logroscino, E. Beghi, W. A. Hauser, D. C. Hesdorffer, C. R. Newton, F. A. Scorza, and J. W. Sander, “The burden of premature mortality of epilepsy in high-income countries: A systematic review from the mortality task force of the ilae commission on epidemiology,” Epilepsia, vol. 58, pp. 17–26, 2017.
[3] World Health Organization, “Epilepsy - key facts,” 2023, available at: https://www.who.int/news-room/fact-sheets/detail/epilepsy.
[4] E. J. Bubb, C. Metzler-Baddeley, and J. P. Aggleton, “The papez circuit revisited: new insights from diffusion mri and tractography,” Brain and Neuroscience Advances, vol. 1, p. 2398212817716189, 2017.
[5] S. Beniczky, E. Trinka, E. Wirrell, J. H. Cross, L. Lagae, and et al., “Updated classification of epileptic seizures: Position paper of the international league against epilepsy,” Epilepsia, 2025, position statement on seizure classification.
[6] S. S. Spencer, “The relative contributions of mri and pet in the presurgical evaluation of temporal lobe epilepsy,” Epilepsy & Behavior, vol. 3, no. 4, pp. 364–366, 2002.
[7] C. P. Panayiotopoulos, “Juvenile myoclonic epilepsy: A syndrome not to be mistaken for benign myoclonus of adolescence,” Epileptic Disorders, vol. 3, no. 2, pp. 73–76, 2001.
[8] I. E. Scheffer and R. Nabbout, “Dravet syndrome and its mimics: Beyond scn1a,” Epilepsia, vol. 50, pp. 10–16, 2009.
[9] A. T. Berg, S. F. Berkovic, M. J. Brodie, J. Buchhalter, J. H. Cross, W. van Emde Boas, J. Engel, J. French, T. A. Glauser, G. W. Mathern et al., “Revised terminology and concepts for organization of seizures and epilepsies: Report of the ilae commission on classification and terminology, 2005–2009,” Epilepsia, vol. 51, no. 4, pp. 676–685, 2010.
[10] S. Ghosh, J. K. Sinha, and et al., “A comprehensive review of emerging trends and innovative therapies in epilepsy management,” Brain Sciences, vol. 13, no. 9, p. 1305, 2023.
[11] Y. Wang, L. Ma, X. Shi, Y. Liu, D. Wu, J. Hao, W. Jiang et al., “Cerebellar transcranial magnetic stimulation to treat drug‐resistant epilepsy: A randomized, controlled, crossover clinical trial,” Epilepsia, vol. 66, no. 1, pp. 240–252, 2024.
[12] M. Rosa and S. Lisanby, “Somatic treatments for mood disorders,” Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology, vol. 37, pp. 102–116, Jan 2012.
[13] The Hospital for Sick Children, “Sickkids implants the first responsive neurostimulation device in canada to treat drug-resistant epilepsy,” 2024, accessed: 2025-07-15.
[14] Mayo Clinic, “Vagus nerve stimulation,” Online; Internet, n.d., accessed: 2025‑07‑15. [Online]. Available: https://www.mayoclinic.org/tests-procedures/vagus-nerve-stimulation/about/pac-20384565/
[15] Parkinson's NSW, “3d software to improve success of dbs surgery,” Online; Internet, n.d., accessed: 2025‑07‑15. [Online]. Available: https://www.parkinsonsnsw.org.au/3d-software-to-improve-success-of-dbs-surgery/
[16] Gemini TMS, “The science behind tms,” Online, n.d., accessed: 2025-07-15. [Online]. Available: https://www.geminitms.com/how-tms-works/the-science-behind-tms/
[17] P. Gao, Y. Sun, G. Zhang, L. Li, and W. Wang, “A transducer positioning method for transcranial focused ultrasound treatment of brain tumors,” Frontiers in Neuroscience, vol. 17, p. 1277906, 2023.
[18] O. Naor, S. Krupa, and S. Shoham, “Ultrasound neuromodulation,” Annual Review of Biomedical Engineering, vol. 24, pp. 529–554, 2022.
[19] W. Legon, A. Rowlands, and A. Opitz, “Pulsed ultrasound differentially stimulates somatosensory circuits in humans as revealed by eeg and fmri,” Scientific Reports, vol. 12, p. 1285, 2022.
[20] D. Folloni, L. Verhagen, R. B. Mars et al., “Manipulation of subcortical and deep cortical activity in the primate brain using transcranial focused ultrasound stimulation,” Neuron, vol. 101, no. 6, p. 1109–1116.e5, 2019.
