Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工業工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/100979
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃奎隆zh_TW
dc.contributor.advisorKwei-Long Huangen
dc.contributor.author王大哲zh_TW
dc.contributor.authorTA-CHE WANGen
dc.date.accessioned2025-11-26T16:20:12Z-
dc.date.available2025-11-27-
dc.date.copyright2025-11-26-
dc.date.issued2025-
dc.date.submitted2025-10-09-
dc.identifier.citation趙必暉、林芝琬、邱郁淳、蔡雅芸、鄧書芳、吳孟修、許蒨文、陳文雯、蕭斐元、謝右文(2020)。我國第一級、第二級管制藥品2008-2017年銷售及使用趨勢分析。《食品藥物研究年報》,11,352–364。
劉彥廷,2021。管制藥物之多變量異常偵測與辨識-以藥局處方資料為例,國立台灣大學碩士論文。
Azizi, A., & Wibowo, R. (2022). Intermittent demand forecasting using LSTM with single and multiple aggregation. Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), 6(5), 855–859.
Amini, S., Saber, M., Rabiei-Dastjerdi, H., & Homayouni, S. (2022). Urban land use and land cover change analysis using random forest classification of Landsat time series. Remote Sensing, 14(11), 2654
Almaktoom, A. T., & Yusuf, N. (2025, April 29). Optimizing forecasting techniques for cost-effective procurement of controlled medications in Saudi Arabia’s healthcare system. International Journal of Pharmaceutical and Healthcare Marketing.
Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32.
Bharat, C., Hickman, M., Barbieri, S., & Degenhardt, L. (2021). Big data and predictive modelling for the opioid crisis: Existing research and future potential. The Lancet Digital Health, 3(6), e397–e407.
Ciccarone, D. (2019). The triple wave epidemic: Supply and demand drivers of the US opioid overdose crisis. International Journal of Drug Policy, 71, 183–188.
Costantino, R. C. (2021). The U.S. medicine chest: Understanding the U.S. pharmaceutical supply chain and the role of the pharmacist. Journal of the American Pharmacists Association, 61(1), e87–e92.
Croston, J. D. (1972). Forecasting and stock control for intermittent demands. Journal of the Operational Research Society, 23(3), 289–303.
Corradi, J. P., Thompson, S., Mather, J. F., Waszynski, C. M., & Dicks, R. S. (2018). Prediction of incident delirium using a random forest classifier. Journal of Medical Systems, 42(12), 261.
Fulton, L., Dong, Z., Zhan, F. B., Kruse, C. S., & Stigler Granados, P. (2019). Geospatial-temporal and demand models for opioid admissions, implications for policy. Journal of Clinical Medicine, 8(7), 993.
Gabellini, M., Calabrese, F., Regattieri, A., & Ferrari, E. (2022). Multivariate multi-output LSTM for time series forecasting with intermittent demand patterns. ... SUMMER SCHOOL FRANCESCO TURCO. PROCEEDINGS, 1-7.
Harikrishnan, G. R., & Sreedharan, S. (2025). Advanced short-term load forecasting for residential demand response: An XGBoost-ANN ensemble approach. Electric Power Systems Research, 242, 111476.
Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8), 1735-1780.
Hota, H. S., Handa, R., & Shrivas, A. K. (2017). Time series data prediction using sliding window based RBF neural network. International Journal of Computational Intelligence Research, 13(5), 1145-1156.
Kiefer, D., Grimm, F., Bauer, M., & Van Dinther, C. (2021). Demand forecasting intermittent and lumpy time series: Comparing statistical, machine learning and deep learning methods.
Li, L., Kang, Y., Petropoulos, F., & Li, F. (2023). Feature-based intermittent demand forecast combinations: accuracy and inventory implications. International Journal of Production Research, 61(22), 7557-7572.
Luo, Q., Cai, S., Lv, N., & Fu, X. (2025). Daily forecasting of tourism demand: An ST-LSTM model with social network service co-occurrence similarity. Information & Management, 62(1), 104056.
Mukhopadhyay, S., Solis, A. O., & Gutierrez, R. S. (2012). The accuracy of non‐traditional versus traditional methods of forecasting lumpy demand. Journal of Forecasting, 31(8), 721-735.
Nikolopoulos, K. (2021). We need to talk about intermittent demand forecasting. European Journal of Operational Research, 291(2), 549-559.
Norwawi, N. M. (2021). Sliding window time series forecasting with multilayer perceptron and multiregression of COVID-19 outbreak in Malaysia. In Data Science for COVID-19 (pp. 547-564). Academic Press.
