請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101002完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳永芳 | zh_TW |
| dc.contributor.advisor | Yang-Fang Chen | en |
| dc.contributor.author | 趙育傑 | zh_TW |
| dc.contributor.author | Yu-Chieh Chao | en |
| dc.date.accessioned | 2025-11-26T16:25:32Z | - |
| dc.date.available | 2025-11-27 | - |
| dc.date.copyright | 2025-11-26 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-09-30 | - |
| dc.identifier.citation | Chapter 1: Introduction
1. Koo, Y.; Moon, T.; Kang, M.; Joo, H.; Lee, C.; Lee, H.; Kravtsov, V.; Park, K.-D. Dynamical Control of Nanoscale Light–Matter Interactions in Low-Dimensional Quantum Materials. Light: Sci. Appl. 2024, 13, 30. 2. Lienau, C.; Noginov, M. A.; Lončar, M. Light–Matter Interactions at the Nanoscale. J. Opt. 2014, 16, 110201. 3. González-Tudela, A.; Reiserer, A.; García-Ripoll, J. J.; García-Vidal, F. J. Light–Matter Interactions in Quantum Nanophotonic Devices. Nat. Rev. Phys. 2024, 6, 166–179. 4. Jacob, Z.; Alekseyev, L. V.; Narimanov, E. Engineering Photonic Density of States Using Metamaterials. Appl. Phys. B 2010, 100, 215–218. 5. Wang, P.; Krasavin, A. V.; Liu, L.; Jiang, Y.; Li, Y.; Guo, X.; Tong, L.; Zayats, A. V. Molecular Plasmonics with Metamaterials. Chem. Rev. 2022, 122, 15031–15081. 6. Morgado, T. A.; Silveirinha, M. G. Super-Collimation of the Radiation by a Point Source in a Uniaxial Wire Medium. EPJ Appl. Metamat. 2015, 2, 14. 7. Zhang, L.; Sun, C.; He, T.; Jiang, Y.; Wei, J.; Huang, Y.; Yuan, M. High-Performance Quasi-2D Perovskite Light-Emitting Diodes: From Materials to Devices. Light: Sci. Appl. 2021, 10, 61. 8. Ferrari, L.; Wu, C.; Lepage, D.; Zhang, X.; Liu, Z. Hyperbolic Metamaterials and Their Applications. Prog. Quantum Electron. 2015, 40, 1–40. 9. Galfsky, T.; Krishnamoorthy, H. N. S.; Newman, W.; Narimanov, E. E.; Jacob, Z.; Menon, V. M. Active Hyperbolic Metamaterials: Enhanced Spontaneous Emission and Light Extraction. Optica 2015, 2, 62–65. 10. Beliaev, L. Y.; Takayama, O.; Melentiev, P. N.; Lavrinenko, A. V. Photoluminescence Control by Hyperbolic Metamaterials and Metasurfaces: A Review. Opto-Electron. Adv. 2021, 4, 210031. 11. Zhukovsky, S. V.; Ozel, T.; Mutlugun, E.; Gaponik, N.; Eychmüller, A.; Lavrinenko, A. V.; Demir, H. V.; Gaponenko, S. V. Hyperbolic Metamaterials Based on Quantum-Dot Plasmon-Resonator Nanocomposites. Opt. Express 2014, 22, 18290–18298. 12. Ebrahimi, S.; Muravitskaya, A.; Adawi, A. M.; Baudrion, A.-L.; Adam, P.-M.; Bouillard, J.-S. G. Magnetic Mode Coupling in Hyperbolic Bowtie Meta-Antennas. J. Phys. Chem. Lett. 2023, 14, 8352–8358. 13. Poddubny, A.; Iorsh, I.; Belov, P.; Kivshar, Y. Hyperbolic Metamaterials. Nat. Photonics 2013, 7, 948–957. 14. Krishnamoorthy, H. N. S.; Jacob, Z.; Narimanov, E.; Kretzschmar, I.; Menon, V. M. Topological Transitions in Metamaterials. Science 2012, 336, 205–209. 15. Peragut, F.; Cerutti, L.; Baranov, A.; Hugonin, J. P.; Taliercio, T.; De Wilde, Y.; Greffet, J. J. Hyperbolic Metamaterials and Surface Plasmon Polaritons. Optica 2017, 4, 1409–1415. 16. Shekhar, P.; Atkinson, J.; Jacob, Z. Hyperbolic Metamaterials: Fundamentals and Applications. Nano Converg. 2014, 1, 14. 17. Kidwai, O.; Zhukovsky, S. V.; Sipe, J. E. Effective-Medium Approach to Planar Multilayer Hyperbolic Metamaterials: Strengths and Limitations. Phys. Rev. A 2012, 85, 053842. 18. Ginzburg, P.; Krasavin, A. V.; Poddubny, A. N.; Belov, P. A.; Kivshar, Y. S.; Zayats, A. V. Self-Induced Torque in Hyperbolic Metamaterials. Phys. Rev. Lett. 2013, 111, 036804. 19. Sreekanth, K. V.; Krishna, K. H.; De Luca, A.; Strangi, G. Large Spontaneous Emission Rate Enhancement in Grating Coupled Hyperbolic Metamaterials. Sci. Rep. 2014, 4, 6340. 20. Lee, D.; So, S.; Hu, G.; Kim, M.; Badloe, T.; Cho, H.; Kim, J.; Kim, H.; Qiu, C.-W.; Rho, J. Hyperbolic Metamaterials: Fusing Artificial Structures to Natural 2D Materials. eLight 2022, 2, 1. 21. Zhukovsky, S. V.; Kidwai, O.; Sipe, J. E. Physical Nature of Volume Plasmon Polaritons in Hyperbolic Metamaterials. Opt. Express 2013, 21, 14982–14987. 22. Vasilantonakis, N.; Nasir, M. E.; Dickson, W.; Wurtz, G. A.; Zayats, A. V. Bulk Plasmon-Polaritons in Hyperbolic Nanorod Metamaterial Waveguides. Laser Photonics Rev. 2015, 9, 345–353. 23. Sreekanth, K. V.; De Luca, A.; Strangi, G. Experimental Demonstration of Surface and Bulk Plasmon Polaritons in Hypergratings. Sci. Rep. 2013, 3, 3291. 24. Gan, S.; Shi, P.; Yang, A.; Lin, M.; Du, L.; Yuan, X. Deep-Subwavelength Optical Spin Textures in Volume Plasmon Polaritons with Hyperbolic Metamaterials. Adv. Opt. Mater. 2023, 11, 2201986. 25. Drachev, V. P.; Podolskiy, V. A.; Kildishev, A. V. Hyperbolic Metamaterials: New Physics behind a Classical Problem. Opt. Express 2013, 21, 15048–15064. 26. Sreekanth, K. V.; De Luca, A.; Strangi, G. Excitation of Volume Plasmon Polaritons in Metal–Dielectric Metamaterials Using 1D and 2D Diffraction Gratings. J. Opt. 2014, 16, 105103. 27. Ferrari, L.; Lu, D.; Lepage, D.; Liu, Z. Enhanced Spontaneous Emission inside Hyperbolic Metamaterials. Opt. Express 2014, 22, 4301–4306. 28. Zhukovsky, S. V.; Andryieuski, A.; Sipe, J. E.; Lavrinenko, A. V. From Surface to Volume Plasmons in Hyperbolic Metamaterials: General Existence Conditions for Bulk High-k Waves in Metal–Dielectric and Graphene–Dielectric Multilayers. Phys. Rev. B 2014, 90, 155429. 29. Lin, J.-Y.; Hsu, F.-C.; Chang, C.-Y.; Chen, Y.-F. Self-Assembled Polar Hole-Transport Monolayer for High-Performance Perovskite Photodetectors. J. Mater. Chem. C 2021, 9 (15), 5190–5197. 30. Lin, J.-Y.; Hsu, F.-C.; Chao, Y.-C.; Ho, C.-C.; Lai, M.-C.; Li, T.-Y.; Chen, Y.-F. High-Performance Organic Field-Effect Transistors Based on a Self-Assembled Polar Dielectric Monolayer. ACS Appl. Electron. Mater. 2025, 7 (6), 2602–2609. 31. Chang, C.-Y.; Huang, H.-H.; Tsai, H.; Lin, S.-L.; Liu, P.-H.; Chen, W.; Hsu, F.-C.; Nie, W.; Chen, Y.-F.; Wang, L. Facile Fabrication of Self-Assembly Functionalized Polythiophene Hole Transporting Layer for High Performance Perovskite Solar Cells. Adv. Sci. 2021, 8 (1), 2002718. 32. Lin, J.-Y.; Hsu, F.-C.; Chao, Y.-C.; Wu, J.-W.; Yang, Z.-L.; Huang, B.-C.; Chiu, Y.-P.; Chen, Y.-F. Effects of Self-Assembled Polymer-Based Hole Transport Monolayer on Organic Photovoltaics. Small 2025, 21 (17), 2410990. 33. Zhou, G.; Hashemi, F.; Ding, C.; Luo, X.; Zhang, L.; Sheibani, E.; Luo, Q.; Jumabekov, A. N.; Österbacka, R.; Xu, B.; Ma, C. Perovskite Solar Cells Modified with Conjugated Self-Assembled Monolayers at Buried Interfaces. Nanomaterials 2025, 15 (13), 1014. 34. Macaraig, L.; Sagaw, T.; Yoshikawa, S. Self-Assembly Monolayer Molecules for the Improvement of the Anodic Interface in Bulk Heterojunction Solar Cells. Energy Procedia 2011, 9, 283–291. 35. Lin, J.-Y.; Hsu, F.-C.; Chao, Y.-C.; Lu, G.-Z.; Mustaqeem, M.; Chen, Y.-F. Self-Assembled Monolayer for Low-Power-Consumption, Long-Term-Stability, and High-Efficiency Quantum Dot Light-Emitting Diodes. ACS Appl. Mater. Interfaces 2023, 15 (21), 25744–25751. 36. Chao, Y.-C.; Lin, H.-I.; Lin, J.-Y.; Tsao, Y.-C.; Liao, Y.-M.; Hsu, F.-C.; Chen, Y.-F. Unconventional Organic Solar Cell Structure Based on Hyperbolic Metamaterial. J. Mater. Chem. C 2023, 11 (6), 2273–2281. 37. Chao, Y.-C.; Shih, C.-T.; Lin, J.-Y.; Wu, J.-W.; Ho, C.-C.; Lai, M.-C.; Shen, J.-L.; Hsu, F.-C.; Chen, Y.-F. Enhancement of Light–Matter Interaction Induced by Quantum-Coherent Coupling Between Localized Surface Plasmon Resonance and Volume Plasmon Polariton. Adv. Opt. Mater. 2024, 12 (26), 2400973. 38. Chao, Y.-C.; Shih, C.-T.; Lin, J.-Y.; Wu, J.-W.; Ho, C.-C.; Lai, M.-C.; Shen, J.-L.; Hsu, F.-C.; Chen, Y.-F. Enhancement of Fluorescence Resonance Energy Transfer by Coherent Coupling In-Between Surface Plasmon and Volume Plasmon Polariton. J. Phys. Chem. C 2024, 128 (49), 21132–21141. Chapter 2: Theoretical background 1 Huo, P.; Zhang, S.; Liang, Y.; Lu, Y.; Xu, T. Hyperbolic Metamaterials and Metasurfaces: Fundamentals and Applications. Adv. Opt. Mater. 2019, 7 (14), 1801616. 2 Zayats, A. V.; Smolyaninov, I. I.; Maradudin, A. A. Nano-Optics of Surface Plasmon Polaritons. Phys. Rep. 2005, 408 (3–4), 131–314. 3 Maier, S. A. Plasmonics: Fundamentals and Applications; Springer, 2007. 4 Ditlbacher, H.; Galler, N.; Koller, D. M.; Hohenau, A.; Leitner, A.; Aussenegg, F. R.; Krenn, J. R. Coupling dielectric waveguide modes to surface plasmon polaritons. Opt. Express 2008, 16 (14), 10455–10464. 5 Zhukovsky, S. V.; Kidwai, O.; Sipe, J. E. Physical nature of volume plasmon polaritons in hyperbolic metamaterials. Opt. Express 2013, 21 (12), 14982–14987. 6 Zhukovsky, S. V.; Andryieuski, A.; Sipe, J. E.; Lavrinenko, A. V. From surface to volume plasmons in hyperbolic metamaterials: General existence conditions for bulk high-k waves in metal–dielectric and graphene–dielectric multilayers. Phys. Rev. B 2014, 90 (15), 155429. 7 Sreekanth, K. V.; De Luca, A.; Strangi, G. Experimental demonstration of surface and bulk plasmon polaritons in hypergratings. Sci. Rep. 2013, 3, 3291. 8 Liu, X. L.; Bright, T. J.; Zhang, Z. M. Application Conditions of Effective Medium Theory in Near-Field Radiative Heat Transfer Between Multilayered Metamaterials. J. Heat Transfer 2014, 136 (9), 092703. 9 Zhang, R. Z.; Zhang, Z. M. Validity of Effective Medium Theory in Multilayered Hyperbolic Materials. J. Quant. Spectrosc. Radiat. Transfer 2017, 197, 132–140. 10 Li, T.; Khurgin, J. B. Hyperbolic Metamaterials: Beyond the Effective Medium Theory. Optica 2016, 3 (12), 1388–1396. 11 Ferrari, L.; Wu, C.; Lepage, D.; Zhang, X.; Liu, Z. Hyperbolic Metamaterials and Their Applications. Prog. Quantum Electron. 2015, 40, 1–40. 12 Zhukovsky, S. V.; Andryieuski, A.; Takayama, O.; Shkondin, E.; Malureanu, R.; Jensen, F.; Lavrinenko, A. V. Experimental Demonstration of Effective Medium Approximation Breakdown in Deeply Subwavelength All-Dielectric Multilayers. Phys. Rev. Lett. 2015, 115, 177402. 13 Poddubny, A.; Iorsh, I.; Belov, P.; Kivshar, Y. Hyperbolic Metamaterials. Nat. Photonics 2013, 7, 948–957. 14 Lee, D.; So, S.; Hu, G.; Kim, M.; Badloe, T.; Cho, H.; Kim, J.; Kim, H.; Qiu, C.-W.; Rho, J. Hyperbolic Metamaterials: Fusing Artificial Structures to Natural 2D Materials. eLight 2022, 2, 1. 15 Lim, M.; Song, J.; Lee, S. S.; Lee, B. J. Tailoring Near-Field Thermal Radiation between Metallo-Dielectric Multilayers Using Coupled Surface Plasmon Polaritons. Nat. Commun. 2018, 9, 4302. 16 Yang, Y.; Qin, P.; Lin, X.; Li, E.; Wang, Z.; Zhang, B.; Chen, H. Type-I Hyperbolic Metasurfaces for Highly-Squeezed Designer Polaritons with Negative Group Velocity. Nat. Commun. 2019, 10, 2002. 17 Shekhar, P.; Jacob, Z. Strong Coupling in Hyperbolic Metamaterials. Phys. Rev. B 2014, 90 (4), 045313. 18 Guo, Z.; Jiang, H.; Chen, H. Hyperbolic Metamaterials: From Dispersion Manipulation to Applications. J. Appl. Phys. 2020, 127 (7), 071101. 19 Narimanov, E. E.; Jacob, Z.; Smolyaninov, I. Infinite at Every Frequency: The Photonic Density of States in (Meta)Materials with Hyperbolic Dispersion and Related Phenomena. Conf. Lasers Electro-Optics (CLEO), Tech. Dig. 2010, QTuD1. 20 Jacob, Z.; Kim, J.-Y.; Naik, G. V.; Boltasseva, A.; Narimanov, E. E.; Shalaev, V. M. Engineering Photonic Density of States Using Metamaterials. Appl. Phys. B 2010, 100 (1), 215–218. 21 Noginov, M. A.; Li, H.; Dryden, D.; Nataraj, G.; Barnakov, Yu. A.; Zhu, G.; Mayy, M.; Jacob, Z.; Narimanov, E. E. Experimental Probing of Photonic Density of States in Hyperbolic Metamaterial. Conf. Lasers Electro-Optics Tech. Dig. 2010, QTuD3. 22 Rittich, J.; Jung, S.; Siekmann, J.; Wuttig, M. Indium-Tin-Oxide (ITO) Work Function Tailoring by Covalently Bound Carboxylic Acid Self-Assembled Monolayers. Phys. Status Solidi B 2018, 255 (8), 1800075. 23 Havare, A. K.; Can, M.; Demic, S.; Okur, S.; Kus, M.; Aydin, H.; Yagmucukardes, N.; Tari, S. Modification of ITO Surface Using Aromatic Small Molecules with Carboxylic Acid Groups for OLED Applications. Synth. Met. 2011, 161 (21–22), 2397–2404. 24 Kim, D. H.; Chung, C. M.; Park, J. W.; Oh, S. Y. Effects of ITO Surface Modification Using Self-Assembly Molecules on the Characteristics of OLEDs. Ultramicroscopy 2008, 108 (10), 1233–1236. 25 Chen, X.; Luais, E.; Darwish, N.; Ciampi, S.; Thordarson, P.; Gooding, J. J. Studies on the Effect of Solvents on Self-Assembled Monolayers Formed from Organophosphonic Acids on Indium Tin Oxide. Langmuir 2012, 28 (25), 9487–9495. 26 Yan, C.; Zharnikov, M.; Gölzhäuser, A.; Grunze, M. Preparation and Characterization of Self-Assembled Monolayers on Indium Tin Oxide. Langmuir 2000, 16 (15), 6208–6215. 27 Kim, D.; Lee, A. W. H.; Eastcott, J. I.; Gates, B. D. Modifying the Surface Properties of Indium Tin Oxide with Alcohol-Based Monolayers for Use in Organic Electronics. ACS Appl. Nano Mater. 2018, 1 (5), 2237–2248. 28 Havare, A. K.; Can, M.; Demic, S.; Okur, S.; Kus, M.; Aydin, H.; Yagmurcukardes, N.; Tari, S. Electrical Properties of SAM-Modified ITO Surface Using Aromatic Small Molecules with Double Bond Carboxylic Acid Groups for OLED Applications. Appl. Surf. Sci. 2014, 314, 1082–1086. 29 Ligorio, G.; Zorn Morales, N.; List-Kratochvil, E. J. W. Large and Continuous Tuning of the Work Function of Indium Tin Oxide Using Simple Mixing of Self-Assembled Monolayers. Appl. Phys. Lett. 2020, 116 (24), 241603. 30 Albab, M. F.; Jahandar, M.; Kim, Y. H.; Kim, Y.-K.; Shin, M.; Prasetio, A.; Kim, S.; Lim, D. C. High-Performance Semi-Transparent Organic Solar Cells Driven by the Dipole-Controlled Optoelectrical Response of Bilateral Self-Assembled Monolayer Strategy. Nano Energy 2024, 121, 109219. 31 Jiang, W.; Liu, M.; Li, Y.; Lin, F. R.; Jen, A. K.-Y. Rational Molecular Design of Multifunctional Self-Assembled Monolayers for Efficient Hole Selection and Buried Interface Passivation in Inverted Perovskite Solar Cells. Chem. Sci. 2024, 15 (8), 2778–2785. 32 Chaney, J. A.; Pehrsson, P. E. Work Function Changes and Surface Chemistry of Oxygen, Hydrogen, and Carbon on Indium Tin Oxide. Appl. Surf. Sci. 2001, 180 (3–4), 214–226. 33 Kim, J. S.; Lägell, B.; Moons, E.; Johansson, N.; Baikie, I. D.; Salaneck, W. R.; Friend, R. H.; Cacialli, F. Kelvin Probe and Ultraviolet Photoemission Measurements of Indium Tin Oxide Work Function: A Comparison. Synth. Met. 2000, 111–112, 311–314. 34 Yi, Z.; Li, X.; Xiong, Y.; Shen, G.; Zhang, W.; Huang, Y.; Jiang, Q.; Ng, X. R.; Luo, Y.; Zheng, J.; Leong, W. L.; Fu, F.; Bu, T.; Yang, J. Self-Assembled Monolayers (SAMs) in Inverted Perovskite Solar Cells and Their Tandem Photovoltaics Application. Interdiscip. Mater. 2024, 3 (2), 203–244. 35 Azeez, A.; Huang, Y.; Stanly, L.; Kan, Z.; Karuthedath, S. Advances in Self-Assembled Monolayer-Engineered Organic Solar Cells. EES Sol. 2025, 1, 248–266. Chapter 4: Unconventional Organic Solar Cell Structure Based on Hyperbolic Metamaterial 1. L. Hong, H. Yao, Y. Cui, P. Bi, T. Zhang, Y. Cheng, Y. Zu, J. Qin, R. Yu, Z. Ge, and J. Hou, Adv. Mater., 2021, 33, 2103091. 2. Y. Tong, Z. Xiao, X. Du, C. Zuo, Y. Li, M. Lv, Y. Yuan, C. Yi, F. Hao, Y. Hua, T. Lei, Q. Lin, K. Sun, D. Zhao, C. Duan, X. Shao, W. Li, H.-L. Yip, Z. Xiao, B. Zhang, Q. Bian, Y. Cheng, S. Liu, M. Cheng, Z. Jin, S. Yang, and L. Ding, Sci. China: Chem., 2020, 63, 758. 3. S. Park, T. Kim, S. Yoon, C. W. Koh, H. Y. Woo, and H. J. Son, Adv. Mater., 2020, 32, 2002217. 4. V. K. Karapala, T.-W. Chen, K. J. Ma, P. L. Lu, Y. J. Su, W. D. Fu, H. M. Shih, S. J. Lu, T. Y. Lee, C. F. Chang, J. T. Chen, and C. S. Hsu, ACS Appl. Energy Mater., 2021, 4, 2847. 5. L. X. Meng, Y. M. Zhang, X. J. Wan, C. X. Li, X. Zhang, Y. B. Wang, X. Ke, Z. Xiao, L. M. Ding, R. X. Xia, H. L. Yip, Y. Cao, and Y. S. Chen, Science, 2018, 361, 1094. 6. J. Yao, B. Qiu, Z.-G. Zhang, L. Xue, R. Wang, C. Zhang, S. Chen, Q. Zhou, C. Sun, C. Yang, M. Xiao, L. Meng, and Y. Li, Nat. Commun., 2020, 11, 2726. 7. D. Wang, R. Qin, G. Zhou, X. Li, R. Xia, Y. Li, L. Zhan, H. Zhu, X. Lu, H. L. Yip, H. Chen, and C. Z. Li, Adv. Mater., 2020, 32, 2001621. 8. X. Che, Y. Li, Y. Qu, and S. R. Forrest, Nat. Energy, 2018, 3, 422. 9. J. K. Behera, K. Liu, M. Lian, and T. Cao, Nanoscale Adv., 2021, 3, 1758. 10. R. C. Liu, Z. P. Zha, M. Shafi, C. Li, W. Yang, S. C. Xu, M. Liu, and S. Z. Jiang, Nanophotonics, 2021, 10, 2949. 11. J.-L. Wu, F.-C. Chen, Y.-S. Hsiao, F.-C. Chien, P. Chen, C.-H. Kuo, M. H. Huang, and C. S. Hsu, ACS Nano, 2011, 5, 959. 12. B. Niesen, B. P. Rand, P. V. Dorpe, D. Cheyns, L. Tong, A. Dmitriev, and P. Heremans, Adv. Energy Mater., 2013, 2, 145. 13. D. H. Wang, D. Y. Kim, K. W. Choi, J. H. Seo, S. H. Im, J. H. Park, O. O. Park, and A. J. Heeger, Angew. Chem., Int. Ed., 2011, 50, 5519. 14. G.T. Mola, M.C. Mthethwa, M.S. Hamed, M.A. Adedeji, X.G. Mbuyise, A. Kumar, G. Sharma, and Y. Zang, J. Alloys Compd., 2021, 856, 158172. 15. A. P. Kulkarni, K. M. Noone, K. Munechika, S. R. Guyer, and D. S. Ginger, Nano Lett., 2010, 10, 1501. 16. J. Lee, J. Park, J. Kim, D. Lee, and K. Cho, Org. Electron., 2009, 10, 416. 17. A. J. Morfa, K. L. Rowlen, T. H. Reilly III, M. J. Romero, and J. van de Lagemaat, Appl. Phys. Lett., 2008, 92, 013504. 18. F. C. Chen, J. L. Wu, C. L. Lee, Y. Hong, C. H. Kuo, and M. H. Huang, Appl. Phys. Lett., 2009, 95, 013305. 19. Y. C. Chang, F. Y. Chou, P. H. Yeh, H. W. Chen, S. H. Chang, Y. C. Lan, T. F. Guo, T. C. Tsai and C. T. Lee, J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct., 2007, 25, 1899–1902. 20. S. S. Kim, S. I. Na, J. Jo, D. Y. Kim, and Y. C. Nah, Appl. Phys. Lett., 2008, 93, 073307. 21. A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, Nat. Photonics, 2013, 7, 948. 22. C. L. Cortes, W. Newman, S. Molesky, and Z. Jacob, J. Opt., 2012, 14, 063001. 23. H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, Science, 2012, 336, 205. 24. F. Peragut, L. Cerutti, A. Baranov, J. P. Hugonin, T. Taliercio, Y. De Wilde, and J. J. Greffet, Optica, 2017, 4, 1409 (2017). 25. M. J. Kale, and P. Christopher, Science, 2015, 349, 587. 26. S. Karami, M. Nikoufard, S. M. Shariatmadar, and S. Javadi, Opt. Mater., 2021, 122, 111740. 27. S. V. Zhukovsky, A. Andryieuski, J. E. Sipe, and A. V. Lavrinenko, Phys. Rev. B: Condens. Matter Mater. Phys., 2014, 90, 155429. 28. S. V. Zhukovsky, O. Kidwai, and J. E. Sipe, Opt. Express, 2013, 21, 14982. 29. Z. Jacob, J. Y. Kim, G. V. Naik, A. Boltasseva, E. E. Narimanov, and V. M. Shalaev, Appl. Phys, B: Lasers Opt., 2010, 100, 215. 30. K. J. Lee, Y. Xiao, J. H. Woo, E. Kim, D. Kreher, A. J. Attias, F. Mathevet, J. C. Ribierre, J. W. Wu, and P. Andre, Nat. Mater., 2017, 16, 722. 31. K. Wu, J. Chen, J. R. McBride, and T. Lian, Science, 2015, 349, 632. 32. K. V. Sreekanth, Y. Alapan, M. ElKabbash, A. M. Wen, E. Ilker, M. Hinczewski, U. A. Gurkan, N. F. Steinmetz, and G. Strangi, Adv. Opt. Mater., 2016, 4, 1767. 33. G. Haider, H. I. Lin, K. Yadav, K. C. Shen, Y. M. Liao, H. W. Hu, P. K. Roy, K. P. Bera, K. H. Lin, H. M. Lee, Y. T. Chen, F. R. Chen, and Y. F. Chen, ACS Nano, 2018, 12, 11847. 34. C. C. Wang, M. Kataria, H. I. Lin, A. Nain, H. Y. Lin, C. R. P. Inbaraj, Y. M. Liao, A. Thakran, H. T. Chang, F. G. Tseng, Y. P. Hsieh, and Y. F. Chen, ACS Photonics, 2021, 8, 3051. 35. H. I. Lin, K. C. Shen, Y. M. Liao, Y. H. Li, P. Perumal, G. Haider, B. H. Cheng, W. C. Liao, S. Y. Lin, W. J. Lin, T. Y. Lin, and Y. F. Chen, ACS Photonics, 2018, 5, 718. 36. Y. Sun, J. H. Seo, C. J. Takacs, J. Seifter, and A. J. Heeger, Adv. Mater., 2011, 23, 1679. 37. P. B. Johnson and R. W. Christy, Phys. Rev. B, 1972, 6, 4370. 38. L. Lajaunie, F. Boucher, R. Dessapt, and P. Moreau, Phys. Rev. B, 2013, 88, 115141. 39. C. Stelling, C. R. Singh, M. Karg, T. A. F. Koenig, M. Thelakkat, and M. Retsch, Sci. Rep., 2017, 7, 42530. 40. V. D. Mihailetchi, L. J. Koster, J. C. Hummelen, and P. W. Blom, Adv. Funct. Mater., 2006, 16, 699. 41. V. D. Mihailetchi, L. J. Koster, J. C. Hummelen, and P. W. Blom, Phys. Rev. Lett., 2004, 93, 216601. 42. V. Shrotriya, Y. Yao, G. Li, and Y. Yang, Appl. Phys. Lett., 2006, 89, 063505. 43. J. Gao, L. Sun, H. Deng, C. J. Mathai, S. Gangopadhyay, and X. Yang, Appl. Phys. Lett., 2013, 103, 051111. 44. L. Ferrari, J. S. T. Smalley, Y. Fainman, and Z. Liu, Nanoscale, 2017, 9, 9034. 45. A. Ghoshroy, W. Adams, X. Zhang, and DÖ Güney, Phys. Rev. Appl., 2018, 10, 024018. 46. L. A. A. Pettersson, L. S. Roman, and O. Inganas, J. Appl. Phys., 1999, 86, 487. 47. M. Riaz, S. Earles, A. Kadhim, and A. Azzahrani, Int. J. Comput. Mater. Sci. Eng., 2017, 6, 1750017. 48. A. Ghoshroy, W. Adams, X. Zhang, and D. Ö. Güney, Phys. Rev. Appl., 2018, 10, 024018. Chapter 5: Enhancement of Light-Matter Interaction Induced by Quantum-Coherent Coupling between Localized Surface Plasmon Resonance and Volume Plasmon Polariton 1. Dicke, R. H. Coherence in Spontaneous Radiation Processes. Phys. Rev. 1954, 93, 99-110. 2. Chen, Y.-F.; Dobrowolska, M.; Furdyna, J. K.; Rodriguez, S. Interference of electric-dipole and magnetic-dipole interactions in conduction-electron-spin resonance in InSb. Phys. Rev. B 1985, 32, 890-902. 3. Townes, C.; Gordon, J. P.; Zeiger, H. J.; Schawlow, A. L. Molecular Microwave Oscillator and New Hyperfine Structure in the Microwave Spectrum of NH3. Phys. Rev. 1954, 95, 282-284. 4. Letokhov, V. S. Generation of Light by a Scattering Medium with Negative Resonance Absorption. Sov. Phys. JETP 1968, 26, 835-840. 5. Wiersma, D. S. The physics and applications of random lasers. Nat. Phys. 2008, 4 (5), 359-367. 6. Hu, H. -W.; Haider, G.; Liao, Y. -M.; Roy, P. K.; Ravindranath, R.; Chang, H. -T.; Lu, C. H.; Tseng, C. Y.; Lin, T. Y.; Shih, W. H.; Chen, Y. F. Wrinkled 2D Materials: A Versatile Platform for Low-Threshold Stretchable Random Lasers. Adv. Mater. 2017, 29, 1703549. 7. Redding, B.; Choma, M. A.; Cao, H. Speckle-Free Laser Imaging Using Random Laser Illumination. Nat. photonics 2012, 6 (6), 355-359. 8. Redding, B.; Cerjan, A.; Huang, X.; Lee, M. L.; Stone, A. D.; Choma, M. A.; Cao, H. Low Spatial Coherence Electrically Pumped Semiconductor Laser for Speckle-Free Full-Field Imaging. Proc. Natl. Acad. Sci. U. S. A. 2015, 112, 1304-1309. 9. Zhai, T.; Zhang, X.; Pang, Z.; Su, X.; Liu, H.; Feng, S.; Wang, L. Random Laser Based on Waveguided Plasmonic Gain Channels Nano Lett. 2011, 11, 4295-4298. 10. Anker, J. N.; Hall, W. P.; Lyandres, O.; Shah, N. C.; Zhao, J.; van Duyne, R. P. Biosensing with Plasmonic Nanosensors. Nat. Mater. 2008, 7, 442-453. 11. Brongersma, M. L.; Halas, N. J.; Nordlander, P. Plasmon-Induced Hot Carrier Science and Technology. Nat. Nanotechnol. 2015, 10, 25-34. 12. Mayer, K. M.; Hafner, J. H. Localized surface plasmon resonance sensors. Chem. Rev. 2011, 111, 3828-3857. 13. Willets, K. A.; Van Duyne, R. P. Localized Surface Plasmon Resonance Spectroscopy and Sensing. Annu. Rev. Phys. Chem. 2007, 58, 267-297. 14. Hutter, E.; Fendler, J. H. Exploitation of Localized Surface Plasmon Resonance. Adv. Mater. 2004, 16 (19), 1685-1706. 15. Ning, S.; Wu, Z.; Dong, H.; Ma, L.; Jiao, B.; Ding, L.; Ding, L.; Zhang, F. The Enhanced Random Lasing From Dye-Doped Polymer Films with Different-Sized Silver Nanoparticles. Org. Electron. 2016, 30, 165-170. 16. Dice, G. D.; Mujumdar, S.; Elezzabi, A. Y. Plasmonically Enhanced Diffusive and Subdiffusive Metal Nanoparticle-Dye Random Laser Appl. Phys. Lett. 2005, 86, 131105. 17. Li, L. W.; Deng, L. G. Random lasers in dye-doped polymer-dispersed liquid crystals containing silver nanoparticles Physica B 2012 407(24), 4826-4830. 18. Ziegler, J.; Djiango, M.; Vidal, C.; Hrelescu, C.; Klar, T. A. Gold nanostars for random lasing enhancement. Opt. Express 2015, 23 (12), 15152-15159. 19. Meng, X. G.; Fujita, K.; Murai, S.; Matoba, T.; Tanaka, K. Plasmonically Controlled Lasing Resonance with Metallic-Dielectric Core–Shell Nanoparticles Nano Lett. 2011, 11, 1374-1378. 20. Padiyakkuth, N.; Thomas, S.; Antoine, R.; Kalarikkal, N. Recent progress and prospects of random lasers using advanced materials. Mater. Adv. 2022, 3, 6687-6706. 21. Boriskina, S. V.; Ghasemi, H.; Chen, G. Plasmonic Materials for Energy: From Physics to Applications Mater. Today 2013, 16, 375-386. 22. Lu, D.; Liu, Z. Hyperlenses and Metalenses for Far-Field Super-Resolution Imaging. Nat. Commun. 2012, 3, 1205. 23. Fang, N.; Lee, H.; Sun, C.; Zhang, X. Sub-Diffraction-Limited Optical Imaging with a Silver Superlens. Science 2005, 308, 534-537. 24. Wang, Q.; Rogers, E. T. F.; Gholipour, B.; Wang, C.-M.; Yuan, G.; Teng, J.; Zheludev, N. I. Optically Reconfigurable Metasurfaces and Photonic Devices Based on Phase Change Materials. Nat. Photonics 2016, 10, 60-65. 25. Wang, S.; Wu, P. C.; Su, V.-C.; Lai, Y.-C.; Chu, C. H.; Chen, J.-W.; Lu, S.-H.; Chen, J.; Xu, B.; Kuan, C.-H., et al. Broadband Achromatic Optical Metasurface Devices. Nat. Commun. 2017, 8, 187. 26. Khorasaninejad, M.; Chen, W. T.; Devlin, R. C.; Oh, J.; Zhu, A. Y.; Capasso, F. Metalenses at Visible Wavelengths: Diffraction-Limited Focusing and Subwavelength Resolution Imaging. Science 2016, 352, 1190-1194. 27. Khorasaninejad, M.; Chen, W. T.; Zhu, A. Y.; Oh, J.; Devlin, R. C.; Rousso, D.; Capasso, F. Multispectral Chiral Imaging with a Metalens. Nano Lett. 2016, 16, 4595-4600. 28. Chen, W. T.; Zhu, A. Y.; Khorasaninejad, M.; Shi, Z.; Sanjeev, V.; Capasso, F. Immersion Meta-Lenses at Visible Wavelengths for Nanoscale Imaging Nano Lett. 2017, 17, 3188. 29. Poddubny, A.; Iorsh, I.; Belov, P.; Kivshar, Y. Hyperbolic Metamaterials. Nat. Photonics 2013, 7, 948-957. 30. Krishnamoorthy, H. N. S.; Jacob, Z.; Narimanov, E.; Kretzschmar, I.; Menon, V. M. Topological Transitions in Metamaterials. Science 2012, 336 (6078), 205-209. 31. Ni, X.; Wong, Z. J.; Mrejen, M.; Wang, Y.; Zhang, X. An Ultrathin Invisibility Skin Cloak for Visible Light. Science 2015, 349, 1310-1314. 32. Ji, D.; Song, H.; Zeng, X.; Hu, H.; Liu, K.; Zhang, N.; Gan, Q. Broadband absorption engineering of hyperbolic metafilm patterns Sci. Rep. 2014, 4, 4498. 33. Jacob, Z.; Kim, J. Y.; Naik, G. V.; Boltasseva, A.; Narimanov, E. E.; Shalaev, V. M. Engineering Photonic Density of States Using Metamaterials. Appl. Phys. B-Lasers O. 2010, 100, 215-218. 34. Zhukovsky, S. V.; Kidwai, O.; Sipe, J. E. Physical Nature of Volume Plasmon Polaritons in Hyperbolic Metamaterials. Opt. Express 2013, 21 (12), 14982. 35. Sreekanth, K. V.; Alapan, Y.; Elkabbash, M.; Ilker, E.; Hinczewski, M.; Gurkan, U. A.; De Luca, A.; Strangi, G. Extreme Sensitivity Biosensing Platform Based on Hyperbolic Metamaterials. Nat. Mater. 2016, 15 (6), 621-627. 36. Lu, D.; Kan, J. J.; Fullerton, E. E.; Liu, Z. W. Enhancing Spontaneous Emission Rates of Molecules Using Nanopatterned Multilayer Hyperbolic Metamaterials. Nat. Nanotechnol. 2014, 9, 48-53. 37. Lin, H. I.; Shen, K. C.; Lin, S. Y.; Haider, G.; Li, Y. H.; Chang, S. W.; Chen, Y. F. Transient and Flexible Hyperbolic Metamaterials on Freeform Surfaces. Sci. Rep. 2018, 8 (1), 1-10. 38. Chao, Y. C.; Lin, H. I.; Lin, J. Y.; Tsao, Y. C., Liao, Y. M.; Hsu, F. C.; Chen Y. F. Unconventional organic solar cell structure based on hyperbolic metamaterial J. Mater. Chem. C 2023 11(6) 2273-2281. 39. Chandrasekar, R.; Wang, Z. X.; Meng, X. G.; Azzam, S. I.; Shalaginov, M. Y.; Lagutchev, A.; Kim, Y. L.; Wei, A.; Kildishev, A. V.; Boltasseva, A.Lasing Action with Gold Nanorod Hyperbolic Metamaterials. ACS Photonics 2017, 4, 674-680. 40. Lin, H. -I.; Shen, K. -C.; Liao, Y. -M.; Li, Y. -H.; Perumal, P.; Haider, G.; Cheng, B. H.; Liao, W. C.; Lin, S. Y.; Lin, W. J.; Lin, T. Y.; Chen, Y. F. Integration of Nanoscale Light Emitters and Hyperbolic Metamaterials: An Efficient Platform For the Enhancement of Random Laser Action. ACS Photonics 2018, 5, 718-727. 41. Shen, K. C.; Ku, C. T.; Hsieh, C.; Kuo, H. C.; Cheng, Y. J.; Tsai, D. P. Deep-Ultraviolet Hyperbolic Metacavity Laser. Adv. Mater. 2018, 30, 1706918. 42. Haider, G.; Lin, H. I.; Yadav, K.; Shen, K. C.; Liao, Y. M.; Hu, H. W.; Roy, P. K.; Bera, K. P.; Lin, K. H.; Lee, H. M.A Highly-Efficient Single Segment White Random Laser. ACS Nano 2018, 12, 11847-11859. 43. Wang, C. C.; Kataria, M.; Lin, H. I.; Nain, A.; Lin, H. Y.; Inbaraj, C. R. P.; Liao, Y. M.; Thakran, A.; Chang, H. T.; Tseng, F. G.; Hsieh, Y. P.; Chen, Y. F. Generation of silver metal nanocluster random lasing. ACS Photonics 2021 8(10), 3051-3060. 44. Cortes, C. L.; Newman, W.; Molesky, S.; Jacob, Z. Quantum Nanophotonics Using Hyperbolic Metamaterials. J. Opt. 2012, 14, 063001. 45. Luan, F.; Gu, B.; Gomes, A. S.L.; Yong, K. T.; Wen, S., Prasad, P. N. Lasing in Nanocomposite Random Media. Nano Today 2015, 10, 168-192. 46. Ferrari, L.; Smalley, J. S. T.; Fainman, Y.; Liu, Z. Hyperbolic metamaterials for dispersion-assisted directional light emission. Nanoscale 2017, 9, 9034−9048. 47. Gao, J.; Sun, L.; Deng, H.; Mathai, C. J.; Gangopadhyay, S.; Yang, X. Experimental realization of epsilon-near-zero metamaterial slabs with metal-dielectric multilayers. Appl. Phys. Lett. 2013, 103, 051111. 48. Lin, H.-I.; Yadav, K.; Shen, K.-C.; Haider, G.; Roy, P. K.; Kataria, M.; Chang, T.-J.; Li, Y.-H.; Lin, T.-Y.; Chen, Y.-T.; Chen, Y.-F. Nanoscale Core–Shell Hyperbolic Structures for Ultralow Threshold Laser Action: An Efficient Platform for the Enhancement of Optical Manipulation. ACS Appl. Mater. Interfaces 2019, 11, 1163-1173. 49. Shih, C. T.; Chao Y. C.; Shen, J. L.; Chen Y. F. Enhanced Förster resonance energy transfer on layered metal–dielectric hyperbolic metamaterials: an excellent platform for low-threshold laser action. Opt. Express 2023 31, 12669-12679. 50. Dowling, J. P. Spontaneous Emission in Cavities: How Much More Classical Can You Get?. Found. Phys. 1993, 23, 895-905. 51. Redding, B.; Choma, M. A.; Cao, H. Speckle-free Laser Imaging Using Random Laser Illumination, Nature Photonics 2012, 6, 355–359. 52. Ignesti, E.; Tommasi, F.; Fini, L.; Martelli, F.; Azzali, N.; Cavalieri, S. A New Class of Optical Sensors: a Random Laser Based Device. Sci. Rep. 2016 6, 35225. 53. Su, C. Y.; Hou, C. F.; Hsu, Y. T.; Lin, H. Y.; Liao, Y. M.; Lin, T. Y.; Chen, Y. F. Multifunctional Random-Laser Smart Inks. ACS Appl. Mater. Interfaces 2020, 12, 49122–49129. 54. Weid, J. P. von der; Correia, M. M.; Tovar, P.; Gomes, A. S. L.; Margulis, W. A Mode-locked Random Laser Generating Transform-limited Optical Pulses, Nature Commun. 2024, 15, 177. Chapter 6: Enhancement of Fluorescence Resonance Energy Transfer by Coherent Coupling in-between Surface Plasmon and Volume Plasmon Polariton 1. Ray, P. C.; Fortner, A.; Darbha, G. K. Gold Nanoparticle Based FRET Asssay for the Detection of DNA Cleavage. J. Phys. Chem. B 2006, 110, 20745-20748. 2. Hardin, B. E.; Hoke, E. T.; Armstrong, P. B.; Yum, J.-H.; Comte, P.; Torres, T.; Fréchet, J. M. J.; Nazeeruddin, M. K.; Grätzel, M.; McGehee, M. D. Increased Light Harvesting in Dye-Sensitized Solar Cells with Energy Relay Dyes. Nat. Photonics 2009, 3, 406-411. 3. Li, H.; Wang, M.; Wang, C.; Li, W.; Qiang, W.; Xu, D. Silver Nanoparticle-Enhanced Fluorescence Resonance Energy Transfer Sensor for Human Platelet-Derived Growth Factor-BB Detection Anal. Chem. 2013, 85, 4492– 4499. 4. Shi, J. Y.; Tian, F.; Lyu, J.; Yang, M. Nanoparticle Based Fluorescence Resonance Energy Transfer (FRET) for Biosensing Applications. J. Mater. Chem. B 2015, 3, 6989-7005. 5. Aissaoui, N.; Moth-Poulsen, K.; Käll, M.; Johansson, P.; Wilhelmsson, L. M.; Albinsson, B. FRET Enhancement Close to Gold Nanoparticles Positioned in DNA Origami Constructs. Nanoscale 2017, 9, 673-683. 6. Shen, T.-L.; Hu, H.-W.; Lin, W.-J.; Liao, Y.-M.; Chen, T.-P.; Liao, Y.-K.; Lin, T.-Y.; Chen, Y.-F. Coherent Förster Resonance Energy Transfer: A New Paradigm for Electrically Driven Quantum Dot Random Lasers. Sci. Adv. 2020, 6, eaba1705 7. Mayer, K. M.; Hafner, J. H. Localized Surface Plasmon Resonance Sensors. Chem. Rev. 2011, 111 (6), 3828-3857. 8. Willets, K. A.; Van Duyne, R. P. Localized Surface Plasmon Resonance Spectroscopy and Sensing. Annu. Rev. Phys. Chem. 2007, 58, 267-297. 9. Hutter, E.; Fendler, J. H. Exploitation of Localized Surface Plasmon Resonance. Adv. Mater. 2004, 16 (19), 1685-1706. 10. Shimizu, K. T.; Woo, W. K.; Fisher, B. R.; Eisler, H. J.; Bawendi, M. G. Surface-enhanced emission from single semiconductor nanocrystals. Phys. Rev. Lett. 2002, 89, 117401. 11. Komarala, V. K.; Bradley, A. L.; Rakovich, Y. P.; Byrne, S. J.; Gun’ko, Y. K.; Rogach, A. L. Surface plasmon enhanced Förster resonance energy transfer between the CdTe quantum dots. Appl. Phys. Lett. 2008, 93, 123102. 12. Wang, C. H.; Chen, C. W.; Chen, Y. T.; Wei, C. M.; Chen, Y. F.; Lai, C. W.; Ho, M. L.; Chou, P. T.; Hofmann, M. Surface plasmon enhanced energy transfer between type I CdSe/ZnS and type II CdSe/ZnTe quantum dots. Appl. Phys. Lett. 2010, 96, 071906. 13. Poddubny, A.; Iorsh, I.; Belov, P.; Kivshar, Y. Hyperbolic Metamaterials. Nat. Photonics 2013, 7, 948957. 14. Ferrari, L.; Wu, C.; Lepage, D.; Zhang, X.; Liu, Z. Hyperbolic Metamaterials and Their Applications. Prog. Quantum Electron. 2015, 40, 1-40. 15. Jacob, Z.; Kim, J. Y.; Naik, G. V.; Boltasseva, A.; Narimanov, E. E.; Shalaev, V. M. Engineering Photonic Density of States Using Metamaterials. Appl. Phys. B: Lasers Opt. 2010, 100, 215-218. 16. Zhukovsky, S. V.; Kidwai, O.; Sipe, J. E. Physical Nature of Volume Plasmon Polaritons in Hyperbolic Metamaterials. Opt. Express 2013, 21, 14982-14987. 17. Vasilantonakis, N.; Nasir, M. E.; Dickson, W.; Wurtz, G. A.; Zayats, A. V. Bulk Plasmon-Polaritons in Hyperbolic Nanorod Metamaterial Waveguides. Laser Photonics Rev. 2015, 9, 345-353. 18. Shih, C.-T.; Chao, Y.-C.; Shen, J.-L.; Chen, Y.-F. Enhanced Förster resonance energy transfer on layered metal–dielectric hyperbolic metamaterials: an excellent platform for low-threshold laser action. Opt. Exp. 2023, 31 (8), 12669-12679. 19. Cao, J.; Zhang, H.; Liu, X.; Zhou, N.; Pi, X.; Li, D.; Yang, D. Plasmon-Coupled Förster Resonance Energy Transfer between Silicon Quantum, J. Phys. Chem. C 2019, 123, 23604-23609. 20. Liu, H.; Li, C.; Li, J.; Cheng, Y.; Zhao, J.; Chen, J.; Sun, M. Plasmon-enhanced fluorescence resonance energy transfer in different nanostructures and nanomaterials, Appl. Mater. Today, 2023, 30, 101731. 21. Khorasaninejad, M.; Chen, W. T.; Devlin, R. C.; Oh, J.; Zhu, A. Y.; Capasso, F. Metalenses at Visible Wavelengths: Diffraction- Limited Focusing and Subwavelength Resolution Imaging. Science 2016, 352, 1190-1194. 22. Chen, Y.; Herrnsdorf, J.; Guilhabert, B.; Zhang, Y.; Watson, I. M.; Gu, E.; Laurand, N.; Dawson, M. D. Colloidal Quantum Dot Random Laser. Opt. Express 2011, 19 (4), 2996. 23. Cortes, C. L.; Newman, W.; Molesky, S.; Jacob, Z. Quantum Nanophotonics Using Hyperbolic Metamaterials. J. Opt. 2012, 14, 063001. 24. Ferrari, L.; Smalley, J. S. T.; Fainman, Y.; Liu, Z. Hyperbolic metamaterials for dispersion-assisted directional light emission. Nanoscale 2017, 9 (26), 9034-9048. 25. Gao, J.; Sun, L.; Deng, H.; Mathai, C. J.; Gangopadhyay, S.; Yang, X. Experimental realization of epsilon-near-zero metamaterial slabs with metal-dielectric multilayers. Appl. Phys. Lett. 2013, 103, 051111. 26. Zhang, J.; Fu, Y.; Lakowicz, J. R. Enhanced Förster Resonance Energy Transfer (FRET) on a Single Metal Particle. J. Phys. Chem. C 2007, 111 (1), 50-56. 27. Haider, G.; Lin, H. I.; Yadav, K.; Shen, K. C.; Liao, Y. M.; Hu, H. W.; Roy, P. K.; Bera, K. P.; Lin, K. H.; Lee, H. M. and Chen, Y. F. A Highly-efficient single segment white random laser, ACS Nano 2018, 12, 11847-11859. 28. Lin, H.-I.; Yadav, K.; Shen, K.-C.; Haider, G.; Roy, P. K.; Kataria, M.; Chang, T.-J.; Li, Y.-H.; Lin, T.-Y.; Chen, Y.-T.; Chen, Y.-F. Nanoscale core–shell hyperbolic structures for ultralow threshold laser action: an efficient platform for the enhancement of optical manipulation, ACS Appl. Mater. Interf. 2019, 11, 1163-1173. 29. Caigas, S. P.; Santiago, S. R. M.; Lin, T.-N.; Lin, C.-A. J.; Yuan, C.-T.; Shen, J.-L.; Lin, T.-Y. Origins of excitation-wavelength-dependent photoluminescence in WS2 quantum dots, Appl. Phys. Lett. 2018, 112, 092106. 30. van Driel, A. F.; Nikolaev, I. S.; Vergeer, P.; Lodahl, P.; Vanmaekelbergh, D.; Vos, W. L. Statistical analysis of time-resolved emission from ensembles of semiconductor quantum dots: Interpretation of exponential decay models, Phys. Rev. B 2007, 75, 035329. 31. Haiyan Liu, Chenyu Li, Jing Li, Yuqing Cheng, Junfang Zhao, Jianing Chen, Mengtao Sun. Plasmon-enhanced fluorescence resonance energy transfer in different nanostructures and nanomaterials. Applied Materials Today 2023, 30 , 101731. 32. Lu, D.; Kan, J. J.; Fullerton, E. E.; Liu, Z. Enhancing Spontaneous Emission Rates of Molecules Using Nanopatterned Multilayer Hyperbolic Metamaterials. Nat. Nanotechnol. 2014, 9, 48-53. 33. Ford, G. W.; Weber, W. H. Electromagnetic Interactions of Molecules with Metal Surfaces. Phys. Rep. 1984, 113, 195-287. 34. Panniello A., Trapani M., Cordaro M., Dibenedetto C. N., Tommasi R., Ingrosso C., Fanizza E., Grisorio R., Collini E., Agostiano A., Curri M. L., Castriciano M. A., Striccoli M. High-efficiency FRET processes in BODIPY-Functionalized quantum dot architectures. Chem. - Eur. J. 2021, 27, 2371-2380. 35. Cao, J.; Zhang, H.; Pi, X.; Li, D.; Yang, D. Enhanced photoluminescence of silicon quantum dots in the presence of both energy transfer enhancement and emission enhancement mechanisms assisted by the double plasmon modes of gold nanorods. Nanoscale Adv. 2021, 3 (16), 4810-4815. 36. Deshmukh, R.; Biehs, S.-A.; Khwaja, E.; Galfsky, T.; Agarwal, G. S.; Menon, V. M. Long-range resonant energy transfer using optical topological transitions in metamaterials. ACS Photonics 2018, 5 (7), 2737-2741. 37. Dowling, J. P. Spontaneous Emission in Cavities: How Much More Classical Can You Get?. Found. Phys. 1993, 23, 895-905. Chapter 7: Enhancement of Light Emission via Coherent Coupling of Aligned Excitons and Energy Transfer Assisted by Self-Assembled Polar Monolayer 1 Zhou, X.; Tamura, H.; Chang, T.-H.; Hung, C.-L. Trapped Atoms and Superradiance on an Integrated Nanophotonic Microring Circuit. Phys. Rev. X 2024, 14, 031004. 2 Dicke, R. H. Coherence in spontaneous radiation processes. Phys. Rev. 1954, 93, 99. 3 Andreev, A. V.; Emel’yanov, V. I.; Il’inskiĭ, Yu. A. Collective Spontaneous Emission (Dicke Superradiance). Sov. Phys. Usp. 1980, 23, 493-514. 4 Brandes, T. Coherent and Collective Quantum Optical Effects in Mesoscopic Systems. Phys. Rep. 2005, 408, 315– 474, DOI: 10.1016/j.physrep.2004.12.002. 5 Yi, S.; Zhou, M.; Wang, Z.; Yu, Z. Superradiant Absorption in Multiple Optical Nanoresonators. Phys. Rev. B 2014, 89, 195449. 6 Scheibner, M.; Schmidt, T.; Worschech, L.; Forchel, A.; Bacher, G.; Passow, T.; Hommel, D. Superradiance of quantum dots. Nat. Phys. 2007, 3, 106-110. 7 Kim, J.-H.; Aghaeimeibodi, S.; Richardson, C. J.; Leavitt, R. P.; Waks, E. Super-Radiant Emission from Quantum Dots in a Nanophotonic Waveguide. Nano Lett. 2018, 18, 4734-4740. 8 Russ, B.; Eisler, C. N. The future of quantum technologies: superfluorescence from solution-processed, tunable materials. Nanophotonics 2024, 13 (11), 1943-1951. 9 Zhao, Y.; Wang, V.; Javey, A. Molecular Materials with ShortRadiative Lifetime for High-Speed Light-Emitting Devices. Matter. 2020, 3, 1832-1844. 10 Vieira, J.; Pardal, M.; Mendonça, J. T.; Fonseca, R. A. Generalized Superradiance for Producing Broadband Coherent Radiation with Transversely Modulated Arbitrarily Diluted Bunches. Nat. Phys. 2021, 17, 99–104. 11 Cao, H.; Zhao, Y. G.; Ho, S. T.; Seelig, E. W.; Wang, Q. H.; Chang, R. P. H. Random Laser Action in Semiconductor Powder. Phys. Rev. Lett. 1999, 82, 2278-2281. 12 Gomes, A. S. L.; Moura, A. L.; de Araújo, C. B.; Raposo, E. P. Recent Advances and Applications of Random Lasers and Random Fiber Lasers. Prog. Quantum Electron. 2021, 78, 100343. 13 Wiersma, D. S. The Physics and Applications of Random Lasers. Nat. Phys. 2008, 4, 359-367. 14 Lawandy, N. M.; Balachandran, R. M.; Gomes, A. S. L.; Sauvain, E. Laser Action in Strongly Scattering Media. Nature 1994, 368, 436-438. 15 Turitsyn, S. K.; Babin, S. A.; El-Taher, A. E.; Harper, P.; Churkin, D. V.; Kablukov, S. I.; Ania-Castañón, J. D.; Karalekas, V.; Podivilov, E. V. Random Distributed Feedback Fibre Laser. Nat. Photonics 2010, 4, 231-235. 16 Hou, Y.; Zhou, Z.; Zhang, C.; Tang, J.; Fan, Y.; Xu, F.-F.; Zhao, Y.-S. Full-Color Flexible Laser Displays Based on Random Laser Arrays. Sci. China Mater. 2021, 64, 2805-2812. 17 Polson, R. C.; Vardeny, Z. V. Random Lasing in Human Tissues. Appl. Phys. Lett. 2004, 85, 1289-1291. 18 Song, Q.; Xu, Z.; Choi, S. H.; Sun, X.; Xiao, S.; Akkus, O.; Kim, Y. L. Detection of Nanoscale Structural Changes in Bone Using Random Lasers. Biomed. Opt. Express 2010, 1, 1401-1407. 19 Redding, B.; Choma, M. A.; Cao, H. Speckle-Free Laser Imaging Using Random Laser Illumination. Nat. Photonics 2012, 6, 355-359. 20 Dang, C.; Lee, J.; Breen, C.; Steckel, J. S.; Coe-Sullivan, S.; Nurmikko, A. Red, Green and Blue Lasing Enabled by Single-Exciton Gain in Colloidal Quantum Dot Films. Nat. Nanotechnol. 2012, 7, 335-339. 21 Geiregat, P.; Van Thourhout, D.; Hens, Z. A Bright Future for Colloidal Quantum Dot Lasers. NPG Asia Mater. 2019, 11, 41. 22 Hahm, D.; Pinchetti, V.; Livache, C.; Ahn, N.; Noh, J.; Li, X.; Du, J.; Wu, K.; Klimov, V. I. Colloidal Quantum Dots Enable Tunable Liquid-State Lasers. Nat. Mater. 2025, 24, 48-55. 23 García de Arquer, F. P.; Talapin, D. V.; Klimov, V. I.; Arakawa, Y.; Bayer, M.; Sargent, E. H. Semiconductor Quantum Dots: Technological Progress and Future Challenges. Science 2021, 373, 6555. 24 Unold, T.; Mueller, K.; Lienau, C.; Elsaesser, T.; Wieck, A. D. Optical Control of Excitons in a Pair of Quantum Dots Coupled by the Dipole–Dipole Interaction. Phys. Rev. Lett. 2005, 94, 137404. 25 Jung, H.; Ahn, N.; Klimov, V. I. Prospects and Challenges of Colloidal Quantum Dot Laser Diodes. Nat. Photonics 2021, 15, 643-655. 26 Cao, H. Random Lasers: Development, Features and Applications. Opt. Photonics News 2005, 16, 24-29. 27 Chen, Y.; Herrnsdorf, J.; Guilhabert, B.; Zhang, Y.; Watson, I. M.; Gu, E.; Laurand, N.; Dawson, M. D. Colloidal Quantum Dot Random Laser. Opt. Express 2011, 19 (4), 2996-3003. 28 Liao, W.-C.; Liao, Y.-M.; Su, C.-T.; Perumal, P.; Lin, S.-Y.; Lin, W.-J.; Chang, C.-H.; Lin, H.-I.; Haider, G.; Chang, C.-Y.; Chang, S.-W.; Tsai, C.-Y.; Lu, T.-C.; Lin, T.-Y.; Chen, Y.-F. Plasmonic Carbon-Dot-Decorated Nanostructured Semiconductors for Efficient and Tunable Random Laser Action. ACS Appl. Nano Mater. 2018, 1 (1), 172-180. 29 Ghasempour Ardakani, A.; Shahvandpour, M. A Simple Method to Achieve a Directional and Resonant Random Lasing Emission Using Graphene Quantum Dots as Scattering Elements. Phys. B Condens. Matter 2021, 616, 413133. 30 Cao, M.; Zhang, Y.; Song, X.; Che, Y.; Zhang, H.; Dai, H.; Zhang, G.; Yao, J. Random Lasing in a Colloidal Quantum Dot-Doped Disordered Polymer. Opt. Express 2016, 24 (9), 9325-9331. 31 Chao, Y.-C.; Shih, C.-T.; Lin, J.-Y.; Wu, J.-W.; Ho, C.-C.; Lai, M.-C.; Shen, J.-L.; Hsu, F.-C.; Chen, Y.-F. Enhancement of Light–Matter Interaction Induced by Quantum-Coherent Coupling between Localized Surface Plasmon Resonance and Volume Plasmon Polariton. Adv. Opt. Mater. 2024, 12 (20), 2400973. 32 Lin, H.-I.; Tan, H.-Y.; Liao, Y.-M.; Shen, K.-C.; Shalaginov, M. Y.; Kataria, M.; Chen, C.-T.; Chang, J.-W.; Chen, Y.-F. A Transferrable, Adaptable, Free-Standing, and Water-Resistant Hyperbolic Metamaterial. ACS Appl. Mater. Interfaces 2021, 13 (41), 49271-49278. 33 Lin, H.-I.; Wang, C.-C.; Shen, K.-C.; Shalaginov, M. Y.; Roy, P. K.; Bera, K. P.; Kataria, M.; Inbaraj, C. R. P.; Chen, Y.-F. Enhanced Laser Action from Smart Fabrics Made with Rollable Hyperbolic Metamaterials. npj Flex. Electron. 2020, 4, 20. 34 Haider, G.; Sampathkumar, K.; Verhagen, T.; Nádvorník, L.; Sonia, F. J.; Valeš, V.; Sýkora, J.; Kapusta, P.; Němec, P.; Hof, M.; Frank, O.; Chen, Y.-F. Superradiant Emission from Coherent Excitons in van Der Waals Heterostructures. Adv. Funct. Mater. 2021, 31, 2102196. 35 Tiranov, A.; Angelopoulou, V.; van Diepen, C. J.; Schrinski, B.; Dall’Alba Sandberg, O. A.; Wang, Y.; Midolo, L.; Scholz, S.; Wieck, A. D.; Lodahl, P.; et al. Collective Super- and Subradiant Dynamics between Distant Optical Quantum Emitters. Science 2023, 379, 389-393. 36 Lin, J.-Y.; Hsu, F.-C.; Chao, Y.-C.; Ho, C.-C.; Lai, M.-C.; Li, T.-Y.; Chen, Y.-F. High-Performance Organic Field-Effect Transistors Based on a Self-Assembled Polar Dielectric Monolayer. ACS Appl. Electron. Mater. 2025, 7 (6), 1925-1932. 37 Lin, J.-Y.; Hsu, F.-C.; Chao, Y.-C.; Wu, J.-W.; Yang, Z.-L.; Huang, B.-C.; Chiu, Y.-P.; Chen, Y.-F. Effects of Self-Assembled Polymer-Based Hole Transport Monolayer on Organic Photovoltaics. Small 2025, 21 (11), 24010990. 38 Rittich, J.; Jung, S.; Siekmann, J.; Wuttig, M. Indium-Tin-Oxide (ITO) Work Function Tailoring by Covalently Bound Carboxylic Acid Self-Assembled Monolayers. Phys. Status Solidi B 2018, 255, 1800075. 39 Lin, J.-Y.; Hsu, F. C.; Chang, C. Y.; Chen, Y. F. Self-Assembled Polar Hole Transport Monolayer for High-Performance Perovskite Photodetectors. J. Mater. Chem. C 2021, 9, 5190-5197. 40 Chang, C.-Y.; Huang, H.-H.; Tsai, H.; Lin, S.-L.; Liu, P.-H.; Chen, W.; Hsu, F.-C.; Nie, W.; Chen, Y.-F.; Wang, L. Facile fabrication of self-assembly functionalized polythiophene hole trans-porting layer for high performance perovskite solar cells. Adv. Sci. 2021, 8, 2002718. 41 Caigas, S. P.; Santiago, S. R. M.; Lin, T.-N.; Lin, C.-A. J.; Yuan, C.-T.; Shen, J.-L.; Lin, T.-Y. Origins of Excitation-Wavelength-Dependent Photoluminescence in WS₂ Quantum Dots. Appl. Phys. Lett. 2018, 112 (9), 092106. 42 van Driel, A. F.; Nikolaev, I. S.; Vergeer, P.; Lodahl, P.; Vanmaekelbergh, D.; Vos, W. L. Statistical analysis of time-resolved emission from ensembles of semiconductor quantum dots: Interpretation of exponential decay models. Phys. Rev. B 2007, 75 (3), 035329. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101002 | - |
| dc.description.abstract | 本論文研究了透過兩種途徑增強光與物質相互作用的奈米結構設計:1.利用雙曲超材料 (HMM) 調控色散關係,以傳播high-k體等離子激元 (VPP/BPP) 並調節光子態密度; 2.利用自組裝極性單分子層進行界面偶極子工程,以定向排列偶激子。借助 VPP,我們在有機太陽能電池中實現了更高的激子生成,從而提高了光捕獲效率。透過將 VPP 與金奈米粒子的局域表面等離子體共振 (LSPR) 相干耦合,或在 ITO 上形成化學吸附的 P3HT-COOH 單分子層,經開爾文探針力顯微鏡 (KPFM) 和紫外光電子能譜 (UPS) 驗證,我們展示了加速的 Förster 共振能量轉移、增強的自發輻射能量轉移、增強的自發輻射能量和降低雷射閾值。我們的研究成果分為四個主要主題,並總結如下:
1.基於雙曲超穎材料的非傳統有機太陽能電池結構 雙曲超穎材料(HMM)因其可強化光和物質交互作用、調控光子態密度並產生體電漿極化子(BPP),近年備受關注。本研究首次將 HMM 應用於有機太陽能電池(OSCs)並展現優異效能。所設計之 HMM 結構由多對 MoO3/Au 疊層組成,並在主動層的主要吸收波段呈現雙曲色散行為。為了有效將 BPP 耦合進入主動層,我們將 HMM 的第一對層設計為電池結構的一部分,兼作電洞傳輸層與陽極。引入 HMM 的 OSC(HMM-OSCs)相較於僅使用一對 MoO3/Au 的相似裝置,其能量轉換效率(PCE)提升約 29.4%;與採用全反射電極的傳統 OSC 相比,PCE 亦提升約 11%。與傳統 OSC 相較,其效能增益主要來自短路電流密度在寬廣波段的提升,源於光生電荷轉換效率提高;依據光電流分析與穩態光致發光(PL)量測,這可歸因於激子生成與解離機率較高。實驗觀察與理論模擬相符,兩者皆顯示所設計之 HMM 結構可增強局部電場強度與激子生成率。因此,所設計之 HMM-OSCs 能成功將 BPP 導入器件運作,對提升光吸收效率產生顯著影響。所提出的設計可作為 HMM 擴展至其他光電元件應用的指引。 2.藉由局域表面電漿共振與體電漿子極化子之量子相干耦合增強光和物質交互作用 雙曲超穎材料(HMMs)以其強健的光和物質交互作用與產生體電漿極化子(VPP)的能力而著稱;金奈米粒子(Au NPs)則可藉由局域表面電漿共振(LSPR)形成強烈的局部電場,進一步強化此交互作用。然而,在同一器件中同時結合 LSPR 與 VPP 的作法仍少有探討。本研究提出並實驗證實金奈米粒子耦合之 HMM(NPCHMMs),將 Au NPs 與 HMM 整合,以增強隨機雷射作用並降低雷射門檻。相較於純 HMM 與純 Au NPs,NPCHMMs 的雷射強度分別提升約 6.6 倍與 8 倍,同時雷射門檻降低約 47%。根據費米黃金定律(Fermi’s golden rule)之計算,NPCHMMs 的躍遷速率超過由 HMM 與 Au NPs 各自貢獻之躍遷速率代數和,揭示了 VPP 與 LSPR 躍遷矩陣元素之間的相干耦合效應。研究結果顯示,NPCHMMs 為實現高效能光學與光電元件(如雷射、光電電晶體等)之有前景平台,適用於多種應用領域。 3.透過表面電漿與體電漿子極化子之相干耦合強化福斯特共振能量轉移 福斯特共振能量轉移(FRET)已廣泛應用於生物感測、發光元件與有機太陽能等領域,如何提升其效率一直備受關注。本研究首次提出並實作一種將金屬奈米粒子(NPs)所誘發之表面電漿(SP)與雙曲超穎材料(HMMs)所支援之體電漿極化子(VPP)整合於同一器件的作法,藉由表面電漿耦合體電漿極化子(SPCVPP)效應來強化 FRET。值得注意的是,在採用供受體為 CdSe/ZnS 量子點(QD)對之 SPCVPP 樣品中,FRET 效率可達 83.5 ± 0.1%。此外,為進一步探討 SPCVPP 效應,我們將其工作原理延伸至雷射作用研究,發現受激輻射因 SPCVPP 耦合而顯著增強,並以混合藍/紅發光 QDs 為例,相較於僅具 Au NPs 的相同 QD 對,雷射門檻降低 63%。有趣的是,SPCVPP 器件在 FRET 效率與雷射發射強度方面的提升,均明顯優於單獨 HMM 或單獨 Au NP 的效果,且超越兩者增強效應之簡單代數相加。其根源可由 SP 與 VPP 的相干耦合來理解:此耦合提升了 FRET 效率並放大了受激輻射的躍遷速率。根據費米黃金律,對應於 SP 與 VPP 之哈密頓量躍遷矩陣元素相干耦合的理論計算,與實驗觀察高度一致,驗證了本研究方法之正確性。整體而言,SPCVPP 效應揭示了驅動 FRET 增強與雷射作用的底層機制,為開發高效率先進光子裝置提供了重要科學洞見。 4.以自組裝極化單分子層輔助之激子排列與能量轉移相干耦合提升發光 基有效控制能量轉移與激子動力學是推進光電與雷射裝置的關鍵。本研究顯示,藉由自組裝單分子層(SAM)的輔助,使排列良好的激子與共振能量轉移(RET)產生相干耦合,可大幅提升量子點(QDs)/金奈米粒子(Au NPs)複合系統之光學表現。具體而言,poly[3-(6-carboxyhexyl) thiophene-2,5-diyl](P3HT-COOH) 在 ITO 上形成之極化單分子層,已由 Kelvin 探針力顯微鏡(KPFM)、紫外光電子能譜(UPS)及其他量測證實。相較於旋塗且偶極隨機取向之 P3HT-COOH 薄膜,QDs 置於該極化 SAM 上時,其光致發光(PL)強度提升約 55%,且激子壽命縮短至約 4.5 ns。此外,系統於 42 W∙cm-2 即出現低門檻隨機雷射,而在旋塗薄膜上則未觀察到。進一步地,由於 P3HT-COOH 發光與 QDs 吸收之光譜重疊,系統內部存在共振能量轉移。因此,整體性能之提升可歸因於極化 SAM 所促成之激子良好排列與 RET 的協同效應,兩者共同導致相干耦合並觸發輻射復合的超輻射(superradiance),最終實現隨機雷射行為。此一作法為提升光電與光子元件效能提供了穩健而有效的策略。 | zh_TW |
| dc.description.abstract | This dissertation investigates designed nanostructures that enhance light–matter interactions through two routes: (i) dispersion engineering with hyperbolic metamaterials (HMMs) to access high-k volume/bulk plasmon polaritons (VPP/BPP) and tailor the photonic density of states, and (ii) interfacial-dipole engineering with self-assembled polar monolayers to align excitons. With the assistance of VPP, we achieve higher exciton generation in organic solar cells to enhance light harvest efficiency. By coherently coupling VPPs with localized surface plasmon resonance (LSPR) from Au nanoparticles or forming chemisorbed P3HT-COOH monolayers on ITO, as verified by Kelvin probe force microscopy (KPFM) and ultraviolet photoelectron spectroscopy (UPS), we demonstrate accelerated Förster resonance energy transfer, enhanced spontaneous emission, and low-threshold random lasing. Our results are classified into four main topics and summarized as follows:
1. Unconventional Organic Solar Cell Structure Based on Hyperbolic Metamaterial HMM has attracted considerable attention due to its enhanced light-matter interaction for tuning photonic density of states and producing bulk plasmon polariton (BPP). In this thesis, we demonstrate the application of HMM in organic solar cells (OSCs) with superior performance for the first time. The designed HMM structure composed of multiple pairs of MoO3/Au stacks possesses a hyperbolic dispersion behavior in the primary light absorption regime of the photoactive material. To effectively couple BPP into the photoactive layer, the first pair of the HMM structure is designed to be a portion of the OSC structure, serving as the hole transport layer and anode. The unconventional HMM incorporated OSCs (HMM-OSCs) exhibit an ~29.4% enhancement in power conversion efficiency (PCE) relative to the similar OSCs using one pair of MoO3/Au and an ~11% improvement in PCE as compared to conventional OSCs with fully reflective electrode. Compared to conventional OSCs, the performance improvement is primarily from the improved short circuit current density from a broad wavelength range of the enhanced photon-to-charge conversion efficiency due to the higher exciton generation and dissociation probability as suggested by the photocurrent analysis and steady-state photoluminescence measurements. The experimental observation agrees well with that inferred from theoretical simulation for the enhancement in the local electric field and exciton generation rate for the designed HMM structure. Therefore, the designed HMM-OSCs can successfully couple BPP into operation with a large impact on enhancing light absorption efficiency. Our design principle can serve as a useful guideline for the application of HMM in other optoelectronic devices. 2. Enhancement of Light-Matter Interaction Induced by Quantum-Coherent Coupling between Localized Surface Plasmon Resonance and Volume Plasmon Polariton HMMs are known for their robust light-matter interaction and ability to generate VPPs. Au nanoparticles (Au NPs) enable to enhance this interaction through LSPR, creating intense local electric fields. However, combining LSPR and VPPs in one device remains unexplored. This thesis proposes and demonstrates Au NP-coupled-HMMs (NPCHMMs), integrating Au NPs with HMMs to enhance random laser action and lower the lasing threshold. NPCHMMs boost emission intensity by approximately 6.6 and 8 times compared to pure HMMs and Au NPs, respectively, with a ~ 47% reduction in lasing threshold. Based on Fermi’s golden rule, the calculated transition rate in NPCHMMs surpasses the algebraic sum of the individual transition rates derived from HMMs and Au NPs. It reveals the effect of the coherent coupling between the transition matrix elements of VPP and LSPR. This research indicates that NPCHMMs are a promising platform to create high-performance optical and optoelectronic devices, such as lasers and phototransistors, for a wide range of application in many fields. 3. Enhancement of Fluorescence Resonance Energy Transfer by Coherent Coupling in-between Surface Plasmon and Volume Plasmon Polariton Förster resonance energy transfer (FRET) has been widely utilized in various domains, spanning from biosensors to light-emitting devices and organic photovoltaics. Enhancement of the efficiency of FRET has attracted a great deal of attention. In this study, we have proposed and demonstrated a first attempt of the integration of SP and VPP induced by metal NPs with HMMs in a device that possesses surface-plasmon-coupled-volume-plasmon-polariton (SPCVPP) effect for the enhancement of FRET. Notably, an enhanced FRET efficiency as high as 83.5±0.1% has been attained for the donor-acceptor CdSe/ZnS quantum dot (QD) pairs implemented in the SPCVPP sample. Additionally, to further explore the SPCVPP effect, we adapted the working principle to the study of laser action and found that stimulated emission of the QD pairs is enhanced significantly based on the SPCVPP effect, driving by the enhancement of FRET. The lasing threshold is reduced by 63% via the SPCVPP effect for the mixed blue- and red- emitting as QDs, compared to the same QD pairs with Au NPs. Interestingly, it is found that the SPCVPP device reveals a very large enhancement of the efficiency of FRET as well as laser action emission intensity compared to individual HMM and Au NP effect, exceeding the simple algebraic sum of their individual enhancement. The underlying origin of the large enhancement can be well understood based on the coherent coupling of SP and VPP, which results in the enhanced FRET efficiency and amplifies the transition rate of the stimulated emission. Theoretical calculations according to Fermi’s golden rule for the coherent coupling of the Hamiltonian transition matrix element with respect to SP and VPP closely agree with experimental observations, confirming the validity of our approach. The SPCVPP effect sheds light on the underlying mechanisms driving the FRET enhancement and laser action, offering deep scientific insights for the development of advanced photonic devices with improved efficiency and performance. 4. Enhancement of Light Emission via Coherent Coupling of Aligned Excitons and Energy Transfer Assisted by Self-Assembled Polar Monolayer Enhancing light-matter interactions through effective control of energy transfer and exciton dynamics is essential for advancing optoelectronic devices and lasers. Herein, we demonstrate a substantial enhancement in the optical performance of quantum dots (QDs)/Au nanoparticle (Au-NPs) composite through the coherent coupling of aligned excitons and resonant energy transfer assisted by a self-assembled monolayer (SAM) of poly[3-(6-carboxyhexyl) thiophene-2,5-diyl] (P3HT-COOH). The SAM of P3HT-COOH forms a polar monolayer on indium-tin-oxide (ITO), as evidenced by KPFM, UPS, and several other measurements. It is found that the photoluminescence (PL) intensity of QDs on this polar SAM dramatically increases by ~ 55% with a shortened exciton lifetime of ~4.5 ns in contrast to those deposited on a spin-coated P3HT-COOH thin film with random arranged dipoles. Additionally, the emergence of random lasing behavior occurs at a relatively low threshold of 42 W∙cm-2 whereas it is absent on the spin-coated thin film. Further, resonant energy transfer is involved for the spectral overlap between the emission of P3HT-COOH and the absorption of QDs. Therefore, the improved optical performance can be attributed to the synergistic effects of energy transfer and coherent coupling of well aligned excitons in QDs assisted by the polar SAM, which triggers the superradiance process of the radiative recombination and enables to induce random lasing behavior. This innovative approach highlights a robust strategy for enhancing the performance of optoelectronic and photonic devices. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-11-26T16:25:32Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-11-26T16:25:32Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Contents
口試委員審定書 I 致謝 II 中文摘要 III ABSTRACT VI List of Publication XII Contents XVI List of Figures and Tables XIX Chapter 1: Introduction 1 References 9 Chapter 2: Theoretical background 15 2.1 Hyperbolic Metamaterials 15 2.2 Self-Assembled P3HT-COOH 19 References 22 Chapter 3: Experimental Setup 28 3.1 Solar Simulator 28 3.2 External Quantum Efficiency System (EQE) 29 3.3 Laser Excitation and Photoluminescence Measurement System 31 3.4 UV-Vis-NIR Spectrophotometer for Transmission, Reflection, and Absorption Measurements 33 3.5 Thermal Evaporation System 36 3.6 Ion Polishing System 37 Chapter 4: Unconventional Organic Solar Cell Structure Based on Hyperbolic Metamaterial 39 4.1 Introduction 39 4.2 Experiment Section 42 4.3 Results and discussion 44 4.4 Conclusion 59 References 70 Chapter 5: Enhancement of Light-Matter Interaction Induced by Quantum-Coherent Coupling between Localized Surface Plasmon Resonance and Volume Plasmon Polariton 75 5.2 Results and Discussion 79 5.3 Conclusion 90 5.4 Experiment Section 91 References 104 Chapter 6: Enhancement of Fluorescence Resonance Energy Transfer by Coherent Coupling in-Between Surface Plasmon and Volume Plasmon Polariton 112 6.1 Introduction 112 6.2 Results and Discussion 115 6.3 Conclusion 132 6.4 Experiment Section 133 References 153 Chapter 7: Enhancement of Light Emission via Coherent Coupling of Aligned Excitons and Energy Transfer Assisted by Self-Assembled Polar Monolayer 159 7.1 Introduction 159 7.2 Experiment 162 7.3 Results and discussion 164 References 184 Chapter 8: Summary 191 | - |
| dc.language.iso | en | - |
| dc.subject | 雙曲超穎材料 | - |
| dc.subject | 體電漿極化子 | - |
| dc.subject | 隨機雷射 | - |
| dc.subject | 自組裝極化單分子層 | - |
| dc.subject | 相干耦合 | - |
| dc.subject | hyperbolic metamaterials | - |
| dc.subject | volume plasmon polariton | - |
| dc.subject | random laser | - |
| dc.subject | self-assembled polar monolayer | - |
| dc.subject | coherent coupling | - |
| dc.title | 以奈米結構設計增強光與物質交互作用之研究 | zh_TW |
| dc.title | Investigation of Enhancement of Light-Matter Interactions by Designed Nanostructures | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 114-1 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.oralexamcommittee | 許芳琪;沈志霖;王偉華;梁啟德 | zh_TW |
| dc.contributor.oralexamcommittee | Fang-Chi Hsu;Ji-Lin Shen;Wei-Hua Wang;Chi-Te Liang | en |
| dc.subject.keyword | 雙曲超穎材料,體電漿極化子隨機雷射自組裝極化單分子層相干耦合 | zh_TW |
| dc.subject.keyword | hyperbolic metamaterials,volume plasmon polaritonrandom laserself-assembled polar monolayercoherent coupling | en |
| dc.relation.page | 194 | - |
| dc.identifier.doi | 10.6342/NTU202504527 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-09-30 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 應用物理研究所 | - |
| dc.date.embargo-lift | 2030-09-27 | - |
| 顯示於系所單位: | 應用物理研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-114-1.pdf 未授權公開取用 | 8.41 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