[21] Y. Tufail, A. Matyushov, N. Baldwin, M. L. Tauchmann, J. Georges, A. Yoshihiro, S. I. H. Tillery, and W. J. Tyler, “Transcranial pulsed ultrasound stimulates intact brain circuits,” Neuron, vol. 66, no. 5, pp. 681–694, 2010.
[22] B.-K. Min, A. Bystritsky, K.-I. Jung, K. Fischer, Y. Zhang, L.-S. Maeng, S. Park, Y. A. Chung, F. A. Jolesz, and S.-S. Yoo, “Focused ultrasound-mediated suppression of chemically-induced acute epileptic eeg activity,” BMC Neuroscience, vol. 12, p. 23, 2011.
[23] S. Chen, C. Tsai, C. Lin, C. Lee, H. Yu, T. Hsieh, and H. Liu, “Transcranial focused ultrasound pulsation suppresses pentylenetetrazol induced epilepsy in vivo,” Brain Stimulation, vol. 13, no. 1, pp. 35–46, 2020.
[24] M. Zhang, B. Li, Y. Liu, R. Tang, Y. Lang, Q. Huang, and J. He, “Different modes of low-frequency focused ultrasound-mediated attenuation of epilepsy based on the topological theory,” Micromachines, vol. 12, no. 8, p. 1001, 2021.
[25] P. Chu, H. Yu, C. Lee, R. S. Fisher, and H. Liu, “Pulsed‑focused ultrasound provides long‑term suppression of epileptiform bursts in the kainic acid‑induced epilepsy rat model,” Neurotherapeutics, vol. 19, no. 4, pp. 1368–1380, 2022.
[26] C.-C. Lee, C.-C. Chou, F.-J. Hsiao, Y.-H. Chen, C.-F. Lin, C.-J. Chen, S.-J. Peng, H.-L. Liu, and H.-Y. Yu, “Pilot study of focused ultrasound for drug-resistant epilepsy,” Epilepsia, vol. 63, no. 1, pp. 162–175, 2022.
[27] S. S. Yoo, W. Bystritsky, Y. Lee, Y. Zhang, K. Fischer, M. Min, Y. J. Yoo, and K. S. Jolesz, “Focused ultrasound modulates region-specific brain activity,” NeuroImage, vol. 56, no. 3, pp. 1267–1275, 2011.
[28] T. Kim, T. Kim, J. Joo, I. Ryu, S. Lee, E. Park, and Y. Shon, “Modulation of eeg frequency characteristics by low‑intensity focused ultrasound stimulation in a pentylenetetrazol‑induced epilepsy model,” IEEE Access, vol. PP, no. 99, pp. 1–1, Apr 2021.
[29] N. Todd, Y. Zhang, M. Arcaro, L. Becerra, D. Borsook, M. Livingstone, and N. McDannold, “Focused ultrasound induced opening of the blood-brain barrier disrupts inter-hemispheric resting state functional connectivity in the rat brain,” NeuroImage, vol. 178, pp. 414–422, 2018.
[30] J. M. Stern, N. M. Spivak, S. A. Becerra, T. P. Kuhn, A. S. Korb, D. Kronemyer, N. Khanlou, S. D. Reyes, M. M. Monti, C. Schnakers, P. Walshaw, I. Keselman, M. S. Cohen, W. Yong, I. Fried, S. E. Jordan, M. E. Schafer, J. Engel, and A. Bystritsky, “Safety of focused ultrasound neuromodulation in humans with temporal lobe epilepsy,” Brain Stimulation, vol. 14, no. 4, pp. 1022–1031, 2021.
[31] H. Yang, Y. Yuan, X. Wang, and X. Li, “Closed-loop transcranial ultrasound stimulation for real‑time non‑invasive neuromodulation in vivo,” Frontiers in Neuroscience, vol. 14, p. 445, 2020.
[32] Z. Xie, J. Yan, S. Dong, H. Ji, and Y. Yuan, “Phase-locked closed-loop ultrasound stimulation modulates theta and gamma rhythms in the mouse hippocampus,” Frontiers in Neuroscience, vol. 16, p. 994570, 2022.
[33] J. Zou, H. Chen, X. Chen et al., “Noninvasive closed-loop acoustic brain-computer interface for seizure control,” Theranostics, vol. 14, no. 15, pp. 5965–5981, 2024.
[34] D. Son, H. Kim, H.-M. Kim, and colleagues, “A shape-morphing cortex-adhesive sensor for closed-loop transcranial ultrasound neurostimulation,” Research in Neuroscience, 2024, ex vivo in vivo rodent model; real-time EEG-triggered closed-loop seizure suppression.
[35] U.S. Food and Drug Administration, “Marketing clearance of diagnostic ultrasound systems and transducers,” 2019, fDA Guidance Document. [Online]. Available: https://www.fda.gov/media/71100/download
[36] E. Matt, L. Kaindl, S. Tenk, H. Zifko, G. Kranz, E. Kopf, D. Edbauer, W. Schöny, F. Gerstenbrand, H. Dobnig, and R. Beisteiner, “First evidence of long-term effects of transcranial pulse stimulation (tps) on the human brain,” Journal of Translational Medicine, vol. 20, p. 26, 2022. [Online]. Available: https://doi.org/10.1186/s12967-021-03222-5
[37] P.-C. Chu, C.-S. Huang, S.-Z. Ing, H.-Y. Yu, R. S. Fisher, and H.-L. Liu, “Pulsed focused ultrasound reduces hippocampal volume loss and improves behavioral performance in the kainic acid rat model of epilepsy,” Neurotherapeutics, vol. 20, no. 2, pp. 502–517, 2023. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1878747923000946
[38] P. Chu, H. Yu, R. S. Fisher, and H. Liu, “Neuromodulatory focused ultrasound for epilepsy: Are animal models useful?” ACS Chemical Neuroscience, vol. 15, no. 9, pp. 1728–1731, May 2024.
[39] M. I. Naseer, S. Li, M. O. Kim, and et al., “Maternal epileptic seizure induced by pentylenetetrazol: Apoptotic neurodegeneration and decreased gabab1 receptor expression in prenatal rat brain,” Molecular Brain, vol. 2, p. 20, 2009.
[40] R. Huang, C. L. Bell‑Horner, M. I. Dibas, D. F. Covey, J. A. Drewe, and G. H. Dillon, “Pentylenetetrazole‑induced inhibition of recombinant γ‑aminobutyric acid type a (gaba_a) receptors: Mechanism and site of action,” Journal of Pharmacology and Experimental Therapeutics, vol. 298, no. 3, pp. 986–995, 2001.
[41] D. J. Shin, A. L. Germann, A. D. Johnson, S. A. Forman, J. H. Steinbach, and G. Akk, “Propofol is an allosteric agonist with multiple binding sites on concatemeric ternary gabaa receptors,” Molecular Pharmacology, vol. 93, no. 2, pp. 178–189, 2018.
[42] F. Jia, M. Yue, D. Chandra et al., “Isoflurane is a potent modulator of extrasynaptic gaba(a) receptors in the thalamus,” Journal of Pharmacology and Experimental Therapeutics, vol. 324, no. 3, pp. 1127–1135, 2008.
[43] J. Åkeson, “Convulsions on anaesthetic induction with sevoflurane in young children,” Acta Anaesthesiologica Scandinavica, vol. 48, no. 4, pp. 405–407, 2004.
[44] P. Di Cesare and Others, “Sevoflurane enhances both presynaptic and postsynaptic gabaergic transmission in cerebellar circuits,” Scientific Reports, vol. 13, p. 5467, 2023.
[45] A. Modugno and et al., “The effects of the general anesthetic sevoflurane on cerebellar neurotransmission and information flow,” Scientific Reports, vol. 11, 2021.
[46] F. Jia, P. A. Goldstein, and N. L. Harrison, “Isoflurane activates gabaa receptors in the thalamus,” Journal of Neuroscience, vol. 28, pp. 13 816–13 824, 2008.
[47] E. I. I. Eger, Anesthetic Uptake and Action. Philadelphia: Lippincott Williams & Wilkins, 2001.
[48] C. Kothe, S. Y. Shirazi, T. Stenner, D. Medine, C. Boulay, M. I. Grivich, T. R. Mullen, A. Delorme, and S. Makeig, “The lab streaming layer for synchronized multimodal recording,” bioRxiv, 2024.
[49] A. Aleksandrov and ..., “Seizure detection using the phase-slope index and multichannel eeg,” Frontiers in Computational Neuroscience, vol. 14, p. 23, 2020.
[50] Y. Yang and et al., “Adaptive threshold spike detection using stationary wavelet transform,” in 2008 IEEE Biomedical Circuits and Systems Conference (BioCAS), 2008, pp. 89–92.
[51] L. Wang, W. Xue, Y. Li, M. Luo, J. Huang, W. Cui, and C. Huang, “Automatic epileptic seizure detection in eeg signals using multi‑domain feature extraction and nonlinear analysis,” Entropy, vol. 19, no. 6, p. 222, 2017.
[52] M. A. Tinati and B. Mozaffary, “A wavelet packets approach to electrocardiograph baseline drift cancellation,” International Journal of Biomedical Imaging, vol. 2006, p. 97157, 2006.
[53] Y.-J. Juan, “以功能性磁振造影及腦電訊號觀察超音波施於癲癇模型之神經調控效應 Focused Ultrasound Neuromodulation Combined with Resting-State Functional MRI and Electroencephalography to Investigate and Intervene Drug-Induced Epilepsy Model,” Master’s thesis, National Taiwan University, Taipei, Taiwan, 2024, advisors: Jyh-Horng Chen and Hao-Li Liu.
[54] P. A. Valdes-Hernandez, A. Sumiyoshi, H. Nonaka, R. Haga, E. Aubert-Vasquez, T. Ogawa, Y. Iturria-Medina, J. I. Riera, and R. Kawashima, “An in vivo mri template set for morphometry, tissue segmentation, and fmri localization in rats,” Frontiers in Neuroinformatics, vol. 5, p. 26, 2011. [Online]. Available: https://doi.org/10.3389/fninf.2011.00026
[55] O. Collignon, M. Davare, E. Olivier, and A. G. D. Volder, “Reorganisation of the right occipito-parietal stream for auditory spatial processing in early blind humans. a transcranial magnetic stimulation study,” Brain Topography, vol. 21, no. 3-4, pp. 232–240, May 2009. [Online]. Available: https://doi.org/10.1007/s10548-009-0075-8
[56] R. Sladky, K. J. Friston, J. Tröstl, R. Cunnington, E. Moser, and C. Windischberger, “Slice-timing effects and their correction in functional mri,” NeuroImage, vol. 58, no. 2, pp. 588–594, 2011.
[57] N. Todd, Y. Zhang, M. Arcaro, L. Becerra, D. Borsook, M. Livingstone, and N. McDannold, “Focused ultrasound induced opening of the blood-brain barrier disrupt sinter-hemispheric resting state functional connectivity in the rat brain,” NeuroImage, vol. 178, pp. 414–422, Sep. 2018.
[58] G. Paxinos and C. Watson, The Rat Brain in Stereotaxic Coordinates: Hard Cover Edition. Amsterdam: Elsevier, 2006.
[59] X. Liang, J. Van Audekerke, G. De Visscher, A. Van der Linden, and M. Verhoye, “Functional connectivity fmri of the rodent brain: comparison of functional connectivity networks in rat and mouse,” PLoS ONE, vol. 6, no. 4, p. e18876, 2011.
[60] Y. He, Z. Chen, and A. Evans, “Hyperactivity and hyperconnectivity of the default network in schizophrenia and in first-degree relatives of people with schizophrenia,” Brain, vol. 138, no. 11, pp. 3481–3493, 2015.
[61] M. Guye, F. Bartolomei, J.-P. Ranjeva, and et al., “The role of corticothalamic coupling in human temporal lobe epilepsy,” Brain, vol. 129, no. 7, pp. 1917–1928, 2006.
[62] A. P. Bagshaw et al., “Ptz model in rats alters functional brain connectivity during the preictal phase of a seizure,” Brain Research, 2024, available online: https://www.sciencedirect.com/science/article/abs/pii/S000689932400372X.
[63] K. Hwang, M. A. Bertolero, W. Liu, and M. D'Esposito, “Corticothalamic functional connectivity in temporal lobe epilepsy,” Cerebral Cortex, vol. 27, no. 4, pp. 2224–2236, 2017.
[64] M. Yildirim, S. Altun, and H. Ciftci, “Effect of acute pentylenetetrazol injection induced epileptic seizures on rat dentate gyrus at different postnatal ages,” Acta Histochemica, vol. 122, no. 3, p. 151498, 2020.
[65] D. G. Blackmore, N. Grossman, M. E. Schweitzer, M. G. Shapiro, B. He, and J. Kubanek, “Ultrasound neuromodulation: A review of results, mechanisms and safety,” Ultrasound in Medicine Biology, vol. 45, no. 7, pp. 1509–1536, 2019.
[66] W. Lin, Y. Chen, and X. Wang, “Ultrasound neuromodulation in non-human primates using penicillin-induced epilepsy model,” Neuroscience Bulletin, vol. 36, no. 9, pp. 987–994, 2020.
[67] H. Kim, A. Chiu, S. D. Lee, K. Fischer, and S.-S. Yoo, “Focused ultrasound-mediated non-invasive brain stimulation: examination of sonication parameters,” Brain Stimulation, vol. 14, no. 2, pp. 346–355, 2021.
[68] J. Zou, Y. Meng, W. Lin, and et al., “Non-invasive ultrasound stimulation of the brain targets subcortical areas and modulates epileptic activity in primates,” Brain Stimulation, vol. 13, no. 2, pp. 511–519, 2020.
[69] Y. Wang, Y. Zhang, Z. Zhao, and Y. Hu, “Ultrasound-mediated neuromodulation suppresses seizures in acute epilepsy model of rats,” Scientific Reports, vol. 9, no. 1, pp. 1–11, 2019.
[70] H.-C. Chu, W.-C. Wang, C.-C. Chen, and et al., “Noninvasive focused ultrasound modulates hippocampal epileptiform activity in a kainic acid-induced rat model,” Frontiers in Neuroscience, vol. 16, p. 879432, 2022.
[71] M. Park, K. Lee, D. Kim, and Y. Choi, “Neuromodulation of hippocampal activity via focused ultrasound suppresses seizures in a kainic acid-induced model,” Brain Stimulation, vol. 15, no. 2, pp. 341–350, 2022.
[72] M. Velasco, F. Velasco, B. Jiménez, M. Velasco, J. C. Trejo, E. Castro, A. Aguilar, and L. M. Rocha, “Neuromodulation of the centromedian thalamic nuclei in the treatment of generalized seizures and the improvement of the quality of life in patients with lennox–gastaut syndrome,” Epilepsia, vol. 47, pp. 1203–1212, 2006.
[73] T. M. Herrington, S. Conte, and E. N. Eskandar, “High-frequency stimulation of the centromedian thalamic nucleus aborts seizures and ictal apnea,” Clinical Neurophysiology, vol. 151, pp. 113–118, 2024.
[74] Y. Shen, L. M. Bateman, B. C. Jobst, and S. W. Terman, “Centromedian thalamic neuromodulation for the treatment of idiopathic generalized epilepsy,” Frontiers in Human Neuroscience, vol. 16, p. 907716, 2022.
[75] L. G. Remore, Z. Rifi, H. Nariai, D. S. Eliashiv, A. Fallah, B. D. Edmonds, J. H. Matsumoto, N. Salamon, T. Tolossa, W. Wei, M. Locatelli, E. C. Tsolaki, and A. A. Bari, “Structural connections of the centromedian nucleus of thalamus and their relevance for neuromodulation in generalized drugresistant epilepsy: insight from a tractography study,” Therapeutic Advances in Neurological Disorders, vol. 16, p. 17562864231202064, 2023. [Online]. Available: https://doi.org/10.1177/17562864231202064
[76] H. Lu, Y. Yang, and W. e. a. Zhang, “Low-intensity focused ultrasound-mediated attenuation of acute epilepsy in mice,” Brain Sciences, vol. 11, no. 6, p. 711, 2021.
[77] A. Fomenko, C. Neudorfer, R. F. Dallapiazza, S. K. Kalia, and A. M. Lozano, “Low-intensity ultrasound neuromodulation: An overview of mechanisms and emerging human applications,” Brain Stimulation, vol. 11, no. 6, pp. 1209–1217, 2018. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1935861X18302961
[78] W. J. Tyler, “Noninvasive neuromodulation with ultrasound? a continuum mechanics hypothesis,” The Neuroscientist, vol. 17, no. 1, pp. 25–36, 2011.
[79] S. Grewal, E. Gonçalves de Andrade, R. H. Kofoed, P. M. Matthews, I. Aubert, M.-E. Tremblay, and S. Morse, “Using focused ultrasound to modulate microglial structure and function,” Frontiers in Cellular Neuroscience, vol. 17, p. 1290628, 2023. [Online]. Available: https://www.frontiersin.org/articles/10.3389/fncel.2023.1290628/full
[80] S. Chen, A. Nazeri, H. Baek, D. Ye, Y. Yang, J. Yuan, J. B. Rubin, and H. Chen, “A review of bioeffects induced by focused ultrasound combined with microbubbles on the neurovascular unit,” Journal of Cerebral Blood Flow & Metabolism, vol. 42, no. 1, pp. 3–26, 2022.
[81] Q. Zhang et al., “Efficacy of different strategies of responsive neurostimulation on seizure control and their association with acute neurophysiological effects in rats,” Epilepsia, 2023. [Online]. Available: https://pubmed.ncbi.nlm.nih.gov/37172446/
[82] Z. Xiong, J. Zhang, Q. Deng, M. Wang, and T. Li, “Vagus nerve stimulation inhibits dna and rna methylation in a rat model of pilocarpine-induced temporal lobe epilepsy,” CNS Neuroscience & Therapeutics, vol. 31, no. 6, p. e70484, June 2025.