Parmar, A., Katariya, R., & Patel, V. (2018, August). A review on random forest: An ensemble classifier. In International conference on intelligent data communication technologies and internet of things (pp. 758-763). Cham: Springer International Publishing.
Paulozzi, L. J. (2012). Prescription drug overdoses: a review. Journal of safety research, 43(4), 283-289.
Rožanec, J. M., Fortuna, B., & Mladenić, D. (2022). Reframing demand forecasting: a two-fold approach for lumpy and intermittent demand. Sustainability, 14(15), 9295.
Sen, N., Temur, L. O., & Atilla, D. C. (2024). Yellow Fever Vaccine Demand Forecasting with ARIMA, SARIMA, Linear Regression and XGBoost. IEEE Access.
Sehgal, N., Manchikanti, L., & Smith, H. S. (2012). Prescription opioid abuse in chronic pain: a review of opioid abuse predictors and strategies to curb opioid abuse. Pain physician, 15(3S), ES67.
Sun, S., Gu, M., & Liu, T. (2024). Adaptive sliding window–dynamic time warping-based fluctuation series prediction for the capacity of lithium-ion batteries. Electronics, 13(13), 2501.
Syntetos, A. A., Boylan, J. E., & Croston, J. D. (2005). On the categorization of demand patterns. Journal of the operational research society, 56(5), 495-503.
Thejovathi, M., ChandraSekharaRao, M. V. P., Priyadharsini, E. J., Siddi, S., Karthik, B., & Abbas, S. H. (2024). Optimizing Product Demand Forecasting with Hybrid Machine Learning and Time Series Models: A Comparative Analysis of XGBoost and SARIMA. EJ and Siddi, Someshwar and Karthik, B. and Abbas, Syed Hauider, Optimizing Product Demand Forecasting with Hybrid Machine Learning and Time Series Models: A Comparative Analysis of XGBoost and SARIMA (November 15, 2024).
Teunter, R. H., Syntetos, A. A., & Babai, M. Z. (2011). Intermittent demand: Linking forecasting to inventory obsolescence. European Journal of Operational Research, 214(3), 606-615.
Zhang, G. P., Xia, Y., & Xie, M. (2024). Intermittent demand forecasting with transformer neural networks. Annals of Operations Research, 339(1), 1051-1072.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/100979-
dc.description.abstract鴉片類藥物(Opioids)經常被使用在癌症以及慢性病的治療中,能夠有效的緩解疼痛,而隨著癌症以及慢性病人口的增加以及發病年齡層下降的影響,鴉片類藥物需求量也隨年增加。然而,鴉片類藥物卻存在依賴、成癮和過量的風險,甚至有心人士會不當轉移(diversion)此類藥物,進而合成類似海洛因(Heroin)的毒品,危害社會。基於上述原因,若能有準確的需求預測值,便能作為成為辨別異常開立處方箋的一個基準線,協助後續分析。若需求的預測不夠準確,會導致過少或是過多的存貨,過少會使得病患無法及時獲得治療、緩解,過多則容易造成濫用的風險,因此需求預測是至關重要的。
然而大部分的鴉片類藥物需求卻是所謂的間歇性需求(intermittent demand),也就是在需求時間序列中伴隨著大量的零值,本研究使用某連鎖藥局從2021年11月底至2023年6月底,為期約2年的處方箋資料,本研究在僅有歷史需求資料的情境下,進行鴉片類藥品之需求預測。本研究將各藥品劃分為不同的間歇程度,並使用間歇性需求預測的傳統方法,此外也採用不同特徵組合於機器學習及深度學習之模型,進行比較分析。實驗結果發現,對於需求頻繁但波動大的藥品,可優先考慮使用多重滑動窗口下的XGBoost模型;而對於高間歇性藥品,則可採用LSTM搭配兩階段架構,提升其預測穩定性。若決策核心為某段時間區間內的預測準確率,則以 TSB 表現為最佳。
zh_TW
dc.description.abstractOpioid medications are frequently used in the treatment of cancer and chronic diseases, as they can effectively alleviate pain. With the increasing number of cancer and chronic disease patients and the trend of earlier onset ages, the demand for opioids has also grown year by year. However, opioids carry risks of dependence, addiction, and overdose, and in some cases, may even be diverted for illicit purposes to synthesize substances such as heroin, thereby posing significant threats to society. For these reasons, accurate demand forecasting can serve as a baseline for identifying abnormal prescription behaviors and assist in subsequent analyses. Inaccurate forecasts could lead to inventory imbalances: insufficient supply would prevent patients from receiving timely treatment and relief, while excessive supply could increase the risk of misuse. Thus, demand forecasting is of critical importance.
Most opioid demand, however, exhibits what is known as intermittent demand, characterized by a high proportion of zero values in the demand time series. This study employs prescription data collected from a U.S. pharmacy chain between late November 2021 and late June 2023, spanning approximately two years. Under the condition of having only historical demand data, this research aims to forecast opioid demand. The study classifies drugs based on different degrees of intermittency and applies traditional intermittent demand forecasting methods, as well as machine learning and deep learning models with various feature combinations, for comparative analysis. Experimental results reveal that for drugs with frequent but highly volatile demand, the XGBoost model with multiple sliding windows performs best; whereas for highly intermittent drugs, the LSTM model combined with a two-stage architecture provides greater predictive stability. Furthermore, when the decision-making objective emphasizes forecast accuracy within a specific time horizon, the TSB method demonstrates superior performance.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-11-26T16:20:12Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-11-26T16:20:12Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝 ii
摘要 iii
Abstract iv
目次 v
圖次 viii
表次 ix
第一章 緒論 1
1.1研究背景 1
1.2研究動機 4
1.3研究目的 6
1.4研究架構 7
第二章 文獻探討 9
2.1 連鎖藥局產業與鴉片類藥物 9
2.2間歇性需求預測 12
2.3 滑動窗口法與特徵選擇 14
2.4 機器學習與深度學習方法 18
2.4.1 Random Forest Classifier 18
2.4.2 XGBoost 20
2.4.3 Long Short Term Memory(長短期記憶) 23
2.5 評估指標(Metrics) 28
第三章 研究方法與需求預測模型 30
3.1 研究流程 30
3.2 間歇性程度指標 32
3.3 傳統間歇性需求預測方法 33
3.3.1 Croston method 33
3.3.2 SBA(Syntetos–Boylan Approximation) 35
3.3.3 Teunter–Syntetos–Babai(TSB)Method 36
3.4 機器學習與深度學習模型 37
3.4.1 Random Forest Classifier 38
3.4.2 XGBoost Regressor 39
3.4.3 Long Short-Term Memory (LSTM) 39
3.5 特徵組合 40
3.5.1 滑動窗口特徵(針對單一需求序列) 40
3.5.2 滑動窗口法(針對多組需求序列) 41
3.5.3 間歇性特徵 42
3.6 評估指標 44
3.6.1 回歸問題 44
3.6.2分類問題 46
第四章 實例驗證與分析 47
4.1 資料集介紹 47
4.2 資料前處理與分析 49
4.3 傳統方法結果分析 51
4.3.1 Croston法 51
4.3.2 SBA 52
4.3.2 TSB 54
4.4 機器學習以及深度學習模型預測結果 54
4.4.1 Uni-sliding window 55
4.4.2 Multi- sliding window 59
4.4.3 間歇性特徵(迴歸模型) 63
4.4.4 兩階段預測 66
4.5 綜合比較 68
第五章 結論與未來研究方向 71
5.1 結論 71
5.2 未來研究方向 72
參考文獻 74
-
dc.language.isozh_TW-
dc.subject間歇性需求預測-
dc.subject機器學習-
dc.subject神經網路-
dc.subject鴉片藥物-
dc.subject兩階段預測-
dc.subjectIntermittent Demand forecast-
dc.subjectMachine Learning-
dc.subjectNeural Network-
dc.subjectOpioids-
dc.subjecttwo-stage forecasting-
dc.title考量管制藥特性之機器學習需求預測研究-以鴉片類藥物為例zh_TW
dc.titleMachine Learning-Based Demand Forecasting with Consideration of Controlled Drug Characteristics: A Case Study on Opioid Medicationsen
dc.typeThesis-
dc.date.schoolyear114-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee藍俊宏;郭佳瑋zh_TW
dc.contributor.oralexamcommitteeJyun-Hong Lan;Chia-Wei Kuoen
dc.subject.keyword間歇性需求預測,機器學習神經網路鴉片藥物兩階段預測zh_TW
dc.subject.keywordIntermittent Demand forecast,Machine LearningNeural NetworkOpioidstwo-stage forecastingen
dc.relation.page77-
dc.identifier.doi10.6342/NTU202504555-
dc.rights.note未授權-
dc.date.accepted2025-10-13-
dc.contributor.author-college工學院-
dc.contributor.author-dept工業工程學研究所-
dc.date.embargo-liftN/A-
顯示於系所單位:工業工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-114-1.pdf
  未授權公開取用
3.12 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved