請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/100985完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳致融 | zh_TW |
| dc.contributor.advisor | Chih-jung Chen | en |
| dc.contributor.author | 林世偉 | zh_TW |
| dc.contributor.author | Shih-Wei Lin | en |
| dc.date.accessioned | 2025-11-26T16:21:34Z | - |
| dc.date.available | 2025-11-27 | - |
| dc.date.copyright | 2025-11-26 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-10-01 | - |
| dc.identifier.citation | 參考文獻
1. Jiang, B.; Yu, J.; Liu, Y. The Environmental Impact of Plastic Waste. J. Earth Environ. Sci. 2020, 2, 26-35. 2. Lebreton, L. C. M.; Zwet, J. v. d.; Damsteeg, J.-W.; Slat, B.; Andrady, A.; Reisser, J. River Plastic Emissions to the World’s Oceans. Nat. Commun. 2017, 8, 15611. 3. Zhang, Y.; Wu, P.; Xu, R.; Wang, X.; Lei, L.; Schartup, A. T.; Peng, Y.; Pang, Q.; Wang, X.; Mai, L.; Wang, R.; Liu, H.; Wang, X.; Luijendijk, A.; Chassignet, E.; Xu, X.; Shen, H.; Zheng, S.; Zeng, E. Y. Plastic Waste Discharge to the Global Ocean Constrained by Seawater Observations. Nat. Commun. 2023, 14, 1372. 4. Ziani, K.; Ioniță-Mîndrican, C.-B.; Mititelu, M.; Neacșu, S. M.; Negrei, C.; Moroșan, E.; Drăgănescu, D.; Preda, O.-T. Microplastics: A Real Global Threat for Environment and Food Safety: A State of the Art Review. Nutrients 2023, 15, 617. 5. Yuan, X.; Lee, K.; Schmidt, J.; Choi, K.-S. Halide Adsorption Enhances Electrochemical Hydrogenolysis of 5-Hydroxymethylfurfural by Suppressing Hydrogenation. J. Am. Chem. Soc. 2023, 145, 20473-20484. 6. Sekar, N.; Ramasamy, R. P. Recent Advances in Photosynthetic Energy Conversion. J. Photochem. Photobiol. 2015, 22, 19-33. 7. Jin, S.; Zhang, B.; Wu, B.; Han, D.; Hu, Y.; Ren, C.; Zhang, C.; Wei, X.; Wu, Y.; Mol, A. P. Decoupling Livestock and Crop Production at the Household Level in China. Nat. Sustain. 2021, 4 , 48-55. 8. Kognou, A. L. M.; Shrestha, S.; Jiang, Z.; Xu, C. C.; Sun, F.; Qin, W. High-Fructose Corn Syrup Production and Its New Applications for 5-Hydroxymethylfurfural and Value-added Furan Derivatives: Promises and Challenges. J. Bioresour. Bioprod. 2022, 7 , 148-160. 9. Hauke, P.; Brückner, S.; Strasser, P. Paired Electrocatalytic Valorization of CO2 and Hydroxymethylfurfural in a Noble Metal-Free Bipolar Membrane Electrolyzer. ACS Sustain. Chem. Eng. 2023, 11, 13628-13635. 10. Cheng, Z.; Deng, W.; Chen, R.; Tan, L.; Xie, C.; Ma, M.; Tan, Y. Promoted Formation of Catalytically Active Species in Ni Nanoparticles by Low Content Ru Doping for Electrocatalytic Oxidation of 5‐Hydroxymethylfurfural. ACS Sustain. Chem. Eng. 2023, 11, 13441-13450. 11. Chen, C.; Lv, M.; Hu, H.; Huai, L.; Zhu, B.; Fan, S.; Wang, Q.; Zhang, J. 5‐Hydroxymethylfurfural and Its Downstream Chemicals: A Review of Catalytic Routes. Adv. Mater. 2024, 2311464. 12. Liu, W.-J.; Dang, L.; Xu, Z.; Yu, H.-Q.; Jin, S.; Huber, G. W. Electrochemical Oxidation of 5-Hydroxymethylfurfural with NiFe Layered Double Hydroxide (LDH) Nanosheet Catalysts. ACS Catal. 2018, 8, 5533-5541. 13. Burgess, S. K.; Kriegel, R. M.; Koros, W. J. Carbon Dioxide Sorption and Transport in Amorphous Poly(ethylene furanoate). Macromolecules 2015, 48, 2184-2193. 14. Gu, K.; Wang, D.; Xie, C.; Wang, T.; Huang, G.; Liu, Y.; Zou, Y.; Tao, L.; Wang, S. Defect-Rich High-Entropy Oxide Nanosheets for Efficient 5-Hydroxymethylfurfural Electrooxidation. Angew. Chem. Int. Ed. 2021, 60, 20253-20258. 15. Li, S.; Sun, X.; Yao, Z.; Zhong, X.; Cao, Y.; Liang, Y.; Wei, Z.; Deng, S.; Zhuang, G.; Li, X.; Wang, J. Biomass Valorization Via Paired Electrosynthesis over Vanadium Nitride‐Based Electrocatalysts. Adv. Funct. Mater. 2019, 29, 42. 16. Lu, Y.; Liu, T.; Dong, C. L.; Yang, C.; Zhou, L.; Huang, Y. C.; Li, Y.; Zhou, B.; Zou, Y.; Wang, S. Tailoring Competitive Adsorption Sites by Oxygen-Vacancy on Cobalt Oxides to Enhance the Electrooxidation of Biomass. Adv. Mater. 2022, 34, e2107185. 17. Vo, N. T.; Cacciuttolo, Q.; Pasquier, D.; Larmier, K. Direct and Tempo‐Mediated Electro‐Oxidation of 5‐(Hydroxymethyl)Furfural in Organic and Hydro‐Organic Media. ChemElectroChem 2024, e202400116. 18. Cha, H. G.; Choi, K.-S. Combined Biomass Valorization and Hydrogen Production in a Photoelectrochemical Cell. Nat. Chem. 2015, 7, 328-333. 19. Zhang, Z.; Huber, G. W. Catalytic Oxidation of Carbohydrates into Organic Acids and Furan Chemicals. Chem. Soc. Rev. 2018, 47, 1351-1390. 20. Feng, Y.; Long, S.; Tang, X.; Sun, Y.; Luque, R.; Zeng, X.; Lin, L. Earth-Abundant 3d-Transition-Metal Catalysts for Lignocellulosic Biomass Conversion. Chem. Soc. Rev. 2021, 50, 6042-6093. 21. Wan, Y.; Lee, J.-M. Toward Value-Added Dicarboxylic Acids from Biomass Derivatives Via Thermocatalytic Conversion. ACS Catal. 2021, 11, 2524-2560. 22. Siyo, B.; Schneider, M.; Radnik, J.; Pohl, M.