[83] T. Wyckhuys, P. Boon, R. Raedt, B. V. Nieuwenhuyse, K. Vonck, and W. Wadman, “Suppression of hippocampal epileptic seizures in the kainate rat by poisson distributed stimulation,” Epilepsia, vol. 51, no. 11, pp. 2297–2304, 2010.
[84] E. Santiago-Rodríguez, L. Cárdenas-Morales, T. Harmony, A. Fernández-Bouzas, E. Porras-Kattz, and A. Hernández, “Repetitive transcranial magnetic stimulation decreases the number of seizures in patients with focal neocortical epilepsy,” Seizure, vol. 17, no. 8, pp. 677–683, 2008. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1059131108000770
[85] M. E. H. Chowdhury, A. Khandakar, K. J. Mullinger, N. Al-Emadi, and R. Bowtell, “Simultaneous eeg-fmri: Evaluating the effect of the eeg cap-cabling configuration on the gradient artifact,” Frontiers in Neuroscience, vol. 13, p. 690, July 2019.
[86] C. Kothe, S. Y. Shirazi, T. Stenner, D. Medine, C. Boulay, M. I. Grivich, T. R. Mullen, A. Delorme, and S. Makeig, “The lab streaming layer for synchronized multimodal recording,” bioRxiv, 2024, preprint.
[87] L. Gao, T. Zhang, Z. Chen, H. Zhang, and B. Hu, “Ic-u-net: Artifact removal from eeg-fmri using improved convolutional u-net,” in 2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), 2021, pp. 2482–2487.
[88] P. J. Allen, O. Josephs, and R. Turner, “A method for removing imaging artifact from continuous eeg recorded during functional mri,” NeuroImage, vol. 12, no. 2, pp. 230–239, 2000.
[89] Y. Roy, H. Banville, I. Albuquerque, A. Gramfort, T. H. Falk, and J.-M. Lina, “Deep learning-based electroencephalography analysis: a systematic review,” Journal of Neural Engineering, vol. 16, no. 5, p. 051001, 2019.
[90] A. Delorme and S. Makeig, “Eeglab: an open source toolbox for analysis of single-trial eeg dynamics including independent component analysis,” Journal of Neuroscience Methods, vol. 134, no. 1, pp. 9–21, 2004.
[91] U. R. Acharya, S. L. Oh, Y. Hagiwara, J. H. Tan, and H. Adeli, “Deep convolutional neural network for the automated detection and diagnosis of seizure using eeg signals,” Computers in Biology and Medicine, vol. 100, pp. 270–278, 2018.
[92] M. Vafi, F. Samiee, and S. Sanei, “Adaptive support vector machine for real-time eeg-based seizure detection,” in 2022 44th Annual International Conference of the IEEE Engineering in Medicine Biology Society (EMBC), 2022, pp. 1400–1403.
[93] V. J. Lawhern, A. J. Solon, N. R. Waytowich, S. M. Gordon, C. P. Hung, and B. J. Lance, “Eegnet: A compact convolutional neural network for eeg-based brain–computer interfaces,” Journal of Neural Engineering, vol. 15, no. 5, p. 056013, 2018.
[94] X. Wang, F. Li, and L. Zhang, “Deep reinforcement learning based real-time seizure detection and intervention system using closed-loop neurostimulation,” IEEE Transactions on Biomedical Circuits and Systems, 2023.
[95] Y. Zhao, W. H. Currier, M. J. Dzirasa, and A. V. Peterchev, “Reinforcement learning for brain stimulation: A review,” Brain Stimulation, vol. 13, no. 4, pp. 1016–1025, 2020.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101009-
dc.description.abstract癲癇是一種神經系統疾病,特徵為大腦神經元的異常同步放電。部分病患無法以傳統抗癲癇藥物進行治療,需使用替代療法,如反應式神經刺激、迷走神經刺激、深部腦刺激、經顱磁刺激、經顱直流電刺激等,而這些療法多屬侵入式。近年,聚焦式超音波(Focus Ultrasound, FUS) 作為一種非侵入式,且被認為具有神經調控潛力。故本研究基於腦電訊號(Electroencephalography, EEG) 回饋,開發一套閉迴路(Closed-Loop) 超音波系統,並使用EEG, 功能性磁振造影(functional MRI),及組織切片等多模態評估方式,以驗證癲癇的抑制效果及系統的可行性。
本研究建構一癲癇大鼠模型,並採用閉迴路與開放迴路兩種模式,結合不同機械指數(0.25 MI 與0.75 MI),對視丘進行超音波治療。EEG 結果顯示,0.25 MI下閉迴路模式在後期具有較佳的抑制效果;0.75 MI 雖在中期表現良好,惟後期癲癇尖波略有上升。fMRI 分析顯示,開放迴路組BOLD 訊號於第40 分鐘下降,但隨後回升,顯示其抑制效果有限。區域分析發現,視丘與海馬迴呈現明顯調控反應,後扣帶皮質與初級聽覺皮質則變化不明顯。功能性連結分析顯示,癲癇發作後腦區連結性上升,經開放迴路治療後下降,其中0.25 MI 效果優於0.75 MI。雖視丘與其他腦區的連結未達統計顯著,0.25 MI 仍展現出明確的抑制趨勢。組織切片分析顯示,癲癇發作後c-Fos 表現上升,反映神經過度活化,經閉迴路治療可恢復至接近對照組,具神經抑制效果。GAD65/67 表現則於癲癇後下降,顯示抑制性神經元功能受損,閉迴路刺激後回升,維持抑制網路穩定性。結果驗證閉迴路聚焦式超音波具神經調控潛力。
綜合三個評估方式結果,基於EEG 的閉迴路fcFUS 系統在抑制癲癇發作、穩定神經網絡與維持神經功能方面展現潛力,尤以低機械指數(0.25 MI)表現最穩定。惟0.25 與0.75 MI 間差異仍需更大樣本與長期研究佐證。整體結果支持閉迴路聚焦式超音波為具發展潛力的癲癇干預工具,未來可望實現即時監控與個體化刺激的精準神經調控應用。
zh_TW
dc.description.abstractEpilepsy is a neurological disorder characterized by abnormal synchronous neuronal discharges. While various neuromodulatory therapies such as RNS, VNS, DBS, TMS, and tDCS have shown efficacy, most are invasive. Focused ultrasound (FUS) offers a non-invasive alternative with neuromodulatory potential. This study developed a closed-loop FUS system driven by electroencephalography (EEG) feedback and evaluated its efficacy using EEG, functional MRI (fMRI), and histological analysis in a rat epilepsy model.
Closed-loop and open-loop stimulation modes were applied to the thalamus using two acoustic pressures (0.25 MI and 0.75 MI). EEG results showed that 0.25 MI under closed-loop conditions provided better seizure suppression in the later phase. fMRI analysis indicated limited effects in the open-loop group, with transient BOLD signal reduction. Regional and connectivity analyses revealed modulation in the thalamus and hippocampus, with 0.25 MI showing more consistent inhibitory trends. Histology showed that closed-loop stimulation reduced seizure-induced c-Fos expression and restored GAD65/67 levels, suggesting reduced neuronal hyperactivity and preserved inhibitory function.
Overall, the EEG-based closed-loop FUS system demonstrated potential in seizure suppression and network stabilization, especially under low acoustic pressure. These findings support its development as a precise and non-invasive neuromodulation strategy for epilepsy.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-11-26T16:27:11Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-11-26T16:27:11Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書i
致謝ii
摘要iv
Abstract vi
目次vii
圖次xi
表次xiv
第一章緒論1
1.1 癲癇疾病介紹. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 聚焦式超音波之神經調控應用於癲癇抑制. . . . . . . . . . . . . . 2
1.3 基於EEG 訊號回饋以進行超音波治療及應用於閉迴路控制之可行性7
1.4 研究目的及貢獻. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
第二章方法與理論11
2.1 實驗架構. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 聚焦式超音波. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.1 硬體配置. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.2 聲場特性及強度換算. . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.3 刺激參數. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 動物模型準備及實驗分組. . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.1 動物準備. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.2 癲癇模型建立及麻醉藥物選用. . . . . . . . . . . . . . . . . . . 17
2.3.3 實驗分組. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.4 目標腦區選擇及實驗操作定位. . . . . . . . . . . . . . . . . . . 21
2.4 閉迴路控制系統架構與設計. . . . . . . . . . . . . . . . . . . . . . 21
2.4.1 LSL 資料傳輸. . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.4.2 EEG 特徵擷取及小波轉換闕值設定. . . . . . . . . . . . . . . . 23
2.4.3 癲癇Burst 定義. . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.4.4 訊號產生器程式控制. . . . . . . . . . . . . . . . . . . . . . . . 25
2.5 EEG 量測實驗. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.5.1 實驗環境及架設. . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.5.2 EEG 實驗流程. . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.6 fMRI 掃描實驗. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.6.1 實驗設備及架設. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.6.2 MRI 掃描序列. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.6.3 MRI 實驗流程. . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.7 組織學分析. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.7.1 腦組織切片製備. . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.7.2 免疫組織化學染色. . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.8 資料分析. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.8.1 EEG 資料處理. . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.8.2 fMRI 影像處理. . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.8.2.1 SPM 影像前處理. . . . . . . . . . . . . . . . . . . . 34
2.8.2.2 RESTplus 影像後處理. . . . . . . . . . . . . . . . . 37
2.8.2.3 腦區功能性連結矩陣之建立. . . . . . . . . . . . . . 38
2.8.3 免疫組織化學影像分析. . . . . . . . . . . . . . . . . . . . . . . 40
2.9 統計分析. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
第三章實驗結果43
3.1 EEG 實驗結果. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.1.1 藥物誘發癲癇之EEG 效果. . . . . . . . . . . . . . . . . . . . . 43
3.1.2 超音波治療之EEG 效果評估. . . . . . . . . . . . . . . . . . . . 43
3.1.2.1 開放迴路及閉迴路尖波分布結果. . . . . . . . . . . 43
3.1.2.2 開放迴路及閉迴路尖波統計結果. . . . . . . . . . . 47
3.2 fMRI 實驗結果. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.2.1 BOLD map 結果. . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.2.2 功能性連結矩陣結果. . . . . . . . . . . . . . . . . . . . . . . . 56
3.3 組織切片分析結果. . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.3.1 H&E 染色結果分析. . . . . . . . . . . . . . . . . . . . . . . . . 63
3.3.2 c-Fos 染色結果分析. . . . . . . . . . . . . . . . . . . . . . . . . 63
3.3.3 GAD65/67 染色結果分析. . . . . . . . . . . . . . . . . . . . . . 68
第四章討論71
4.1 閉迴路聚焦式超音波系統於癲癇抑制之優勢探討. . . . . . . . . . 71
4.2 低頻超音波探頭及參數選用與抑制效果分析. . . . . . . . . . . . . 72
4.3 CM 腦區施打之效果評估. . . . . . . . . . . . . . . . . . . . . . . . 75
4.4 超音波神經調控之機制探討. . . . . . . . . . . . . . . . . . . . . . 76
4.5 臨床前癲癇治療技術之神經調控效果討論. . . . . . . . . . . . . . 78
第五章結論與未來展望81
5.1 結論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.2 未來展望. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.2.1 EEG-fMRI 同步閉迴路系統架構實現. . . . . . . . . . . . . . . . 83
5.2.2 基於機器學習之自適應閉迴路系統:慢性癲癇長期治療策略. . 84
參考文獻86
附錄A — 實作演示影片100
-
dc.language.isozh_TW-
dc.subject閉迴路-
dc.subject聚焦式超音波-
dc.subject癲癇-
dc.subject腦電訊號-
dc.subject功能性磁振造影-
dc.subjectClosed Loop-
dc.subjectFocus Ultrasound-
dc.subjectEpilpesy-
dc.subjectElectroencephalography-
dc.subjectFunctional Magnetic Resonance Imaging-
dc.title非侵入式閉迴路超音波系統於大鼠癲癇發作之抑制效果評估zh_TW
dc.titleEvaluation of the Suppressive Effects of a Non-Invasive Closed-Loop Ultrasound System on Rodent Epileptic Seizure Activityen
dc.typeThesis-
dc.date.schoolyear114-1-
dc.description.degree碩士-
dc.contributor.coadvisor劉浩澧zh_TW
dc.contributor.coadvisorHao-Li Liuen
dc.contributor.oralexamcommittee謝寶育;葉秩光;謝宗勳;尤香玉zh_TW
dc.contributor.oralexamcommitteeBao-Yu Hsieh;Chih-Kuang Yeh;Tsung-Hsun Hsieh;Hsiang-Yu Yuen
dc.subject.keyword閉迴路,聚焦式超音波癲癇腦電訊號功能性磁振造影zh_TW
dc.subject.keywordClosed Loop,Focus UltrasoundEpilpesyElectroencephalographyFunctional Magnetic Resonance Imagingen
dc.relation.page100-
dc.identifier.doi10.6342/NTU202504492-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-09-23-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept生醫電子與資訊學研究所-
dc.date.embargo-lift2025-11-27-
顯示於系所單位:生醫電子與資訊學研究所

文件中的檔案:
檔案 大小格式 
ntu-114-1.pdf60.32 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved