Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101008
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳瑞北zh_TW
dc.contributor.advisorRuey-Beei Wuen
dc.contributor.author鄭念恩zh_TW
dc.contributor.authorNian-En Chengen
dc.date.accessioned2025-11-26T16:26:57Z-
dc.date.available2025-11-27-
dc.date.copyright2025-11-26-
dc.date.issued2025-
dc.date.submitted2025-09-30-
dc.identifier.citationP. B. Bök and Y. Tuchelmann, "Context-aware QoS control for wireless mesh networks of UAVs," in Proc. Int. Conf. Comput. Commun. Netw. (ICCCN’11), pp. 1-6, Aug. 2011.
D. Rakesh, N. Akshay Kumar, M. Sivaguru, K. V. R. Keerthivaasan, B. Rohini Janaki, and R. Raffik, "Role of UAVs in innovating agriculture with future applications: A review," in 2021 Int. Conf. Adv. Electr., Electron., Comm., Comput. Automat. (ICAECA), Coimbatore, India, 2021, pp. 1-6.
"Unmanned Aircraft System (UAS) Service Demand 2015–2035: Literature Review Projections of Future Usage.", Tech. rep. v.0.1 DOT-VNTSC-DoD-13-01, Sept. 2013.
《交通部無人機科技產業發展策略規劃與執行》研究報告, 交通部運輸研究所, 2021.
G. Asaamoning, P. Mendes, D. Rosário, and E. Cerqueira, “Drone swarms as networked control systems by integration of networking and computing,” Sensors 2021, 21, 2642. https://doi.org/10.3390/s21082642
EVO II Pro Specifications [Online]. Available: https://shop.autelrobotics.com/pages/evo-ii-pro-specification
Hubsan ACE 2 3-Axis Gimbal 4K Drone Visual Obstacle Avoidance 16KM image transmission Professional aerial photography Quadcopter. [Online]. Available: https://dronesset.com/products/hubsan-ace-2-3-axis-gimbal-4k-drone-visual-obstacle-avoidance-16km-image-transmission-professional-aerial-photography-quadcopter?srsltid=AfmBOoq0N2BqVXsLoRg-GANRTEFsvGEqq88gaZwMouBNmVCoyrBTwlKg
航拍、穿越機二合為一!DJI FPV. [Online]. Available: https://www.dcfever.com/news/readnews.php?id=30122&page=2
J. Cox, KC Wong, "Predictive feedback augmentation for manual control of an unmanned aerial vehicle with latency", Sage Journals, Sept. 29, 2019.
A. Volkert, et. al., "Flight tests of ranges and latencies of a threefold redundant C2 multi-link solution for small drones in VLL airspace," in 2019 Int. Comm., Navigat. Surveil. Conf,, DOI: 10.1109/ICNSURV.2019.8735265
B. Ribeiro, I. Müller, and L. Becker, "Performance evaluation of different ToS using heterogeneous communication interfaces in FANETs," Front. Future Transp., 04 Jan. 2022.
L. Gupta, R. Jain, and G. Vaszkun, "Survey of important issues in UAV communication networks," IEEE Comm. Surveys -Tutor., vol. 18, no. 2, pp. 1123-1152, 2^ndquarter 2016.
I. Bekmezci, O.K. Sahingoz, and Ş. Temel, "Flying Ad-Hoc networks (FANETs): A survey," 3 Jan. 2013.
C. Ruan, H. Liu, Y. Kou, and Z. Zhou, "Distributed UCAV task coordination based on modified GPGP method under ANA mode," in 2016 IEEE Inform. Technol. Netw. Electron.-Automat. Control Conf., pp. 641-647, 2016.
G. Crespo, G. Glez-de-Rivera, J. Garrido, and R. Ponticelli, "Setup of a communication and control systems of a quadrotor type unmanned aerial vehicle," in Design -Circ. Int. Syst., Madrid, Spain, 2014, pp. 1-6.
Radiolink R12DS 2.4GHz RC接收器12 通道SBUS/PWM長距離控制適用於飛機、飛機無人機噴射RC發射機AT10II/AT10/AT9S Pro/AT9S/AT99. [Online]. Available:https://a.co/d/2fFGpHe
Futaba S-BUS Introduction S-BUS protocol. [Online]. Available:https://cdck-file-uploads-europe1.s3.dualstack.eu-west-1.amazonaws.com/arduino/original/4X/3/6/a/36adfecc5ac5988048603b11d50132c3e5d79b49.pdf
P. Priya and S. S. Kamlu, "Robust control algorithm for drones," Aeronautics - New Adv. Intech Open, Dec. 21, 2022. doi: 10.5772/intechopen.105966.
M. Tsuzaki and T. Takimoto, "Development of the support system for manual operations of a multi-rotor helicopter," in 2013 13th-Int. Conf. Control, Automat. Syst. (ICCAS 2013), Gwangju, Korea (South), 2013, pp. 1083-1086.