-M.; Langer, P.; Steinfeldt, N. Influence of Support on the Aerobic Oxidation of HMF into FDCA over Preformed Pd Nanoparticle Based Materials. Appl. Catal. A: Gen. 2014, 478, 107-116. 23. Masoud, N.; Donoeva, B.; Jongh, P. E. d. Stability of Gold Nanocatalysts Supported on Mesoporous Silica for the Oxidation of 5-Hydroxymethyl Furfural to Furan-2,5-Dicarboxylic Acid. Appl. Catal. A: Gen. 2018, 561, 150-157. 24. Casanova, O.; Iborra, S.; Corma, A. Biomass into Chemicals: Aerobic Oxidation of 5‐Hydroxymethyl‐2‐Furfural into 2,5‐Furandicarboxylic Acid with Gold Nanoparticle Catalysts. ChemSusChem 2009, 2, 1138-1144. 25. Gupta, N. K.; Nishimura, S.; Takagaki, A.; Ebitani, K. Hydrotalcite-Supported Gold-Nanoparticle-Catalyzed Highly Efficient Base-Free Aqueous Oxidation of 5-Hydroxymethylfurfural into 2,5-Furandicarboxylic Acid under Atmospheric Oxygen Pressure. Green Chem. 2011, 13, 824-827. 26. Rathod, P. V.; Jadhav, V. H. Efficient Method for Synthesis of 2,5-Furandicarboxylic Acid from 5-Hydroxymethylfurfural and Fructose Using Pd/CC Catalyst under Aqueous Conditions. ACS Sustain. Chem. Eng. 2018, 6, 5766-5771. 27. Wang, Y.; Yu, K.; Lei, D.; Si, W.; Feng, Y.; Lou, L.-L.; Liu, S. Basicity-Tuned Hydrotalcite-Supported Pd Catalysts for Aerobic Oxidation of 5-Hydroxymethyl-2-Furfural under Mild Conditions. ACS Sustain. Chem. Eng. 2016, 4, 4752-4761. 28. Yu, H.; Kim, K.-A.; Kang, M. J.; Hwang, S. Y.; Cha, H. G. Carbon Support with Tunable Porosity Prepared by Carbonizing Chitosan for Catalytic Oxidation of 5-Hydroxylmethylfurfural. ACS Sustain. Chem. Eng. 2018, 7, 3742-3748. 29. Zhou, C.; Deng, W.; Wan, X.; Zhang, Q.; Yang, Y.; Wang, Y. Functionalized Carbon Nanotubes for Biomass Conversion: The Base‐Free Aerobic Oxidation of 5‐Hydroxymethylfurfural to 2,5‐Furandicarboxylic Acid over Platinum Supported on a Carbon Nanotube Catalyst. ChemCatChem 2015, 7, 2853-2863. 30. Zhu, P.; Zhang, W.; Li, Q.; Xia, H. Visible-Light-Driven Photocatalytic Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid over Plasmonic Au/ZnO Catalyst. ACS Sustain. Chem. Eng. 2022, 10, 8778-8787. 31. Chang, J. N.; Li, Q.; Yan, Y.; Shi, J. W.; Zhou, J.; Lu, M.; Zhang, M.; Ding, H. M.; Chen, Y.; Li, S. L. Covalent‐Bonding Oxidation Group and Titanium Cluster to Synthesize a Porous Crystalline Catalyst for Selective Photo‐Oxidation Biomass Valorization. Angew. Chem. Int. Ed. 2022, 134, e202209289. 32. Lu, Y.; Liu, T.; Dong, C. L.; Huang, Y. C.; Li, Y.; Chen, J.; Zou, Y.; Wang, S. Tuning the Selective Adsorption Site of Biomass on Co3O4 by Ir Single Atoms for Electrosynthesis. Adv. Mater. 2021, 33, 2007056. 33. Wang, T.; Tao, L.; Zhu, X.; Chen, C.; Chen, W.; Du, S.; Zhou, Y.; Zhou, B.; Wang, D.; Xie, C. Combined Anodic and Cathodic Hydrogen Production from Aldehyde Oxidation and Hydrogen Evolution Reaction. Nat. Catal. 2022, 5, 66-73. 34. Deng, X.; Xu, G. Y.; Zhang, Y. J.; Wang, L.; Zhang, J.; Li, J. F.; Fu, X. Z.; Luo, J. L. Understanding the Roles of Electrogenerated Co3+ and Co4+ in Selectivity‐Tuned 5‐Hydroxymethylfurfural Oxidation. Angew. Chem. Int. Ed. 2021, 133, 20698-20705. 35. Liu, W.-J.; Dang, L.; Xu, Z.; Yu, H.-Q.; Jin, S.; Huber, G. W. Electrochemical Oxidation of 5‐Hydroxymethylfurfural with Nanosheet Catalysts. ACS Catal. 2018, 8, 5533-5541. 36. Xu, G. Y.; Zhang, Y. J.; Wang, L.; Zhang, J.; Li, J. F.; Fu, X. Z.; Luo, J. L. Understanding the Roles of Electrogenerated Selectivity Tuned 5‐Hydroxymethylfurfural Oxidation. Angew. Chem. Int. Ed. 2021, 60 , 20535-20542. 37. Wang, T.; Tao, L.; Zhu, X.; Chen, C.; Chen, W.; Du, S.; Zhou, Y.; Zhou, B.; Wang, D.; Xie, C.; Long, P.; Li, W.; Wang, Y.; Chen, R.; Zou, Y.; Fu, X.-Z.; Li, Y.; Duan, X.; Wang, S. Combined Anodic and Cathodic Hydrogen Production from Aldehyde Oxidation and Hydrogen Evolution Reaction. Nat. Catal. 2022, 5, 66-73. 38. Verma, D. K.; Dewangan, Y.; Verma, C. Mechanism and Applications; Elsevier, 2023. 39. Lu, Y.; Liu, T.; Dong, C. L.; Yang, C.; Zhou, L.; Huang, Y. C.; Li, Y.; Zhou, B.; Zou, Y.; Wang, S. Tailoring Competitive Adsorption Sites by Oxygen‐Vacancy on Cobalt Oxides to Enhance the Electrooxidation of Biomass. Adv. Mater. 2022, 34 , 2107185. 40. Tsilomelekis, G.; Orella, M. J.; Lin, Z.; Cheng, Z.; Zheng, W.; Nikolakis, V.; Vlachos, D. G. Molecular Structure, Morphology and Growth Mechanisms and Rates of 5-Hydroxymethyl Furfural (HMF) Derived Humins. Green Chem. 2015, 18, 1983-1993. 41. Krebs, M. L.; Bodach, A.; Wang, C.; Schüth, F. Stabilization of Alkaline 5-HMF Electrolytes Via Cannizzaro Reaction for the Electrochemical Oxidation to FDCA. Green Chem. 2023, 25, 1797-1802. 42. Zhou, H.; Li, Z.; Xu, S. M.; Lu, L.; Xu, M.; Ji, K.; Ge, R.; Yan, Y.; Ma, L.; Kong, X. Selectively Upgrading Lignin Derivatives to Carboxylates through Electrochemical Oxidative C(OH)−C Bond Cleavage by a Mn‐Doped Cobalt Oxyhydroxide Catalyst. Angew. Chem. Int. Ed. 2021, 133, 9058-9064. 43. Zhou, H.; Ren, Y.; Yao, B.; Li, Z.; Xu, M.; Ma, L.; Kong, X.; Zheng, L.; Shao, M.; Duan, H. Scalable Electrosynthesis of Commodity Chemicals from Biomass by Suppressing Non-Faradaic Transformations. Nat. Commun. 2023, 14, 5621. 44. Roylance, J. J.; Choi, K.-S. Electrochemical Reductive Biomass Conversion: Direct Conversion of 5-Hydroxymethylfurfural (HMF) to 2,5-Hexanedione (HD) via Reductive Ring-Opening. Green Chem. 2016, 18, 2956-2960. 45. Kubota, S. R.; Choi, K. S. Electrochemical Oxidation of 5‐Hydroxymethylfurfural to 2,5‐Furandicarboxylic Acid (FDCA) in Acidic Media Enabling Spontaneous FDCA Separation. ChemSusChem 2018, 11, 2138-2145. 46. Ge, R.; Wang, Y.; Li, Z.; Xu, M.; Xu, S. M.; Zhou, H.; Ji, K.; Chen, F.; Zhou, J.; Duan, H. Selective Electrooxidation of Biomass‐Derived Alcohols to Aldehydes in a Neutral Medium: Promoted Water Dissociation over a Nickel‐Oxide‐Supported Ruthenium Single‐Atom Catalyst. Angew. Chem. Int. Ed. 2022, 61, e202200211. 47. Lu, Y.; Liu, T.; Dong, C. L.; Yang, C.; Zhou, L.; Huang, Y. C.; Li, Y.; Zhou, B.; Zou, Y.; Wang, S. Tailoring Competitive Adsorption Sites by Oxygen‐vacancy on Cobalt Oxides to Enhance the Electrooxidation of Biomass. Adv. Mater. 2022, 34, e2107185. 48. Ge, R.; Wang, Y.; Li, Z.; Xu, M.; Xu, S. M.; Zhou, H.; Ji, K.; Chen, F.; Zhou, J.; Duan, H. Selective Electrooxidation of Biomass‐Derived Alcohols to Aldehydes in a Neutral Medium: Promoted Water Dissociation over a Nickel‐Oxide‐Supported Ruthenium Single‐Atom Catalyst. Angew. Chem. Int. Ed. 2022, 134, e202200211. 49. Gouda, L.; Sévery, L.; Moehl, T.; Mas-Marzá, E.; Adams, P.; Fabregat-Santiago, F.; Tilley, S. D. Tuning the Selectivity of Biomass Oxidation over Oxygen Evolution on NiO–OH Electrodes. Green Chem. 2021, 23, 8061-8068. 50. Taitt, B. J.; Nam, D.-H.; Choi, K.-S. A Comparative Study of Nickel, Cobalt, and Iron Oxyhydroxide Anodes for the Electrochemical Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid. ACS Catal. 2018, 9, 660-670. 51. Xu, X.; Song, X.; Liu, X.; Wang, H.; Hu, Y.; Xia, J.; Chen, J.; Shakouri, M.; Guo, Y.; Wang, Y. A Highly Efficient Nickel Phosphate Electrocatalyst for the Oxidation of 5‐Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid. ACS Sustain. Chem. Eng. 2022, 10, 5538-5547. 52. Xu, L.; Huang, Z.; Yang, M.; Wu, J.; Chen, W.; Wu, Y.; Pan, Y.; Lu, Y.; Zou, Y.; Wang, S. Salting‐Out Aldehyde from the Electrooxidation of Alcohols with 100% Selectivity. Angew. Chem. Int. Ed. 2022, 61, e202210123. 53. Tao, Y.; Fan, S.; Li, X.; Yang, J.; Wang, J.; Tadé, M. O.; Liu, S. CuXCo3–XO4 Spinel Nanofibers for Selective Oxidation of 5‐Hydroxymethylfurfural into Fuel Additives. ACS Appli. Nano Mater. 2022, 5, 16564-16572. 54. Yan, X.; Biemolt, J.; Zhao, K.; Zhao, Y.; Cao, X.; Yang, Y.; Wu, X.; Rothenberg, G.; Yan, N. A Membrane-Free Flow Electrolyzer Operating at High Current Density Using Earth-Abundant Catalysts for Water Splitting. Nat. Commun. 2021, 12, 4143. 55. Esposito, D. V. Membraneless Electrolyzers for Low-Cost Hydrogen Production in a Renewable Energy Future. Joule 2017, 1, 651-658. 56. Odenweller, A.; Ueckerdt, F.; Nemet, G. F.; Jensterle, M.; Luderer, G. Probabilistic Feasibility Space of Scaling up Green Hydrogen Supply. Nat. Energy 2022, 7, 854-865. 57. Rausch, B.; Symes, M. D.; Chisholm, G.; Cronin, L. Decoupled Catalytic Hydrogen Evolution from a Molecular Metal Oxide Redox Mediator in Water Splitting. Science 2014, 345, 1326-1330. 58. Symes, M. D.; Cronin, L. Decoupling Hydrogen and Oxygen Evolution during Electrolytic Water Splitting Using an Electron-Coupled-Proton Buffer. Nat. Chem. 2013, 5, 403-409. 59. Dotan, H.; Landman, A.; Sheehan, S. W.; Malviya, K. D.; Shter, G. E.; Grave, D. A.; Arzi, Z.; Yehudai, N.; Halabi, M.; Gal, N. Decoupled Hydrogen and Oxygen Evolution by a Two-Step Electrochemical–Chemical Cycle for Efficient Overall Water Splitting. Nat. Energy 2019, 4, 786-795. 60. Wang, R.; Sheng, H.; Wang, F.; Li, W.; Roberts, D. S.; Jin, S. Sustainable Coproduction of Two Disinfectants Via Hydroxide-Balanced Modular Electrochemical Synthesis Using a Redox Reservoir. ACS Cent. Sci. 2021, 7, 2083-2091. 61. Michael, K. H.; Su, Z.-M.; Wang, R.; Sheng, H.; Li, W.; Wang, F.; Stahl, S. S.; Jin, S. Pairing of Aqueous and Nonaqueous Electrosynthetic Reactions Enabled by a Redox Reservoir Electrode. J. Am. Chem. Soc. 2022, 144, 22641-22650. 62. Rani, S.; Abdullah, W.; Zain, Z.; Aqmar, N. Integrated Circuit Design of Three Electrode Sensing System Using Two-Stage Operational Amplifier. Mater. Sci. Eng. 2018, 340, 012017. 63. Jerkiewicz, G. Standard and Reversible Hydrogen Electrodes: Theory, Design, Operation and Applications. ACS Catal. 2020, 10, 8409-8417. 64. Cao, R.; Liu, X.; Liu, Y.; Zhai, X.; Cao, T.; Wang, A.; Qiu, J. Applications of Nuclear Magnetic Resonance Spectroscopy to the Evaluation of Complex Food Constituents. Food Chem. 2021, 342, 128258. 65. Reuhs, B. L. Food Analysis; Elsevier, 2017. 66. Wood, E. Biochemical Education; Wiley, 1994. 67. Al-Sanea, M. M.; Gamal, M. Critical Analytical Review: Rare and Recent Applications of Refractive Index Detector in HPLC Chromatographic Drug Analysis. Microchem. J. 2022, 178, 107339. 68. Catani, M.; Felletti, S.; Franchina, F. A. Metabolomics Perspectives; Elsevier, 2022. 69. Prakash, B.; de São José, J. F. B. Food Safety; Elsevier, 2023. 70. Ma, P.; Li, J.; Chen, Y.; Zhou Montano, B. A.; Luo, H.; Zhang, D.; Zheng, H.; Liu, Y.; Lin, H.; Zhu, W. Non‐Invasive Exhaled Breath Diagnostic and Monitoring Technologies. Microwave Opt. Technol. Lett. 2023, 65, 1475-1488. 71. Sudhakar, P.; Latha, P.; Reddy, P. V. Phenotyping Crop Plants for Physiological and Biochemical Traits; Elsevier, 2016. 72. Robert L. G; Eugene F. Modern Practice of Gas Chromatography; Wiley, 2004. 73. Ali, A.; Chiang, Y. W.; Santos, R. M. X-Ray Diffraction Techniques for Mineral Characterization: A Review for Engineers of the Fundamentals, Applications, and Research Directions. Minerals 2022, 12, 205. 74. Patterson, A. The Scherrer Formula for X-Ray Particle Size Determination. Phys.Rev. 1939, 56, 978. 75. Shah, F. A.; Ruscsák, K.; Palmquist, A. 50 Years of Scanning Electron Microscopy of Bone—a Comprehensive Overview of the Important Discoveries Made and Insights Gained into Bone Material Properties in Health, Disease, and Taphonomy. Bone Res. 2019, 7, 15. 76. Ul-Hamid, A. A Beginners' Guide to Scanning Electron Microscopy; Springer, 2018. 77. Inkson, B. J. Scanning Electron Microscopy and Transmission Electron Microscopy for Materials Characterization; Elsevier, 2016. 78. Zhou, W.; Wang, Z. L. Scanning Microscopy for Nanotechnology: Techniques and Applications; Springer Sci. Business Media, 2007. 79. Iglesias‐Juez, A.; Chiarello, G. L.; Patience, G. S.; Guerrero‐Pérez, M. O. Experimental Methods in Chemical Engineering: X‐Ray Absorption Spectroscopy—XAS, XANES, EXAFS. Can. J. Chem. Eng. 2022, 100, 3-22. 80. Fendorf, S.; Nico, P. S.; Kocar, B. D.; Masue, Y.; Tufano, K. J. Arsenic Chemistry in Soils and Sediments; Elsevier, 2010. 81. Li, Y.; Gecevicius, M.; Qiu, J. Long Persistent Phosphors—from Fundamentals to Applications. Chem. Soc. Rev. 2016, 45, 2090-2136. 82. Wu, T.; Chen, Y.; Shiu, Y.; Peng, H.; Chang, S.; Lee, H.; Chu, P.; Hsu, C.; Chou, L.; Pao, C. Correlation between Oxygen Vacancies and Magnetism in Mn-Doped Y2O3 Nanocrystals Investigated by Defect Engineering Techniques. Appl. Phys. Lett. 2012, 101. 83. Gilbert, B.; Frazer, B.; Belz, A.; Conrad, P.; Nealson, K.; Haskel, D.; Lang, J.; Srajer, G.; De Stasio, G. Multiple Scattering Calculations of Bonding and X-Ray Absorption Spectroscopy of Manganese Oxides. J. Phys. Chem. A 2003, 107, 2839-2847. 84. Silver, S. C.; Gardenghi, D. J.; Naik, S. G.; Shepard, E. M.; Huynh, B. H.; Szilagyi, R. K.; Broderick, J. B. Combined Mössbauer Spectroscopic, Multi-Edge X-Ray Absorption Spectroscopic, and Density Functional Theoretical Study of the Radical Sam Enzyme Spore Photoproduct Lyase. J. Biol. Inorg. Chem. 2014, 19, 465-483. 85. Sandford, C.; Edwards, M. A.; Klunder, K. J.; Hickey, D. P.; Li, M.; Barman, K.; Sigman, M. S.; White, H. S.; Minteer, S. D. A Synthetic Chemist's Guide to Electroanalytical Tools for Studying Reaction Mechanisms. Chem. Sci. 2019, 10, 6404-6422. 86. Elgrishi, N.; Rountree, K. J.; McCarthy, B. D.; Rountree, E. S.; Eisenhart, T. T.; Dempsey, J. L. A Practical Beginner’s Guide to Cyclic Voltammetry. J. Chem. Educ. 2018, 95, 197-206. 87. Laan, P. C.; de Zwart, F. J.; Wilson, E. M.; Troglia, A.; Lugier, O. C.; Geels, N. J.; Bliem, R.; Reek, J. N.; de Bruin, B.; Rothenberg, G. Understanding the Oxidative Properties of Nickel Oxyhydroxide in Alcohol Oxidation Reactions. ACS Catal. 2023, 13, 8467-8476. 88. Bender, M. T.; Warburton, R. E.; Hammes-Schiffer, S.; Choi, K.-S. Understanding Hydrogen Atom and Hydride Transfer Processes during Electrochemical Alcohol and Aldehyde Oxidation. ACS Catal. 2021, 11, 15110-15124. 89. Zhang, M.; Liu, Y.; Liu, B.; Chen, Z.; Xu, H.; Yan, K. Trimetallic Nicofe-Layered Double Hydroxides Nanosheets Efficient for Oxygen Evolution and Highly Selective Oxidation of Biomass-Derived 5-Hydroxymethylfurfural. ACS Catal. 2020, 10, 5179-5189. 90. Gao, L.; Liu, Z.; Ma, J.; Zhong, L.; Song, Z.; Xu, J.; Gan, S.; Han, D.; Niu, L. NiSe@NiOx Core-Shell Nanowires as a Non-Precious Electrocatalyst for Upgrading 5-Hydroxymethylfurfural into 2,5-Furandicarboxylic Acid. Appl. Catal. B Environ. 2020, 261, 118235. 91. Huang, X.; Song, J.; Hua, M.; Xie, Z.; Liu, S.; Wu, T.; Yang, G.; Han, B. Enhancing the Electrocatalytic Activity of Coo for the Oxidation of 5-Hydroxymethylfurfural by Introducing Oxygen Vacancies. Green Chem. 2019, 22, 843-849. 92. Lu, Y.; Dong, C. L.; Huang, Y. C.; Zou, Y.; Liu, Z.; Liu, Y.; Li, Y.; He, N.; Shi, J.; Wang, S. Identifying the Geometric Site Dependence of Spinel Oxides for the Electrooxidation of 5‐Hydroxymethylfurfural. Angew. Chem. Int. Ed. 2020, 59, 19215-19221. 93. Yang, G.; Jiao, Y.; Yan, H.; Xie, Y.; Wu, A.; Dong, X.; Guo, D.; Tian, C.; Fu, H. Interfacial Engineering of MoO2‐FeP Heterojunction for Highly Efficient Hydrogen Evolution Coupled with Biomass Electrooxidation. Adv. Mater. 2020, 32, e2000455. 94. Heidary, N.; Kornienko, N. Electrochemical Biomass Valorization on Gold-Metal Oxide Nanoscale Heterojunctions Enables Investigation of Both Catalyst and Reaction Dynamics with Operando Surface-Enhanced Raman Spectroscopy. Chem. Sci. 2020, 11, 1798-1806. 95. Chen, W.; Xie, C.; Wang, Y.; Zou, Y.; Dong, C.-L.; Huang, Y.-C.; Xiao, Z.; Wei, Z.; Du, S.; Chen, C.; Zhou, B.; Ma, J.; Wang, S. Activity Origins and Design Principles of Nickel-Based Catalysts for Nucleophile Electrooxidation. Chem 2020, 6, 2974-2993. 96. Wang, L.; Cao, J.; Lei, C.; Dai, Q.; Yang, B.; Li, Z.; Zhang, X.; Yuan, C.; Lei, L.; Hou, Y. Strongly Coupled 3d N-Doped MoO2/Ni3S2 Hybrid for High Current Density Hydrogen Evolution Electrocatalysis and Biomass Upgrading. ACS Appl. Mater. Interfaces 2019, 11, 27743-27750. 97. Subbiah, S.; Simeonov, S. P.; Esperança, J. M. S. S.; Rebelo, L. P. N.; Afonso, C. A. M. Direct Transformation of 5-Hydroxymethylfurfural to the Building Blocks 2,5-Dihydroxymethylfurfural (DHMF) and 5-Hydroxymethyl Furanoic Acid (HMFA) Via Cannizzaro Reaction. Green Chem. 2013, 15, 2849-2853. 98. Li, J.; Ji, K.; Li, B.; Xu, M.; Wang, Y.; Zhou, H.; Shi, Q.; Duan, H. Rechargeable Biomass Battery for Electricity Storage/Generation and Concurrent Valuable Chemicals Production. Angew. Chem. Int. Ed. 2023, 62, e202304852. 99. Kwon, Y.; Lai, S. C. S.; Rodriguez, P.; Koper, M. T. M. Electrocatalytic Oxidation of Alcohols on Gold in Alkaline Media: Base or Gold Catalysis? J. Am. Chem. Soc. 2011, 133, 6914-6917. 100. Zhou, H.; Li, Z.; Ma, L.; Duan, H. Electrocatalytic Oxidative Upgrading of Biomass Platform Chemicals: From the Aspect of Reaction Mechanism. Chem. Commun. 2021, 58, 897-907. 101. Filiciotto, L.; Balu, A. M.; Romero, A. A.; Angelici, C.; Waal, J. C. v. d.; Luque, R. Reconstruction of Humins Formation Mechanism from Decomposition Products: A GC-MS Study Based on Catalytic Continuous Flow Depolymerizations. Molecular Catal. 2019, 479, 110564. 102. Liu, F.; Wang, Q.; Zhai, G.; Xiang, H.; Zhou, J.; Jia, C.; Zhu, L.; Wu, Q.; Zhu, M. Continuously Processing Waste Lignin into High-Value Carbon Nanotube Fibers. Nat. Commun. 2022, 13, 5755. 103. Mori, R. Replacing All Petroleum-Based Chemical Products with Natural Biomass-Based Chemical Products: A Tutorial Review. RSC Sustain. 2023, 1, 179-212. 104. Ghatta, A. A.; Zhou, X.; Casarano, G.; Wilton-Ely, J. D. E. T.; Hallett, J. P. Characterization and Valorization of Humins Produced by HMF Degradation in Ionic Liquids: A Valuable Carbonaceous Material for Antimony Removal. ACS Sustain. Chem. Eng. 2021, 9, 2212-2223. 105. Yan, Y.; Zhou, H.; Xu, S.-M.; Yang, J.; Hao, P.; Cai, X.; Ren, Y.; Xu, M.; Kong, X.; Shao, M. Electrocatalytic Upcycling of Biomass and Plastic Wastes to Biodegradable Polymer Monomers and Hydrogen Fuel at High Current Densities. J. Am. Chem. Soc. 2023, 145, 6144-6155. 106. Dai, C.; Sun, L.; Liao, H.; Khezri, B.; Webster, R. D.; Fisher, A. C.; Xu, Z. J. Electrochemical Production of Lactic Acid from Glycerol Oxidation Catalyzed by Aupt Nanoparticles. J. Catal. 2017, 356, 14-21. 107. Choi, S.; Balamurugan, M.; Lee, K.-G.; Cho, K. H.; Park, S.; Seo, H.; Nam, K. T. Mechanistic Investigation of Biomass Oxidation Using Nickel Oxide Nanoparticles in a CO2-Saturated Electrolyte for Paired Electrolysis. J. Phys. Chem. Lett. 2020, 11, 2941-2948. 108. van Zandvoort, I.; van Eck, E. R.; de Peinder, P.; Heeres, H. J.; Bruijnincx, P. C.; Weckhuysen, B. M. Full, Reactive Solubilization of Humin Byproducts by Alkaline Treatment and Characterization of the Alkali-Treated Humins Formed. ACS Sustain. Chem. Eng. 2015, 3, 533-543. 109. Cheng, Z.; Everhart, J. L.; Tsilomelekis, G.; Nikolakis, V.; Saha, B.; Vlachos, D. G. Structural Analysis of Humins Formed in the Brønsted Acid Catalyzed Dehydration of Fructose. Green Chem. 2018, 20, 997-1006. 110. Bi, J.; Xu, H.; Wang, W.; Sang, T.; Jiang, A.; Hao, J.; Li, Z. Cu2P7‐CoP Heterostructure Nanosheets Enable High‐Performance of 5‐Hydroxymethylfurfural Electrooxidation. Chem. Eur. J. 2023, 29, e202300973. 111. Liu, S.; Dou, S.; Meng, J.; Liu, Y.; Liu, Y.; Yu, H. Efficient Biobased Carboxylic Acids Synthesis by Synergistic Electrocatalysis of Multi-Active Sites on Bimetallic Cu-Co Oxide/Oxyhydroxide. Appl. Catal. B Environ. 2023, 331, 122709. 112. Zhao, G.; Hai, G.; Zhou, P.; Liu, Z.; Zhang, Y.; Peng, B.; Xia, W.; Huang, X.; Wang, G. Electrochemical Oxidation of 5‐Hydroxymethylfurfural on CeO2‐Modified Co3O4 with Regulated Intermediate Adsorption and Promoted Charge Transfer. Adv. Funct. Mater. 2023, 33. 113. Feng, Y.; Yang, K.; Smith, R. L.; Qi, X. Metal Sulfide Enhanced Metal–Organic Framework Nanoarrays for Electrocatalytic Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid. J. Mater. Chem. A 2023, 11, 6375-6383. 114. Zhou, P.; Hai, G.; Zhao, G.; Li, R.; Huang, X.; Lu, Y.; Wang, G. CeO2 as an “Electron Pump” to Boost the Performance of CO4N in Electrocatalytic Hydrogen Evolution, Oxygen Evolution and Biomass Oxidation Valorization. Appl. Catal. B Environ. 2023, 325, 122364. 115. Yang, S.; Xiang, X.; He, Z.; Zhong, W.; Jia, C.; Gong, Z.; Zhang, N.; Zhao, S.; Chen, Y. Anionic Defects Engineering of NiCO2O4 for 5-Hydroxymethylfurfural Electrooxidation. Chem. Eng. J. 2023, 457, 141344. 116. You, B.; Liu, X.; Jiang, N.; Sun, Y. A General Strategy for Decoupled Hydrogen Production from Water Splitting by Integrating Oxidative Biomass Valorization. J. Am. Chem. Soc. 2016, 138, 13639-13646. 117. You, B.; Jiang, N.; Liu, X.; Sun, Y. Simultaneous H2 Generation and Biomass Upgrading in Water by an Efficient Noble‐Metal‐Free Bifunctional Electrocatalyst. Angew. Chem. Int. Ed. 2016, 55, 9913-9917. 118. Wang, R.; Yang, K.; Wong, C.; Aguirre-Villegas, H.; Larson, R.; Brushett, F.; Qin, M.; Jin, S. Electrochemical Ammonia Recovery and Co-Production of Chemicals from Manure Wastewater. Nat. Sustain. 2024, 7, 179-190. 119. Fleischmann, M.; Korinek, K.; Pletcher, D. The Oxidation of Organic Compounds at a Nickel Anode in Alkaline Solution. J. Electroanal. Chem. Interfacial Electrochem. 1971, 31, 39-49. 120. Fleischmann, M.; Korinek, K.; Pletcher, D. The Kinetics and Mechanism of the Oxidation of Amines and Alcohols at Oxide-Covered Nickel, Silver, Copper, and Cobalt Electrodes. J. Chem. Soc. 1972, 2, 1396-1403. 121. Gamsjäger, H.; Bugajski, J.; Gajda, T.; Lemire, R. J.; Preis, W. Chemical Thermodynamics of Nickel OECD Nuclear Energy Agency ,France, 2005. 122. Sun, Y.; Wang, J.; Qi, Y.; Li, W.; Wang, C. Efficient Electrooxidation of 5‐Hydroxymethylfurfural Using Co‐Doped Ni3S2 Catalyst: Promising for H2 Production under Industrial‐Level Current Density. Adv. Sci. 2022, 9, 2200957. 123. Xie, Y.; Zhou, Z.; Yang, N.; Zhao, G. An Overall Reaction Integrated with Highly Selective Oxidation of 5‐Hydroxymethylfurfural and Efficient Hydrogen Evolution. Adv. Funct. Mater. 2021, 31, 2102886. 124. Bender, M. T.; Lam, Y. C.; Hammes-Schiffer, S.; Choi, K.-S. Unraveling Two Pathways for Electrochemical Alcohol and Aldehyde Oxidation on NiOOH. J. Am. Chem. Soc. 2020, 142, 21538-21547. 125. Xia, C.; Zhu, P.; Jiang, Q.; Pan, Y.; Liang, W.; Stavitski, E.; Alshareef, H. N.; Wang, H. Continuous Production of Pure Liquid Fuel Solutions Via Electrocatalytic CO2 Reduction Using Solid-Electrolyte Devices. Nat. Energy 2019, 4, 776-785. 126. Fan, L.; Xia, C.; Zhu, P.; Lu, Y.; Wang, H. Electrochemical CO2 Reduction to High-Concentration Pure Formic Acid Solutions in an All-Solid-State Reactor. Nat. Commun. 2020, 11, 3633. 127. Wang, H.; Li, C.; An, J.; Zhuang, Y.; Tao, S. Surface Reconstruction of NiCoP for Enhanced Biomass Upgrading. J. Mater. Chem. A 2021, 9, 18421-18430. 128. Xu, L.; Huang, Z.; Yang, M.; Wu, J.; Chen, W.; Wu, Y.; Pan, Y.; Lu, Y.; Zou, Y.; Wang, S. Salting‐Out Aldehyde from the Electrooxidation of Alcohols with 100% Selectivity. Angew. Chem. Int. Ed. 2022, 61, e202210123. 129. Yang, Y.; Xu, D.; Zhang, B.; Xue, Z.; Mu, T. Substrate Molecule Adsorption Energy: An Activity Descriptor for Electrochemical Oxidation of 5-Hydroxymethylfurfural (HMF). Chem. Eng. J. 2022, 433, 133842. 130. Jiang, N.; You, B.; Boonstra, R.; Rodriguez, I. M. T.; Sun, Y. Integrating Electrocatalytic 5-Hydroxymethylfurfural Oxidation and Hydrogen Production Via Co–P Derived Electrocatalysts. ACS Energy Lett. 2016, 1, 386-390. 131. Li, W.; Jiang, N.; Hu, B.; Liu, X.; Song, F.; Han, G.; Jordan, T. J.; Hanson, T. B.; Liu, T. L.; Sun, Y. Electrolyzer Design for Flexible Decoupled Water Splitting and Organic Upgrading with Electron Reservoirs. Chem 2018, 4, 637-649. 