SiK Telemetry Radio V3. [Online]. Available:https://holybro.com/products/sik-telemetry-radio-v3
L. Alves Fagundes-Junior, A. Fialho Coelho, D. Khede Dourado Villa, M. Sarcinelli-Filho, and A. Santos Brandão, "Communication delay in UAV missions: A controller gain analysis to improve flight stability," IEEE Latin America Trans., vol. 21, no. 1, pp. 7-15, Jan. 2023.
PL3單軸雲台相機 水手3+無人機相機帶投放器. [Online]. Available:https://coolfly.cyberbiz.co/products/pl3%E5%96%AE%E8%BB%B8%E9%9B%B2%E5%8F%B0%E7%9B%B8%E6%A9%9F-%E6%B0%B4%E6%89%8B3%E7%84%A1%E4%BA%BA%E6%A9%9F%E7%9B%B8%E6%A9%9F%E5%B8%B6%E6%8A%95%E6%94%BE%E5%99%A8
N. Tamami , Y. K. Aini, A. W. Ramadhan, and R. A. Ramadani, "Analysis of performance of 433 MHz telemetry devices for data transmission in unmanned aerial vehicle (UAV)," 3 Jan. 2020.
六自由度. [Online]. Available: https://zh.wikipedia.org/zh-tw/%E5%85%AD%E8%87%AA%E7%94%B1%E5%BA%A6
H. Ionescu, "6DOF", [Online].Available:https://commons.wikimedia.org/w/index.php?curid=10878582
3GPP. 2017. “Technical Specification Group Radio Access Network: Study on enhanced LTE Support for Aerial Vehicle,“ document 3GPP TR 36.777.
M. Campion, P. Ranganathan, and S. Faruque, "UAV swarm communication and control architectures," J. Unmanned Vehicle Syst., vol. 7, issue 2, pp. 93-106, Nov. 2018.
J. Ghosh, (2019). "Design of a communication architecture for unmanned aerial vehicle (UAV) swarm networks," 2019.
M. E. Iskin, S. O. Sevgili, and R. Yeniceri, "Auto relay handover method for extended star topology UAV Networks," in Proc. 12th Int. Conf. Mechan. Aerospace Engineering (ICMAE 2021), 2021, pp. 378-383.
R. Bajracharya, R. Shrestha, S. Kim, and H. Jung, "6G NR-U based wireless infrastructure UAV: Standardization, opportunities, challenges and Future Scopes," IEEE Access, vol. 10, pp. 30536-30555, 2022.
JPEG.[Online]. Available:https://zh.wikipedia.org/zh-tw/JPEG
S.Atoev, K.R.-Kwon, S. H., Lee, and -K.S.Moon, "Data analysis of the MAVLink communication protocol, " in 2017 IEEE Int. Conf. Inform. Sci. Comm. Technol. (ICISCT), Nov.2017 pp. 1-3.
D. L. Mills, "Computer network time synchronization: The network time protocol," Taylor & Francis. 12 Dec. 2010: 12– [2017-01-04].
Alan C., "Research on Relative Height Control and Wi-Fi 6 Integrated In-band Communications of Drones for Tea Farm Inspection", July 2022.
適用於 Pixhawk PX4 PIX 2.4.8 32 位元飛行控制器自動駕駛儀, 附 4G SD 安全開關蜂鳴器 PPM I2C RC 四軸飛行器 Ardupilot (無人機零件) (顏色:Wi-Fi V3.0 套組 A). [Online]. Available:https://a.co/d/8fawSwQ
https://infuav.com/product/flightcontroller/
M.-Y Feng, S. Cheng, X. Zhang, and W. Ding, "A self-healing routing scheme based on AODV in ad hoc networks," in 4^thInt. Conf. Compu. Inform. Technol. (CIT’04) Wuhan, China, 2004, pp. 616-620.
S. Atoev, K. R. Kwon, S. H. Lee, and K. S. Moon, "Data analysis of the MAVLink communication protocol," in 2017 UEEE Int. Conf. Inform. Sci. Comm. Technol. (ICISCT) pp. 1-3 Nov. 2017.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101008-
dc.description.abstract隨著無人機應用於各領域已帶來大量商機,無人機群的無線通訊是近期熱門的議題。無人機群作為空間偵蒐影像傳輸常有帶寬不足並導致高延遲的問題,三機對單站之節點傳輸需滿足規格:寬頻(>63Mbps)、低延遲(飛控訊號≤ 50ms及影像傳輸≤140 ms)、畫面無遺失(0%),以及單機對地面控制站鏈結不上時,可經由其他無人機轉發圖像給地面控制站,因此有對雙向、高頻寬、低延遲、韌性傳輸的需求。
本研究旨在設計一套基於 Wi-Fi 6E的星狀通訊架構,作為小型無人機群空間偵蒐影像對地面控制站傳輸的基礎無線寬頻Wi-Fi 6E雙向傳輸系統,同時擬定符合3GPP效能規範的無線寬頻即時傳輸需求規範,以支援三機對單一地面控制站之攝像傳輸,於6GHz頻段以TCP可靠傳輸作Wi-Fi 6E雙向傳輸系統,提供三機對單站之地面控制站達280Mbps的高寬頻傳輸,端到端距離20公尺處傳輸延遲由飛控訊號的420毫秒降低至30毫秒內。為提升小機群通訊網路韌性,本論文並考慮其中一機與地面站失去鏈結的狀況,設計和實作星狀拓樸之自我修復機制,以及基於週期性鄰機探測、鏈結建立、影像傳輸紀錄來自動化驗證通訊狀況的轉發演算法,在單一無人機和地面控制站間通道不良時可彈性建立轉傳鏈結和完成傳輸,實驗顯示影像經轉發後影像遺失率為0%,地面控制站可區隔影像來源無人機,且在延遲3.59秒完成轉發並完整取得三機攝像資訊。
zh_TW
dc.description.abstractWith the growing commercial opportunities brought by the application of drones across various fields, wireless communication for drone swarms has become a popular topic in recent years. Drone swarms used for aerial surveillance often face issues such as insufficient bandwidth, resulting in high latency. The transmission requirements for a three-UAV-to-one-ground-station setup are as follows: high bandwidth (>63 Mbps), low latency (flight control ≤50 ms, image transmission ≤140 ms), zero image loss (0%), and in the event that a single UAV cannot establish a direct link with the ground control station, image data must be relayed to the ground station via other UAVs. Therefore, there is a growing demand for bidirectional, high-bandwidth, low-latency, and resilient transmission.