132. Li, M.; Chen, L.; Ye, S.; Fan, G.; Yang, L.; Zhang, X.; Li, F. Dispersive Non-Noble Metal Phosphide Embedded in Alumina Arrays Derived from Layered Double Hydroxide Precursor toward Efficient Oxygen Evolution Reaction and Biomass Upgrading. J. Mater. Chem. A 2019, 7, 13695-13704. 133. Huang, X.; Song, J.; Hua, M.; Xie, Z.; Liu, S.; Wu, T.; Yang, G.; Han, B. Enhancing the Electrocatalytic Activity of CoO for the Oxidation of 5-Hydroxymethylfurfural by Introducing Oxygen Vacancies. Green Chem. 2020, 22, 843-849. 134. Zhang, M.; Liu, Y.; Liu, B.; Chen, Z.; Xu, H.; Yan, K. Trimetallic NiCoFe-Layered Double Hydroxides Nanosheets Efficient for Oxygen Evolution and Highly Selective Oxidation of Biomass-Derived 5-Hydroxymethylfurfural. ACS Catal. 2020, 10, 5179-5189. 135. Lu, X.; Wu, K. H.; Zhang, B.; Chen, J.; Li, F.; Su, B. J.; Yan, P.; Chen, J. M.; Qi, W. Highly Efficient Electro‐Reforming of 5‐Hydroxymethylfurfural on Vertically Oriented Nickel Nanosheet/Carbon Hybrid Catalysts: Structure–Function Relationships. Angew. Chem. Int. Ed. 2021, 133, 14649-14656. 136. Liu, B.; Xu, S.; Zhang, M.; Li, X.; Decarolis, D.; Liu, Y.; Wang, Y.; Gibson, E. K.; Catlow, C. R. A.; Yan, K. Electrochemical Upgrading of Biomass-Derived 5-Hydroxymethylfurfural and Furfural over Oxygen Vacancy-Rich Nicomn-Layered Double Hydroxides Nanosheets. Green Chem. 2021, 23, 4034-4043. 137. Bai, X.-J.; He, W.-X.; Lu, X.-Y.; Fu, Y.; Qi, W. Electrochemical Oxidation of 5-Hydroxymethylfurfural on Ternary Metal–Organic Framework Nanoarrays: Enhancement from Electronic Structure Modulation. J. Mater. Chem. A 2021, 9, 14270-14275. 138. Yang, G.; Jiao, Y.; Yan, H.; Xie, Y.; Tian, C.; Wu, A.; Wang, Y.; Fu, H. Unraveling the Mechanism for Paired Electrocatalysis of Organics with Water as a Feedstock. Nat. Commun. 2022, 13. 139. Pang, X.; Bai, H.; Zhao, H.; Fan, W.; Shi, W. Efficient Electrocatalytic Oxidation of 5-Hydroxymethylfurfural Coupled with 4-Nitrophenol Hydrogenation in a Water System. ACS Catal. 2022, 12, 1545-1557. 140. Zheng, L.; Zhao, Y.; Xu, P.; Lv, Z.; Shi, X.; Zheng, H. Biomass Upgrading Coupled with H2 Production Via a Nonprecious and Versatile Cu-Doped Nickel Nanotube Electrocatalyst. J. Mater. Chem. A 2022, 10, 10181-10191. 141. Zhou, Y.; Shen, Y.; Li, H. Mechanistic Study on Electro-Oxidation of 5-Hydroxymethylfurfural and Water Molecules Via Operando Surface-Enhanced Raman Spectroscopy Coupled with an Fe3+ Probe. Appl. Catal. B Environ. 2022, 317. 142. Feng, Y.; Yang, K.; Smith, R. L.; Qi, X. Metal Sulfide Enhanced Metal–Organic Framework Nanoarrays for Electrocatalytic Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid. J. Mater. Chem. A 2023, 11, 6375-6383. 143. Li, S.; Wang, S.; Wang, Y.; He, J.; Li, K.; Xu, Y.; Wang, M.; Zhao, S.; Li, X.; Zhong, X.; Wang, J. Doped Mn Enhanced Nis Electrooxidation Performance of HMF into FDCA at Industrial‐Level Current Density. Adv. Funct. Mater. 2023, 33. 144. Ye, F.; Zhang, S.; Cheng, Q.; Long, Y.; Liu, D.; Paul, R.; Fang, Y.; Su, Y.-Q.; Qu, L.; Dai, L.; Hu, C. The Role of Oxygen-Vacancy in Bifunctional Indium Oxyhydroxide Catalysts for Electrochemical Coupling of Biomass Valorization with CO2 Conversion. Nat. Commun. 2023, 14. 145. Zhou, B.; Li, Y.; Zou, Y.; Chen, W.; Zhou, W.; Song, M.; Wu, Y.; Lu, Y.; Liu, J.; Wang, Y.; Wang, S. Platinum Modulates Redox Properties and 5‐Hydroxymethylfurfural Adsorption Kinetics of Ni(OH)2 for Biomass Upgrading. Angew. Chem. Int. Ed. 2021, 60, 22908-22914. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/100985 | - |
| dc.description.abstract | 隨著石化工業的日益進步,全球塑膠製品產量亦持續增長,然而,大量塑膠廢棄物對自然環境造成了嚴重威脅,為應對傳統PET寶特瓶對環境的負面影響,近年來的研究逐漸聚焦於以生物質2,5-呋喃二甲酸(2,5-furandicarboxylic acid; FDCA)為原料製備的生物塑料聚呋喃二甲酸乙二酯(Polyethylene furanoate; PEF),與石化衍生產物聚對苯二甲酸乙二酯(Polyethylene terephthalate; PET)相比,PEF不僅具有更高的機械強度,還可以從可再生資源中提取,因此被視為PET的永續替代品。
電化學催化羥甲基糠醛(5-hydroxymethylfurfural; HMF)氧化生成FDCA被視為最具未來性的永續生產方法,不僅能夠結合可再生能源驅動反應,實現高附加值化學品的綠色轉化,還能通過產氫反應(hydrogen evolution reaction; HER)生成清潔能源氫氣,然而,為提高反應效率,目前研究多於鹼性溶液中進行,然而在該環境下HMF分子可能引發如歧化反應和自聚合反應等副反應,此外,HER過程中陰極對HMF分子所造成之碳損失在現有研究中常被忽視,為解決上述問題,本次研究引入氧化還原儲庫(redox reservoir; RR)概念,通過氫氧化鎳電極實現了HMF氧化反應與HER的高效解耦,憑藉氫氧化鎳電極稍正的形式電位特性,在開路電位下於純水中(無輔助電解質)自發驅動HMF氧化反應,這不僅消除了對產物的後續純化需求,還避免了副反應所造成的碳損失,在高濃度反應物(300 mM)的條件下,實現超越95%的FDCA產率。 臨場X光吸收光譜(in-situ X-ray absorption spectroscopy)說明RR電極中的Ni3+為反應之活性位點,且反應遵循一級動力學,此外,RR電極的靈活性在糠醛(furfural)氧化生成2-糠酸(2-furoic acid)的成功應用中得到了驗證,表明其對各種含醛基或醇基的生物質分子均具有廣泛適用性。 | zh_TW |
| dc.description.abstract | Plastic production has surged with the growth of the petrochemical industry, causing severe environmental issues. To address the impact of polyethylene terephthalate(PET) bottles, bio-based polyethylene furanoate(PEF), made from biomass-derived 2,5-furandicarboxylic acid (FDCA), has emerged as a sustainable alternative with superior strength and renewable sourcing.
Electrochemical oxidation of 5-hydroxymethylfurfural (HMF) to FDCA represents a sustainable production route, with the green conversion of biomass into high-value chemicals. Simultaneously, the process generates clean hydrogen energy through the hydrogen evolution reaction (HER). However, to achieve high efficiency, most current studies employ alkaline electrolytes, which induce significant side reactions in HMF molecules, such as disproportionation and self-polymerization. Moreover, carbon loss due to cathodic reduction during HER remains an often-overlooked challenge. Our study introduces redox reservoirs (RRs), using nickel hydroxide electrodes to decouple 5-hydroxymethylfurfural oxidation (HMFOR) and HER. The RR electrode, with its positive formal potential, spontaneously drives HMFOR in pure water under open-circuit conditions, eliminating the need for supporting electrolytes and reducing side reactions. This approach achieves over 95% FDCA yield at high reactant concentrations (300 mM) without requiring product purification. In-situ X-ray absorption spectroscopy identified Ni3+ species as active sites for HMFOR, which follows first-order kinetics. The RR system also demonstrated versatility in oxidizing furfural to 2-furoic acid, highlighting its broad applicability. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-11-26T16:21:34Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-11-26T16:21:34Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 目次
口試委員審定書 I 誌謝 II 摘要 III Abstract IV 目次 V 圖次 VIII 表次 XIV 第一章 緒論 1 1.1海洋塑膠汙染 1 1.2生物塑料 3 1.2.1生物質 3 1.2.2碳循環 7 1.3羥甲基糠醛氧化反應 8 1.3.1熱催化羥甲基糠醛氧化反應 9 1.3.2光催化羥甲基糠醛氧化反應 10 1.3.3電催化羥甲基糠醛氧化反應 11 1.3.3.1羥甲基糠醛氧化副反應 14 1.3.3.2非鹼性溶液羥甲基糠醛氧化反應 16 1.3.3.3傳統電化學槽進行羥甲基糠醛氧化反應 18 1.4解耦電解反應(decoupled electrolysis) 19 1.4.1氧化還原儲庫 20 1.5研究動機 23 第二章 實驗步驟與儀器分析原理 25 2.1使用之藥品清單 25 2.2電化學分析系統 27 2.3氧化還原儲庫工作電極之製備 28 2.3.1 RR電極粉末漿料製備 29 2.4 HMFOR催化之實驗架設 30 2.4.1高濃度HMFOR催化之實驗架設 30 2.5鈷修飾RR電極置備 31 2.6催化反應之定量分析 32 2.6.1核磁共振光譜儀(Nuclear Magnetic Resonance; NMR) 32 2.6.1.1核磁共振光譜儀原理 32 2.6.1.2核磁共振光譜儀之檢量線建立 33 2.6.2高效液相層析儀(High Performance Liquid Chromatography; HPLC) 35 2.6.2.1高效液相層析儀原理 35 2.6.2.2高效液相層析儀之檢量線建立 37 2.6.3氣相層析儀(Gas Chromatography; GC) 40 2.6.3.1氣相層析儀原理 40 2.6.3.2氣相層析儀之檢量線建立 42 2.7儀器介紹 44 2.7.1 X光繞射儀 (X-Ray Diffraction; XRD) 44 2.7.2 場發射掃描式電子顯微鏡 (Field Emission Scanning Electron Microscope; FE-SEM) 45 2.7.3 X光吸收光譜 (X-ray absorption spectroscopy; XAS) 47 2.7.3.1國家同步輻射研究中心 47 2.7.3.2 X光吸收光譜原理 49 2.7.3.3 X光吸收近邊緣結構(X-ray absorption near-edge structure; XANES) 51 2.8電化學分析原理 53 2.8.1循環伏安法(cyclic voltammetry; CV) 53 2.8.2定電流充放電(Galvanostatic charge/discharge cycle; GCD) 54 第三章 結果與討論 56 3.1氫氧化鎳電極基本鑑定分析 56 3.1.1表面形貌鑑定分析 56 3.1.2晶體結構及組成分析 57 3.2電化學性質量測分析 58 3.2.1氧化還原反應行為及形式電位量測 58 3.2.2解耦效能及電荷儲存能力分析 59 3.3羥甲基糠醛(HMF)化學性質鑑定 62 3.3.1 HMF分子降解分析 62 3.3.2陰極效應 66 3.4 HMFOR催化活性測試 70 3.4.1施加偏壓之催化效能測試 70 3.4.2開路條件之催化效能測試 72 3.5電催化HMFOR之反應機制解析 74 3.5.1 HMFOR產物濃度變化分析 74 3.5.2臨場X光吸收光譜分析 76 3.5.3 HMFOR反應速率解析 79 3.6解耦催化HMFOR及HER之穩定性 88 3.7 RR電極之可調控性 93 3.8 RR電極之催化泛用性 95 第四章 結論 99 參考文獻 100 附錄 112 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 生物質轉換 | - |
| dc.subject | 羥甲基糠醛氧化反應 | - |
| dc.subject | 氧化還原儲庫 | - |
| dc.subject | 解耦催化 | - |
| dc.subject | 無電解質催化反應 | - |
| dc.subject | Biomass Conversion | - |
| dc.subject | 5-Hydroxymethylfurfural Oxidation | - |
| dc.subject | Decoupled Reaction | - |
| dc.subject | Redox Reservoirs | - |
| dc.subject | Electrolyte-Free Reaction | - |
| dc.title | 無電解質自發性之化學生質氧化反應研究 | zh_TW |
| dc.title | Electrolyte-Free Spontaneous Chemical Biomass Oxidation Reaction | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 114-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 陳浩銘;陳軍互;盧英睿 | zh_TW |
| dc.contributor.oralexamcommittee | Hao-Ming Chen;Chun-Hu Chen;Ying-Rui Lu | en |
| dc.subject.keyword | 生物質轉換,羥甲基糠醛氧化反應氧化還原儲庫解耦催化無電解質催化反應 | zh_TW |
| dc.subject.keyword | Biomass Conversion,5-Hydroxymethylfurfural OxidationDecoupled ReactionRedox ReservoirsElectrolyte-Free Reaction | en |
| dc.relation.page | 115 | - |
| dc.identifier.doi | 10.6342/NTU202504530 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-10-01 | - |
| dc.contributor.author-college | 重點科技研究學院 | - |
| dc.contributor.author-dept | 奈米工程與科學學位學程 | - |
| dc.date.embargo-lift | 2025-11-27 | - |
| 顯示於系所單位: | 奈米工程與科學學位學程 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-114-1.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 9.04 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