This study aims to design a Wi-Fi 6E-based star topology communication architecture between a small drone swarm and a ground control station (GCS), serving as the foundational wireless broadband communication platform for aerial surveillance image transmission. Additionally, it tailors a set of wireless broadband real-time transmission requirements that meet 3GPP performance specifications. This study specifically proposed and implemented a Wi-Fi 6E communication network architecture operating in the 6 GHz band via TCP. It enables bidirectional transmission of 280 Mbps, end-to-end transmission latency reduced from 420 to within 30 msec at 20 m. Furthermore, this study designs and implements a self-healing mechanism for the star topology, as well as an automated forwarding algorithm for communication status verification based on periodic neighbor detection, link establishment, and image transmission logging. This algorithm enhances the resilience of small UAV communication networks by flexibly establishing relay links and completing transmission when the communication channel between a single UAV and the ground control station is poor. Experiments show that after relay transmission, the image loss rate is 0%, the ground control station can differentiate the image sources from different UAVs, and the image is successfully forwarded and fully received with a delay of 3.59 seconds, collecting information from three UAV cameras.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-11-26T16:26:57Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-11-26T16:26:57Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝 i
中文摘要 ii
ABSTRACT iii
目次 v
圖次 vii
表次 x
Chapter 1 緒論 1
1.1 研究動機 1
1.2 問題表述和具體貢獻 2
1.3 章節內容 3
Chapter 2 無人機群通訊方式和理論基礎 4
2.1 無人機通訊方式 4
2.2 無人機群與地面站通訊網路 12
2.3 問題定義與挑戰 16
Chapter 3 Wi-Fi 6E無人機群雙向傳輸系統 18
3.1 任務傳輸 18
3.2 Wi-Fi 6E雙向傳輸系統硬體架構與電路設計 24
3.3 星狀網路設計 30
3.4 隨意網路設計 33
Chapter 4 基於自動化驗證通訊狀況之轉發演算法 35
4.1 三機對單地面站問題定義和挑戰 35
4.2 CAAFA設計 36
4.3 實驗情境分析 45
Chapter 5 實驗結果與探討 49
5.1 實驗數據蒐集 49
5.2 實驗結果分析 52
Chapter 6 結論與未來展望 65
Reference 67
-
dc.language.isozh_TW-
dc.subject無人機群-
dc.subject硬體原型開發-
dc.subject無線通訊-
dc.subject轉發演算法-
dc.subject3GPP-
dc.subjectUAV swarm-
dc.subjectHardware Prototyping-
dc.subjectWireless Communication-
dc.subjectForwarding Algorithm-
dc.subject3GPP-
dc.titleWi-Fi 6E無人機群對地面控制站之雙向高頻寬低延遲韌性傳輸設計zh_TW
dc.titleDesign of Bidirectional High-Bandwidth, Low-Latency, and Resilient Wi-Fi 6E Communication Between Drones and Ground Control Stationen
dc.typeThesis-
dc.date.schoolyear114-1-
dc.description.degree碩士-
dc.contributor.coadvisor張時中zh_TW
dc.contributor.coadvisorShi-Chung Changen
dc.contributor.oralexamcommittee林茂昭;魏學文;錢膺仁zh_TW
dc.contributor.oralexamcommitteeMao-Chao Lin;Shyue-Win Wei;Ying-Ren Chienen
dc.subject.keyword無人機群,硬體原型開發無線通訊轉發演算法3GPPzh_TW
dc.subject.keywordUAV swarm,Hardware PrototypingWireless CommunicationForwarding Algorithm3GPPen
dc.relation.page69-
dc.identifier.doi10.6342/NTU202504456-
dc.rights.note未授權-
dc.date.accepted2025-09-30-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept電信工程學研究所-
dc.date.embargo-liftN/A-
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-114-1.pdf
  未授權公開取用
3.1 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved